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Abstract

This paper introduces a new algorithm for stowing containers in bays under deck that

exploits the under-constrained nature of this sub-problem in hierarchical stowage algorithms.

1 Introduction

Scaleable vessel stowage planning algorithms (e.g., [4], [2], and [1]) embed a hierarchical decom-

position of stowage planning that resembles the work process of human stowage coordinators.

Essentially these algorithms first generate a master layout that distributes containers over bays

and then solves a placement problem for each of these bays that assigns a position to each con-

tainer to store in the bay. An interesting characteristic of these hierarchical methods is that,

while the overall computational complexity of stowage planning is NP-complete, the low-level bay

placement problems tend to be under-constrained. The reason for this is that a good master

layout distributes the containers such that they are easy to place in the bays (e.g., by limiting

the number of different discharge ports represented in the bay to reduce the risk of overstowage

and by considering the bay’s capacity of each container type as well as its weight and volume

limits). The hypothesis of our work is that these under-constrained bay placement problems can

be solved efficiently using a placement heuristic combined with local search. Our work is based

on real stowage data from an automated stowage system used by a larger liner shipping company.

Using the constraints and objectives of the company to store containers in an under deck storage

location, we have implemented a three phase local search algorithm to assign containers to slots.

The algorithm uses a novel placement heuristic to identify a good initial configuration, which is

then brought to optimality in two local search phases: a feasibility phase and an optimality phase.

The computational results support our hypothesis. For real stowage jobs of the industrial system,

we find optimal or near optimal solutions in a few seconds. The only previous work using local
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search to place containers in bays is Wilson and Roach (e.g., [4]). Their algorithm, however, does

not use a placement heuristic. It is also unclear whether they include all relevant objectives of the

problem and finally, they do not compare with an exact method.

2 Model, Approach, and Results

The model is based on the variable x40
st denoting the 40-foot container (if any) placed in stack s and

tier t and x20α
st denoting the 20-foot container (if any) placed in stack s, tier t in the aft (α = A)

or fore (α = F ) slot. The model is subject to the following constraints: 40-foot containers are

not assigned to cells occupied by 20-foot containers, the capacity of cells must be fulfilled, reefer

containers must be stored in reefer slots, containers must have physical support from below, no

20-foot containers are allowed to be stored on top of 40-foot containers, all containers must be

loaded, all pre-placed containers must have their given position, and the weight and height of the

containers in a stack must not exceed its maximum limit. There are four objectives: 100 units cost

for each overstowing container, 5 units cost for each non-reefer container in a reefer slot, 20 units

cost for each discharge port present in a stack, and 10 units cost for each stack used. We refer the

reader to [3] for a detailed description of the model.

The three phases of our approach are shown in Algorithm 1. The initial configuration is given by

the placement heuristic (l.1), where a lexicographical order is enforced over the containers to load

(reefers ≺ discharge port ≺ 20-foot container). Containers are then stowed in stacks from bottom-

up prioritizing stacks with the same or greater discharge port first, and empty stacks second.

Containers that cannot be heuristically placed are sequentially stowed. The idea behind the

Algorithm 1: SolveLocation()
π = placementHeuristic(); /* Heuristic Placement */1

while ¬satisfy(constraints) do2

π′ ← π; /* Feasibility phase */3

select s1 ←most violated slot do4
select s2 ←most improving slot to swap do5

π ← swap(s1, s2);6

if π′=π then perform side move7

while there is objective improvement do8

π′ ← π; /* Optimality phase */9

select s1 ←most objective violating slot do10
select s2 ←most objective improving slot to swap filter only feasible swaps do11

π ← swap(s1, s2);12

if π′ = π then π =perform tie-breaking swap on π13

return π;14

two local search phases is to reduce the search space for optimality by restricting the neighborhood

to only feasible configurations. The local search algorithms share the same neighborhood definition.

A local move is defined by swapping the containers in two cells (notice that a cell can hold two 20-

foot containers or one 40-foot container). Successively the feasibility phase (l.2-7) starts searching
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for an assignment where all constraints are satisfied. Here swaps are selected in two steps, choosing

first a cell violating most constraints (l.4), followed by a cell which resulting swap would reduce the

constraint violations (l.5). If it is impossible to select an improving swap, a side move mechanism

allows non-improving swaps (l.7). The search terminates when all constraints are satisfied (l.2).

The optimality phase (l.8-13) searches for an optimal solution within the search space of feasible

solutions. The difference between the two phases is the selection of the second cell (l.11), which

here is chosen only between those that do not break feasibility and that at the same time improve

the objective. However, some objectives often need several side moves to improve. Within those

side moves (l.13), a tie-breaking rule gives a way to evaluate two solutions with identical objective

value, indicating which one of them is the closest to an improvement. We refer the reader to [3]

for a detailed description of the algorithm.

Our industrial instances consider under deck storage areas of 16 to 176 TEUs. Optimal results

were obtained with an exact constraint programming method developed by Alberto Delgado Or-

tegon. The algorithm was implemented in COMET under Linux 2.6.18 running on a Dual-Core

AMD Opteron, 2.6 GHz, 8GB RAM machine. The results, presented in table 1, use five restarts

of the algorithm as local minima escape strategy and show that the algorithm reaches optimality

in most of the cases within a few seconds.

Inst. TEU Opt. LS Time Gap
1 16 60 60 1,33 0%
2 40 60 60 1,80 0%
3 70 120 120 1,01 0%
4 72 120 120 1,04 0%
5 72 230 230 0,97 0%
6 78 120 120 0,91 0%
7 86 150 150 2,53 0%
8 88 390 390 2,07 0%
9 90 90 90 0,91 0%
10 90 165 180 1,98 9%

Inst. TEU Opt. LS Time Gap
11 90 215 232 2,58 8%
12 90 240 240 1,41 0%
13 90 330 330 4,84 0%
14 108 120 120 2,37 0%
15 108 240 268 3,55 12%
16 116 310 315 2,26 2%
17 148 225 243 4,45 8%
18 156 595 595 13,19 0%
19 176 360 382 6,20 4%

Table 1: Instance number (Inst.), twenty-foot equivalent unit (TEU), optimal value (Opt.), local search objective
value, run time in seconds (Time), gap between optimal and local search objective value (Gap).
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