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Abstract—In Ubiquitous Computing (Ubicomp) research,
substantial research has been directed towards sensor-based
detection and recognition of human activity. This research
has, however, mainly been directed towards activities of daily
living of a single person. This paper presents a sensor platform
and a machine learning approach which are able to sense and
detect phases of a surgical operation. Automatic detection of the
progress of work inside an operating room has several impor-
tant applications, including coordination, patient safety, and
context-aware information retrieval. We verify the platform
during a surgical simulation. Recognition of the main phases of
an operation was done with a high degree of accuracy. Through
further analysis, we were able to reveal which sensors provide
the most significant input. This can be used in subsequent
design of systems for use during real surgeries.

Keywords-Phase Recognition, Activity Recognition, Pervasive
Healthcare, Operating Room, Machine Learning, Sensors

I. INTRODUCTION

Activity detection is core to Ubiquitous Computing (Ubi-
comp) research. Even though context-aware systems may
be implemented based on simple context information like
location, it is widely recognized that knowing what a user
is doing (i.e., the activity of the user) is important to move
context-aware computing further. So far, much research has
been directed at recognizing daily activities done by a single
person while at home [1], [2], [3], or outdoor activities [4],
[5], [6]. Even though activity detection in car manufacturing
has been researched [7], activity detection in collaborative
workplaces is very rare.

In this paper, we present an approach to activity detection
inside a surgical operating room (OR). Compared to existing
work on activity detection, activity detection inside ORs has
two distinct characteristics. First, work and hence activities
inside an OR is executed by several clinicians working
together at the same time in the same location. This means
that an activity can be performed by one person; it can be
done by two or more persons in collaboration; and several
activities can take place simultaneously. Any sensor platform
and activity detection systems should be able to handle this
nature of co-located, concurrent, and collaborating activities
inside the OR.

Second, in a surgical situation, the core activities to detect
are related to the phases of an operation. Hence, in most

cases what is important to recognize is the progression of an
operation. Recognition of the progression and phases of an
operation is important to a wide range of applications [8],
[9]. For example, in peri-operative coordination and com-
munication it is essential for clinical staff outside the OR
to know the phase of the operation [10]. But specifying the
phase has currently to be done manually by the circulating
nurse inside the OR, and is hence prone to errors, delays,
and negligence. Another example is an Electronic Medical
Encounter Record (EMR), which automatically detects and
records important medical events during surgery [11].

The system for phase recognition during surgical proce-
dures presented in this paper was designed based on field
studies of operations and interviews with surgical staff. The
system consists of a range of sensors that are both embedded
into the operating room and the instruments used during
surgery, as well as a body-worn sensors that senses what
surgical instrument a clinician is holding. Moreover, fine-
grained location tracking is used to track the clinicians while
inside the OR.

This sensor platform was designed and implemented
together with clinical staff, and then verify its feasibility
during a series of simulated operations. The results show
that it is possible to achieve high classification accuracy
of OR activity phases when using standard feature vector
classifiers. The experiment also shows that accumulating
sensor activity in historical features is important, since
accuracy falls dramatically without historical information.

Besides establishing evidence for a high recognition ac-
curacy, the experiment also helps to analyze the weight and
hence of the different sensors. This analysis is essential
since it would be challenging and costly to deploy the
current sensor platform in an OR and use it during real
surgeries. Hence, the paper also provides important input
for the optimal design of a sensor platform for activity
recognition inside an OR.

II. RELATED WORK

The general approach in the field of activity recognition is to
use sensor technologies and machine learning algorithms to
infer human activities. Most existing work has addressed the
recognition of daily activities of a single person in a home



or personal setting using different combinations of sensing
technologies, such as embedded sensors [1], location track-
ing [3], wearable sensors [2], [12], and video analysis [13].
Some approaches have focused on activity recognition based
on detecting and analyzing the sequence of objects that
are being used by the user [14], [13]. Others have tried to
combine the sensor readings with commonsense information
extracted, e.g., from the web [15], [16] to minimize labeling
overhead. In another type of work, the information from
accelerometers and body-worn sensors has been used to
identify physical activity, such as walking and sitting [17],
[18], [19]. Location-based techniques for activitiy recogni-
tion have mainly explored the information about the location
of people to infer the activity. Signals from GPS is usually
used for estimation of outdoor activities [4], [5], and mobile
phone [6] is used to work both indoor and outdoor.

In a hospital domain, Favela et al. [20], [21] estimate
high level activities of clinicinas in a medical ward using
neural network and Hidden Markov Models (HMM). In [22],
logic programming is used to detect healthcare activities in
a pervasive hospital environment where positions of people
and things are tracked. Inside operating rooms, Agarwal et
al. [11] have proposed a rule-based system for detecting
significant medical events during surgery. Based on sensor
input from RFID tags on patients and real-time data from the
patient monitoring system and anesthesia machine, they are
able to infer higher level events, like the onset of anesthesia.
A so-called Electronic Medical Encounter Record (EMR) is
automatically constructed. This EMR records and correlates
medical events and video streams with the inferred higher
level event model of the surgery.

Studies by Padoy et al. [9], [8] propose HMM-based
approaches for online recognition of surgical steps. In the
first approach, the contextual data was extracted by pro-
cessing images from the laparoscopic camera and manually
extracting information about instruments being used from
video recordings [9]. In the second approach, image analysis
of 3D motion-flows are used for phase recognition. The
activities inside a mock-up (simulated) OR are captured
with a multiple-camera system and the activity inference is
combined with workflow information [8].

Our work seeks to take activity recognition as done in
domestic or traveling settings and apply this for activity
recognition in an OR. Due to the nature of surgeries, our
activity recognition focuses on activity detection inside a
room with multiple actors working both collaboratively and
concurrent. This is in contrast to most work in the domestic
domain, which only looks at activity detection of a single
person. In relation to the research on activity detection in an
OR setting, the most close and relevant is the work by Padoy
et al. Our work differs from their work in the sense that we
use a combination of different types of sensors including
RFID, indoor location tracking, and wearable sensors. Our
sensor setup is based on an analysis of the activities inside

Figure 1. A typical setup inside the Operating Room (OR) during surgery,
involving two surgeons, a scrub nurse, and a circulating nurse (using the
PC in the back). The anesthesia nurse is behind the curtain.

the OR which points out that sensing the usage of objects
together with the location of people and objects are powerful
indicators for recognition of activities inside the OR.

Although an extensive number of different machine learn-
ing techniques for activity recognition has been proposed,
the dominant approach has been to use HHMs. The main
focus of our work is, however, to investigate the feasibility
of the sensor platform. Therefore we have chosen to use
Decision trees as a technique that can show the impact of
each feature attribute in the learning process. This allows us
to choose a suitable set of sensing features, which would
lead to the most optimal sensor setup. For this purpose we
have used decision trees as the analysis technique while
adding historical features to address the temporal aspect of
a surgery.

III. ACTIVITIES IN SURGERY

In order to get a detailed understanding of the activities
and phases involved in surgery, we conducted detailed
observations of 7 operations at a gastric-surgical department
in a university hospital. Since laparoscopic procedures are
becoming more and more prevalent, we selected laparo-
scopic appendectomy – i.e. removal of the appendix us-
ing non-invasive surgery – as the focus of our research.
The operations were done by different surgical teams, in
different operating rooms, performing the same operation
on different patients. As such, we argue that the dataset is
generic enough for this specific operation. All operations
were video-recorded and transcribed for further analysis.

The flow of a typical laparoscopic appendectomy is illus-
trated in Figure 2. The operation follows the standardized
way all operations are performed. Before the operation is
scheduled to start, the nurse anesthetist prepare for surgery
by checking the anesthesia devices, and arrange medicine
and the anesthesia instruments. Meanwhile, the scrub nurse
and the circulating nurse prepares the surgical instruments
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Figure 2. The activities involved in a laparoscopic appendectomy. The
leftmost column lists the seven phases of the operation. The other columns
show the flow of activities for each participant grouped into the phases.

and devices by placing them on the operating trolley next
to the operating table. When the patient arrives, s/he is
being anesthetized. When the surgeon(s) enters the OR, the
operation starts. During the operation, the nurse anesthetist
constantly monitors the patient’s condition, and transfuses
blood and medicine as needed. The scrub nurse assists the
surgeon and hands him the instruments and material. When
approaching the end of the operation, the nurse anesthetist
starts waking the patient, and the scrub nurse starts collecting
all surgical instruments. Finally, the patient is moved to the
recovery department.

In order to draw patterns of the surgery activity, we did a
detailed temporal analysis of the surgeries. We transcribed
our video recordings using a coding schema that helped
identified the specific actions performed in the OR and
their detailed manual tasks, as well as the involved actors,
physical instruments, and locations inside the OR. Figure 3

Figure 3. A snapshot of the intubation action

shows the intubation action, which consists of three tasks:
• The anesthesiologist holds the patient’s head and opens

the patient’s mouth using a laryngoscope.
• The nurse anesthetist gives him the ventilation tube.
• The anesthesiologist puts the ventilation tube into the

patient’s trachea.
The instruments and objects involved in this action include

a Laryngoscope, a ventilation tube, and the patient. A nurse
anesthetist and an anesthesiologist participate in this action,
and all operations take place at the operating table.

We identified 36 actions and 137 tasks in the laparoscopic
surgery. The number of (human) tasks in each action varied
from 1 to 13. Some actions had several actors (33%), and
others were done individually. Almost all actions (97%) in
the laparoscopic surgery involved using at least one physical
instrument, and 78% involved several instruments. Only few
coordination and communication actions did not involve
visible or physical tools, e.g., talking about the remaining
time of the surgery. We also noticed that there was a direct
relation between the physical instruments and the actions,
e.g., a laryngoscope is only used in intubation action. We
identified the use of 39 different types of anesthesia instru-
ments and medicine, and 37 different types of operation
instruments.

Despite being co-located inside the OR, the actions are
performed in certain areas in the room. We identified 4
important zones, i.e., specific areas where collections of
actions were carried out. These zones were the anesthesia
machine zone (l1), the anesthesia cabinet zone (l2), the
operating table zone (l3), and the operating trolley zone (l4).
Figure 4 shows a schematic view of these areas in the OR.

Anesthesia related actions are done in l1, l2, and l3; and
operation related actions are performed in l3 and l4. For ex-
ample, prepartion of anesthetic and anesthesia instruments is
done near the anesthesia cabinet (l2) whereas preparation of
operation instruments is carried out in l4. The team members
move between these zones. For example, depending on the
action, the anesthesia nurse switches between l1, l2, and
l3. The frequency of movements between different zones
depends on the operation phase. During the preparation



and ending phases the clinicians move between zones more
frequently than during the surgery.

Our observations of different types of surgeries together
with interviews with clinicians indicates the fact that despite
the type, all surgeries follow the same standard procedure,
i.e., they always start with preparation followed by the
operation and end with cleaning up. For example, the
operation can only be executed if the patient is prepared
and anesthetized, or the clean up process can only start if
the operation is finishing. We identified three types of actions
in all different types of surgeries we observed:

• Actions that are common in all types of surgeries and
are done in certain phases of the surgery. These actions
are prerequisite for initiating other actions. For instance,
anesthetization is always done in the preparation phase
and before the surgery starts.

• Actions that happen in some surgeries and in particular
phases of the surgery. For example, the intubation is not
necessary for all types of surgeries, but if the patient
should be intubed, it will be done before starting the
surgery.

• Actions that are carried out in some surgeries and can
be done in all phases. For example, the nurse anesthetist
can document the ordering of the blood either during
the surgery or after the surgery is finished.

The duration, the type and number of instruments, the
number of tasks, and the actors involved in an action vary
in different surgeries. It depends on many factors especially
the patient’s condition and the type of surgery. For example,
if a patient has a neck problem, the ventilation should be
done by putting a mask on the patient’s mouth instead of
sending a tube into the patient’s lung.

Some actions do not follow specific orders. For instance,
it does not matter if the anesthetist checks the devices before
preparing the medicine. The only thing that matters is, that
both medicine and devices should be ready before the patient
enters the OR. The order of doing these actions depends on
individuals and their routines. The actor of an action or an
operation can change. For example, if during the intubation
the operation of putting the ventilation tube in the patient’s
lung does not succeed by a nurse anesthetist, it will be taken
over by another nurse or the anesthesiologist.

Sensing the use of an instrument by a team member can
be an indicator for other members’ actions. For example,
the anesthetist always needs to know when the surgery is
finished, so she or he can start preparing for the ending
phase. If the surgeon starts to use the suture needle and
thread, that usually means the surgery is ending, so the
anesthetist can start the process of waking the patient.

Getting involved in an action usually depends on the
participants’ roles and specializations. An anesthetist is
concerned about the anesthesia and the patient’s general
condition during the surgery, whereas a surgeon concentrates
on the surgery. This division of labour causes division of

tools and instruments used by the members. An anesthetist
would rarely touch the surgery instruments, partly because
she or he is not scrub, and partly because there is no direct
link between her/his tasks and the surgery instruments.

Figure 4. The main zones inside the OR: (i) Anesthesia table, (ii)
Anesthesia machine; (iii) Operating table; and (iv) Operating trolley.

IV. SENSOR PLATFORM

Based on our detailed study, the following parameters
seemed important to track:

• The location of clinicians and the patient
• The location of objects on different tables
• The use of objects and instruments by the clinicians.
Based on this insight we created a sensor platform with

three sub-sensor systems sensing each of the items listed
above, and a central server for collecting, filtering, time
stamping, and storing sensor readings.

To track the location of people inside the OR, we used the
Ubisense realtime location tracking system (RTLS). When a
person is wearing a tag, this RTLS is able to track him
with a theoretical accuracy of 10 cm. in space (i.e., x,
y, z coordinates). Moreover, the tracking system allow us
to divide the OR into different zones, reflecting the four
main areas identified above. This is illustrated in Figure 4.
Because the Ubisense system is not completely accurate,
we introduced a buffer in the order of 50 cm. on each
side of the zones. Furthermore, since the staff member will
be positioned for instance in front of a table, the zone is
extended in the direction where the person is most likely
to be positioned. This makes the zones overlap and it is
therefore possible for a staff member to be in more than
one zone at the same time.

To track the instruments and objects on the tables, all
instruments were tagged with passive RFID tags, and tables
had built-in RFID readers. Instruments are only placed on
the anesthesia table and the operating trolley. Since the OR
contains many metallic instruments and tables, ultra-high
frequency (UHF) RFID technology was used. UHF is more
robust in such an environment, but issues with reflection
and shielding still exist. Figure 5 shows the anesthesia nurse



Figure 5. The anesthesia nurse preparing instruments at the anesthesia
table. All instruments are tagged with RFID tags and the table has a build-
in RFID reader. Moreover, the nurse carries a palm-based RFID reader that
reads which instruments she is holding.

preparing instruments at the anesthesia table, which has a
build-in RFID reader.

The third sensor is a wireless, palm-based RFID sensor
that is able to detect which instruments and objects a clini-
cian is holding in his or her hand. This sensor is composed
of a micro controller board (Arduino Duemilanove1), an
RFID reader module (ID-12 Innovations2), and a wireless
unit composed of a shield (Arduino XBee Shield Empty) and
a wireless module (XBee 1mW Chip Antenna3), that allows
the micro controller board to communicate wirelessly over
a modified ZigBee protocol to the server. Figure 5 shows
how this palm-based sensor is attached to the upper arm of
the anesthesia nurse while the RFID reader is attached to
her palm. Compared to the UHF readers, this smaller ID-
12 reader can only detect one tag at a time and it operates
in the low frequency (LF) and hence requires a different
tag than the UHF tags. Therefore, in our experiments, all
instruments and objects needed both LF and UHF tags. In
total, four palm-based sensors were used by the surgeon,
anesthesiologist, anesthesia nurse, and the scrub nurse re-
spectively.

V. EXPERIMENTATION

In order to verify the feasibility of the sensor platform for
phase recognition in an OR, we conducted an experiment

1 http://www.arduino.cc/
2http://www.id-innovations.com/
3 http://www.digi.com/

using a simulated setup. At the current stage of our research,
the sensor platform is not suitable for deployment during real
surgeries. There are some ergonomic and hygiene related
issues that needs to be addressed first. Moreover, due to
safety regulation, even experimental surgical instruments
needs to be approved before use in surgery on real patients.
Our approach was therefore to test the sensor platform and
activity recognition system during a surgical simulation.
Surgical simulation is a common method in medical practice
and is used to educate clinical staff, to test new procedures,
and to evaluate new clinical equipment.

The purpose of the experiment was to verify that the
sensor design was sufficient; how accurate phase recognition
could be done based on the sensed data, whether standard
machine learning classifiers could be used for phase recog-
nition, and lastly to identify which features coming from
the sensor system are most important for achieving high
accuracy. The latter is important in the further design and
development of such sensing technologies for ORs.

The simulation took place in a laboratory which was
rigged to resemble an OR. The setup included four palm-
based sensors, two table-based sensors, and the Ubisense
location tracking system setup to recognize the four main
zones. The setup is illustrated in Figure 4. We tagged real
surgical instruments and performed the operations on a
fictive patient.

We executed four experiments that simulated a laparo-
scopic appendectomy operation. Each simulation scenario
was designed as a set of steps as outlined in Figure 2. The
scenarios were based on the video recorded operations and
designed in close collaboration with domain experts, i.e.
surgeons, anesthesiologists, and nurses. Exact timing of the
different step was extracted from the original video record-
ings. The scenarios varied in terms of the exact timing of the
steps, e.g., when the surgical nurse starts the preparations.
Moreover, some of the activities were performed with slight
variations. For example, simulating that intubation fails and
is completed with a laryngeal mask instead. The simulations
were performed by the researchers.

A. Feature Processing

The raw sensor readings were sampled, synchronized and
transformed into feature instances by the sensor platform
on the fly. A representative subset of the logged features is
shown in Table I. Since a person can be in two zones at the
same time and an RFID tag can be read by two sensors at
the same time, a boolean value is used for each feature.

Among many machine learning techniques that were
tested including Bayesian Networks, Logistic regression, and
Neural Network, we found the results of Decision Trees most
useful for two reasons. First, because our objective was to
understand the impact of the sensors on the classification,
which can be established by looking at the generated deci-
sion trees. Second, because the system should work in real



Name Description

LRSH Laparoscopic retractor in surgeon’s hand
SSNH Suture in surgical nurse’s hand
NHSH Needle holder in surgeon’s hand
VCOT Verres cannula on operating trolley

NHSNH Needle holder in surgical nurse’s hand
TOT Trocar on operating trolley

NHOT Needle holder on operating trolley
SAT Syringe on anesthesia table

AAMZ Anesthesiologist in anesthesia machine zone
SSH Scalpel in surgeon’s hand

ANAMZ Anesthesia nurse in anesthesia machine zone
SNOTZ Surgical nurse in operating table zone

PMFANH Pre-medication form on in anesthesia nurse’s
hand

SOTZ Surgeon in operating table zone
. . . . . .

Table I
A REPRESENTATIVE SUBSET OF THE LOGGED SENSOR FEATURES.

time during operations, and having a short inference time is
thus critical. Using decision trees have a constant execution
time. One problem with decision trees is, however, that
they assume independence between different labels and as a
result the temporal dependency among the procedure steps is
uncovered. While this temporal aspect of surgical procedure
could be addressed in more complex models such as Hidden
Markov Models, these techniques are often expensive to
train and require a large dataset and structure learning.

As the sensor readings only provide information about
the current state of the operation within a given second it is
difficult to distinguish two identical states. For instance, it
is not really possible to know whether a surgeon is picking
up the scalpel in the start or at the end of a surgery. One
way to address this problem is to add wall clock time to the
feature set. However, the wall clock time interval of a phase
can vary a lot between surgeries. It depends on how fast the
staff is, as well as how difficult the patient is to operate.

Instead, we added a so-called historical feature for
each sensor feature that is equal to the number of times
{0, 1, 2, . . .} that the sensor feature has been true. The
classifiers do not distinguish between sensor features and
historical features. An example of a historical feature is the
total number of seconds that the anesthesiologist has been
in anesthesia machine zone, at the point in time the fea-
ture instance is logged. The sensor platform logs historical
features simultaniously with ordinary sensor features.

In order to train and evaluate the sensor platform, we
labeled the correct phases for each collected feature instance.
For this purpose, we used an application that is able to dis-
play the collected data as well as show the video recordings.

VI. PHASE RECOGNITION RESULTS AND ANALYSIS

We used a leave-one-out cross validation on our four data
sets D1, . . . , D4. The instances of each data set were the

Activity 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0
2 0.04 0.82 0.14 0 0 0 0
3 0 0.26 0.57 0.18 0 0 0
4 0 0 0.07 0.93 0 0 0
5 0 0 0 0 1 0 0
6 0 0 0 0 0 0.5 0.5
7 0 0 0 0 0 0.41 0.59

1 0.79 0 0 0 0 0.02 0.19
2 0.03 0.33 0.21 0 0.17 0.05 0.22
3 0 0.48 0.28 0.02 0.11 0 0.11
4 0 0.41 0.04 0.25 0.28 0 0.02
5 0 0.41 0.01 0.11 0.43 0.01 0.02
6 0.05 0.18 0.01 0 0.01 0.5 0.25
7 0.29 0.09 0.04 0 0 0.16 0.42

Table II
CONFUSION MATRIX OF A DECISION TREE (J48) USING ALL FEATURES

(TOP) AND USING NO HISTORICAL FEATURES (BOTTOM).

logged feature instances of a unique surgery simulation.
The size of each data set was 1051, 990, 1116, and 1172,
respectively.

Formally, for each validation experiment, we train a
classifier four times C1, . . . , C4, where Ci is the classifier
trained on D1∪. . .∪D4\Di and validated on Di. Thus, each
classifier is validated on instances from an unknown surgery
as would happen in a real application. Experiments vary
in the type of classifier and subset of features considered.
The result of an experiment is a 7 × 7 confusion matrix
M = [mij ], where mij is the fraction of phase i instances
classified as phase j when classifying the validation sets
D1, . . . , D4 using their associated classifiers C1, . . . , C4.
Notice that the statistical significance of each experiment
is quite high due to the large number of instances classified
in the validation sets (4329 in total).

A. Phase Recognition

The primary objective of the experiment was to examine
the performance of our approach in phase recognition using
a decision tree. As mentioned above, the issue of using
standard classification methods in labeling time series data
was addressed by adding historical feature attributes to the
feature vector. Recall that a historical feature accumulates
the time that an associated sensor feature is active and thus
summarizes the past states of the OR. The bottom part of
Table II shows the results achieved by the decision tree
classifier when removing historical features from the data
sets. As can be seen, using historical features is essential
to achieve a high classification accuracy. The fraction of
instances classified correctly has dropped significantly and
the deviation of the classification has increased a lot.



B. Sensor Significance

The secondary objective of the experiment was to evaluate
the effect of the different sensors in achieving accurate phase
recognition. An advantage of the DT classifier is that it
produces a decision tree that can be inspected manually.
Essentially, DT algorithms choose features greedily accord-
ing to how well they individually classify the training data.
If a feature is absent from the produced decision tree, it is
therefore reasonable to conclude that it is a poor predictor
of the target feature.
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Figure 6. The pruned decision tree constructed by the DT classifier using
data set 1–3 for training and data set 4 for test.

Figure 6 shows one of the four decision trees produced
by the DT classifier in the experiment shown in Table II.
The remaining three decision trees were similar in struc-
ture. The tree shows that features from all sensor systems
are present in the tree: wristband sensors (e.g., LRSHH,
SSNHH, and NHSHH), table sensors (e.g., VCOT and
SATH), and Ubisense sensor (e.g., SOTZH and AAMZ).
The wristband sensor features are higher in the tree than the
table sensor features, which in turn are higher in the tree
than the Ubisense features. This indicates that the wristband
sensor features are the strongest phase predictors while the
Ubisense features are the weakest.

However, the absolute difference in prediction strength
between the sensor systems cannot be determined from the
decision tree. To investigate this further, we conducted three
experiments with: 1) only features from the Ubisense sensor,
2) features from the wrist band and table sensors, and 3) only
features from wristband sensors. The results are shown in
Table III.

We first note that since we have reduced the number
of available features for classification, none of the results
achieved in this experiment could have higher classification
accuracy than the DT result shown in Table II . We attribute
the fact that higher classification accuracy actually was

Activity 1 2 3 4 5 6 7

1 0.92 0.08 0 0 0 0 0
2 0.42 0.53 0.05 0 0 0.01 0
3 0.01 0.19 0.5 0.21 0.08 0 0
4 0 0 0.15 0.47 0.34 0.03 0
5 0 0 0.05 0.25 0.36 0.13 0.21
6 0 0 0 0.04 0.54 0.25 0.18
7 0 0 0 0 0.42 0.17 0.41

1 1 0 0 0 0 0 0
2 0.04 0.83 0.13 0 0 0 0
3 0 0.24 0.59 0.18 0 0 0
4 0 0 0.07 0.93 0 0 0
5 0 0 0 0 1 0 0
6 0 0 0 0 0 0.82 0.18
7 0 0 0 0 0 0.37 0.63

1 1 0 0 0 0 0 0
2 0.04 0.86 0.09 0 0 0 0
3 0 0.03 0.68 0.29 0 0 0
4 0 0 0.07 0.93 0 0 0
5 0 0 0 0 1 0 0
6 0 0 0 0 0 0.59 0.41
7 0 0 0 0 0 0.26 0.74

Table III
CONFUSION MATRIX FOR UBISENSE ONLY (TOP), WRISTBAND AND

TABLE SENSORS (MIDDLE), AND WRISTBAND ONLY (BOTTOM).

achieved when using only wristband and table sensors to
the sub-optimality of the DT algorithm due to its greedy
selection of nodes in the decision tree.

VII. DISCUSSION

This section discusses the results of our research in terms of
whether phase recognition is feasible to use during surgeries;
how our sensor platform can be improved; and how the
classification accuracy can be improved.

A. Phase Recognition in ORs

The results show that the proposed sensor platform can
successfully recognize the seven phases of a laparoscopic
appendectomy in a simulated setup. Using a decision tree
classifier, we were able to achieve a high recognition ac-
curacy, and the labeled phase was never more than one
phase wrong. The results also show that creating a real-
time activity detection system in the OR is feasible. One
should note that the recognition rates in, e.g., Table II are
results for each sampling, i.e., for every second. Hence, if
we assume a uniform distribution, it should be easy to make
a sliding average over, e.g. 10-20 seconds intervals, which
would result in very high recognition rates. Moreover, these
good results are obtained using a decision tree approach.
This means that once the decision tree is built from training
data, the classification can happen really fast.

These results show that it is feasible to build applications
that take into account automatically sensed phases during



an operation. This is important because, studies have shown
that accurate knowledge about the progress of an operation is
essential for coordination in an OR suite on a large hospital,
which again has significant impact on efficiency [23].

B. Improving the Sensor Platform

Table III shows that the highest degree of phase recognition
is obtained using the RFID-based sensors in the tables and
worn on the wrist by the clinicians. This result is challenging
since this part of the sensor setup is the most demanding
sensors to develop into a version acceptable for real use
in an OR. It has two main challenges. First, the sensor
reader needs to be deployed on the surgeons and nurses,
which inevitably will be intrusive to them. Moreover, the
sensors will pose a hygiene risk and need to be embedded
in the gloves used by clinicians. Hence, the ergonomic of this
sensor is a challenge to design in a satisfying way. Second,
all instruments, tools, and utensils used in the OR need to
be tagged with RFID tags. This is challenging due to several
factors; many surgical instruments are metallic which does
not work well with RFID technology, and some surgical
instruments like a needle and a thread are very small and
hence difficult to tag.

In order to investigate why location data did not play any
role in the phase recognition, we compared the manually
labelled position data obtained from the video recordings
with the Ubisense features. This shows that even when
averaging the sensor output in each second, the position
logged by the Ubisense sensor are unstable and inaccurate
with a high degree of noise. We believed this to be the
main reason for the low prediction value of this sensor.
Therefore, we performed a small experiment, where we ran
the phase recognition using only manually labeled position
data, thereby obtaining a high location accuracy. This exper-
iment showed that phase recognition was very high with an
average of 92%. Hence, we should not disqualify location
data as such to be irrelevant, but location data should be
both very precise and accurate in order to work. And since
location tracking sensors have the advantage of not being
touched by people, thereby reducing hygiene-related issues,
it seems like improving the indoor location tracking using
other technologies might be useful to investigate further.

C. Improving the Classification

Even though the classification results from the simulated
operations are promising, real operations contain much more
complexity and variation in data. The characteristics of a
machine learning method to be used for OR phase recog-
nition include a short inference time despite large amount
of time series data. As mentioned in previuos sections,
generative models such as HMMs are the most common
approach for sequential learning. However, despite their
broad use, these models suffer from complexity in structure
and expensive training. Our approach in adding historical

features to the feature vector and using DT is a simple but
promising solution. DT is among the fastest candidates when
it comes to learning and inference. We also demonstrated the
impact of the accumulated features on accuracy in Table II.
However, we expect that in order to have more accurate
results using data from real surgeries, we might need to
improve the classification. We can do this in three ways.
First, by adding other useful and significant features into the
feature vector we can reach a higher accuracy rate. Second,
because the data in real-world scenarios will have much
more variations than simulated data and in order to avoid the
risk of over-fitting in small datasets, we will need to collect
more data for training to improve the accuracy and achieve
more stable results. In this paper, we used four data sets, but
we intend to experiment with at least 10 more data sets and
compare the classification results. Finally, as the real-world
data evolves over time, using the same classifier might not
be appropriate. Instead, we consider to examine a weighted
ensemble of different classification methods such as naive
Bayes and Decision trees. The weight of each classifier can
then be calculated and used to vote for the final output.
This will increase the accuracy of the classification results
and address the issue of concept drift in the evolving data.

VIII. CONCLUSION

This paper presented a sensor platform and classification
system for phase detection during laparoscopic appendec-
tomy procedures in an operating room (OR). The system
consists of a fine-grained real-time location tracking system
inside the OR, a range of sensors embedded into the surgical
tables, and a body-worn sensor that is able to sense what
surgical instruments a clinician is using.

This sensor platform was designed and implemented to-
gether with clinical staff, and then verified during a series of
simulated operations. Using a standard classifier, the results
showed that it is possible to achieve a high classification
accuracy of OR activity phases when accumulating sensor
activity in historical features.

Moreover, the experiment showed that ignoring data from
the indoor location tracking system didn’t affect the clas-
sification accuracy. Equally high accuracy was achieved
when solely using the body-worn wristband sensor. Thus,
besides providing evidence for a high recognition accuracy,
the experiment also helps to analyze the weight and hence
importance of the different sensors. This is essential since
it would be challenging and expensive to deploy the current
sensor platform in an OR and use it during real surgeries.

Recognizing phases during surgery is important for a
range of applications in an OR. Such applications include
systems for peri-operative coordination and communication,
context-aware medical information management, and for
general logging and safety systems. Based on our experi-
ment, we have valuable information of how to design the
next generation of the sensor platform and have hence



come an important step closer to be able to deploy activity
detection technology during real surgical operations.
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