Learning Non-Deterministic Multi-Agent Planning Domains*

Abstract

In this paper, we present an algorithm for learning
non-deterministic multi-agent planning domains
from execution examples. The algorithm uses
a master-slave decomposition of two population-
based stochastic local search algorithms and inte-
grates binary decision diagrams to reduce the size
of the search space. Our experimental results show
that the learner has high convergence rates due to an
aggressive exploitation of example-driven search
and an efficient separation of concurrent activities.
Moreover, even though the learning problem is at
least as hard as learning disjoint DNF formulas,
large domains can be learned accurately within a
few minutes.

1 Introduction

In order to compute plans to control an environment, it is nec-
essary to define a planning domain that accurately describes
its activities. A real-world planning domain is typically de-
veloped by experts and often reflects deep understanding of
the modeled activities. However, it may be incomplete or in-
correct initially, and should be updated to incrementally bet-
ter models of the environment. Thus, it is desirable to develop
techniques to automatically adapt a planning domain to exe-
cution examples. This adaptation, however, should be con-
servative since the initial domain often has high quality. For
this reason, techniques for learning a planning domain solely
from execution examples [e.g., Oates & Cohen 1996; Pasula,
Zettlemoyer, & Kaebling 2004; Yang, Wu, & Jiang 2005] are
not directly applicable to this problem.

Moreover, most real environments have concurrent activ-
ities. A significant part of the learning problem is therefore
to determine which activities cause which state changes. To
our knowledge, however, this problem has not been studied
by previous work on learning declarative planning domains.

*This research is partly sponsored by BBNT Solutions LLC un-
der its prime contract number FA8760-04-C-0002 with the U.S. Air
Force and DARPA. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or
implied, of the sponsoring institutions, the U.S. Government or any
other entity.

The most related work seems to be on multi-agent reinforce-
ment learning [e.g.,Tan 1993] and game playing, but these
approaches often focus on learning to achieve particular goals
rather than learning domain knowledge to be used by a plan-
ning system.

In this paper, we introduce an algorithm for learning non-
deterministic multi-agent planning domains. We use a do-
main representation language inspired by NADL [Jensen and
Veloso, 2000]. Thus, a state is a set of true propositions and
the domain contains a set of controllable agents that each are
defined by a set of actions. Each action modifies a fixed set of
propositions and consists of a set of rules that can model con-
ditional and non-deterministic effects. We assume that state
changes are due to joint synchronized actions of the agents.
In principle, such domains can be learned using single-agent
learning techniques on the space of joint actions. Since the
number of joint actions grow exponentially with the number
of agents, however, it seem worthwhile to develop specialized
techniques for the multi-agent case.

Our approach uses two population-based stochastic lo-
cal search algorithms in a hierarchical decomposition. The
top-level algorithm searches in the space of possible sets of
propositions that each action can modify. Due to the large
number of these, a key idea is to use binary decision diagrams
[BDDs, Bryant 1986] to efficiently restrict the search to those
modification sets that are consistent with the execution exam-
ples.

The base-level algorithm learns a set of precondition/effect
rules for each action given a modification set chosen by
the top-level algorithm and applies dynamic programming to
avoid recomputing previous results. The search is seeded by
the current planning domain. The purpose of the population-
based approach is to search in a breadth-first manner to find
a consistent planning domain that resembles the current plan-
ning domain as much as possible. The learning is biased to-
wards 1) finding succinct descriptions and 2) reducing non-
determinism. The first criterion is a classical language bias.
The second reflects that we believe that the main purpose of
fitting a planning domain to execution data is to determine the
outcome of actions in different situations to make activities in
the domain more controllable via planning.

The learning problem is at least as hard as learning disjoint
DNF formulas. Since the learnability of disjoint DNF re-
mains unresolved [Blum et al., 1998], we are left with heuris-

tic approaches. Compared with the approach suggested in
[Pasula er al., 2004], however, we avoid an NP-hard subprob-
lem of learning overlapping effects. Our experimental results
show that the learner has high convergence rates due to an
aggressive use of example-driven search and a good ability
to learn concurrent activities. Moreover, the time and space
requirements of the algorithm are low.

In this work, we focus on the multi-agent aspect by keep-
ing other dimensions of learning problem simple. Thus, we
assume that known labeled actions by known labeled agents
are observed and that all state propositions are known. More-
over, we assume that execution examples are without noise.
Several previous approaches can handle noise [e.g., Oates &
Cohen 1996; Benson 1995]. We also do not learn relational
action descriptions. This problem is well studied [e.g., Shen
& Simon 1989; Yolanda 1992; Wang 1995], and it is pos-
sible to extend our approach to cover this case. Finally, we
learn non-deterministic rather than probabilistic effects as in
[Pasula et al., 2004; Oates and Cohen, 1996]. An advantage,
however, is that we can achieve faster convergence rates since
we avoid learning a probability distribution over action out-
comes. Moreover, our approach can be used to learn fault
tolerant planning domains [Jensen et al., 2004] where plans
with high probability of success are rephrased as plans robust
to a large number of failures.

The remainder of the paper is organized as follows. We
first introduce our domain representation language. Next, we
define the stochastic local search algorithms. We then present
experimental results in two representative planning domains.
Finally, we conclude and discuss directions for future work.

2 Domain Representation

A planning domain is a triple D = (P, Agt, Act), where P =
{p1,...,pn} is a set of state propositions, Agt is a set of
agents, and Act is a set of actions. For each agent a € Agt
there is a partition of actions Act, C Act that this agent
can execute. Each action a € Act is a pair (M,, R,), where
M, C P is a set propositions modified by a and R, is set
of execution rules of the action. Let L(Q) = {l,-l|l € Q}
denote the literals of a set of propositions Q). A rule r € R,
is then a pair (pre,., eff,.), where pre,, C L(P) is a set of
literals of the propositions P defining a precondition of the
rule, and eff . is a nonempty set of effects of the rule. Each
effect e € eff . is a set of literals of the propositions modified
by a (e € L(M,)). Let L and L~ denote the positive and
negative propositions of a set of literals L. It is required that
each e € eff is distinct and that e™ Ne™ = 0. If |eff .| > 1,
the rule is non-deterministic, otherwise it is deterministic.

A domain state S C P is the set of propositions that are
true in the state. All other propositions are assumed to be
false. A precondition pre is satisfied in a state S, if .S in-
cludes all of its positive and none of its negative literals (i.e.,
pret C S and pre” NS = (). An action a is applicable
in a state if it has a rule » € R, with satisfied precondition.
To make the application of rules unambiguous, the precon-
ditions are assumed to be disjoint. Thus, if pre, and pre,,
are preconditions of two distinct rules in R,, we either have
pret N pre, # 0 or pre; N pret # 0.

An action a is applied in a state .S by non-deterministically
choosing one of the effects e € eff, of the rule r € R,
with satisfied precondition. In the single-agent case, the re-
sulting next state is S’ = (S Ue™) \ e”. In this formula-
tion, however, effects may be overlapping. As an example,
consider a rule with pre = () and eff = {{i},0}. This
rule is applicable in any state. However, if the rule is ap-
plied in a state where [is true, then it is impossible to deter-
mine whether the first or second effect of the rule is applied.
This problem makes effect learning NP-hard. We solve the
problem by requiring that all effect propositions change sign.
Thus for a rule 7, we require that Uece € C pre;f and
Ueeeﬁ-reJr C pre, . In the worst case, this may cause an
exponential blow-up in the description length of an action.
The restriction, however, is naturally met by most planning
domains and has been used in previous work [Wang, 1995;
Oates and Cohen, 1996]. Moreover, it reduces the complexity
of effect learning to linear in the number of positive execution
examples.

When the domain includes multiple agents, they are as-
sumed to execute actions synchronously. At each step, all
agents execute exactly one action. The resulting action tu-
ple is a joint action J € HaeA . Act,, and is applicable in a
state, if all of its actions are applqicable. The actions, however,
are assumed to modify disjoint sets of propositions to avoid
interference. As an example, consider the two actions shown
below of a blocks world domain with two gripper agents G'1
and (G2 and three blocks B1, B2, and B3.
agt : G1

act : pickupG1B1
mod :{clearB1, ontableB1, handemptyG1, G1holdingB1}
pre : {clearB1, ontableB1, handemptyG1, ~G1holdingB1}
eff : {—clearB1,—ontableB1, ~handemptyG1, GlholdingB1}
agt : G2
act : stackG2B2B3
mod :{ontableB2, G2holdingB2, clearB2, B2onB3, clearB3, handemptyG2}
pre : {—ontableB2, G2holdingB2, —clearB2, ~B2onB3, clearB3,
—handemptyG2, ontable B3}
eff : {—=G2holdingB2, clearB2, B2onB3, —clearB3, handemptyG2},
{ontableB2, = G2holdingB2, clearB2, handemptyG2}
pre : {—ontableB2, G2holdingB2, —clearB2, ~B2onB3, clearBS,
—handemptyG2, —ontable B3}
eff : {—~G2holdingB2, clearB2, B2onB3, —clearB3, handemptyG2}

The pickupG1B1 action is deterministic while
stackG2B2B3 is non-deterministic, but only if B3 is
on the table. The two actions can form a joint action since
they modify a disjoint set of propositions. Figure 1 shows the
two possible outcomes of executing the joint action.

Figure 1: Execution of (pickupG1B1, stackG2B2B3).

3 Domain Learning

The objective of the learning algorithm is to fit an initial do-
main hypothesis to execution examples. We assume that the
execution examples are sampled without noise from a target
domain D*. The execution examples are either positive or
negative. The positive examples are triples (S, .J, S’), where
S is a current state, J is a joint action of the agents, and S’
is the next state reached by executing JJ in S. The negative
examples are pairs (S, a), where S is a current state and a
is an unapplicable action in S. The set of agents and the set
of possible actions, each agent can apply, is assumed to be
known.

The input to the learning algorithm is an initial domain hy-

pothesis D and set of positive ¢ and negative © execution ex-
amples. The output is a domain hypothesis D’ that is “close”

to D, consistent with execution examples (i.e., includes pos-
itives and excludes negatives), and as deterministic and suc-
cinct as possible.

It is hard to define these output requirements formally.
First, how do we ensure that D’ is “close” to D? Our solu-
tion is to perform a search in the syntax space of the domain

representation that starts from D. Our approach is inspired
by [Pasula et al., 2004] that maps the syntax hierarchy into a
hierarchy of local search algorithms. In contrast to this work,
however, we use population-based stochastic local search to
approximate a breadth-first traversal of the search space and
achieve higher robustness. Second, how do we ensure that
learned domain is consistent with the given execution exam-
ples? Since the examples are assumed to be noise-free, we
can solve the problem by using example-driven search that
only considers domains that are consistent with the execu-
tion examples. It is, however, challenging to generate con-
sistent domains efficiently. In particular, we need to com-
pute consistent sets of propositions that can be modified by
each action. A key insight is that the problem can be decom-
posed and solved for each proposition independently and that
precomputed BDDs can be used to represent the valid mod-
ification sets compactly. Third, how do we ensure that the
learned domain is as deterministic and succinct as possible?
In fact, the two criteria are in conflict since, in our repre-
sentation, two deterministic rules often can be combined to
a single more compact non-deterministic one. Our solution
is to summarize these requirements into a domain cost that
the search algorithms must minimize. The cost of a domain
D = (P, Agt, Act) is the sum of the cost of each action

cost(D) = Z cost(a), where
ac€Act
cost(a) = |Mg|+ Z cost(r),
TERg
cost(r) = w(r)size(r),
size(r) = |pre,|+ D e,
eceff,
(@ | o eff | >1
w(r) { 1 otherwise.

The weight w(r) of a rule is equal to the number of positive

examples @, it covers, if it is non-deterministic, and other-
wise 1. The purpose of penalizing non-deterministic rules in
this way is to ensure that if a deterministic component of the
rule can be “factored out” from a non-deterministic rule in a
rule-set, the resulting rule-set has lower cost. However, if no
deterministic rule can be factored out, the most succinct ver-
sion of the rule-set has lowest cost (e.g., by coalescing two
deterministic rules into a single more general deterministic
rule).

4 Hierarchical Stochastic Local Search

The hierarchical decomposition of the domain representation
has three levels. Since the set of agents and the set of actions
of each agent is assumed to be known, the first level defines
the set of propositions that is modified by each action. Given
a modification set of each action, the second level defines the
precondition of each action rule. Given the preconditions of
rules, the third and final level defines the effects of the rules.
Since we require that effects are non-overlapping, the effects
of a particular rule can be computed from the execution data
and the initial domain model in linear time. For this reason,
we map the 3-level syntactical hierarchy into a 2-level search
hierarchy. The top-level search algorithm traverses the space
of consistent modification sets, while the base-level search
algorithm traverses the space of consistent rule-sets for each
action given a modification set from the top-level. Each level
uses a similar population-based stochastic local search algo-
rithm. The pseudo code of this algorithm is shown below.

function PSLS(m, k, p, s)
1 best «MKSEED()

2 F « {best}
3 sideSteps — 0
4 loop

5 C' —EXPAND(F)

6 if C = () then return best

7 C' «—PERMUTE(SORT(C), p)

8 F —FIRST(C, k)

9 if F[1].cost < best.cost

10 sideSteps «— 0

11 best — F1]

12 elseif F[1].cost > best.cost then return best
13 else if sideSteps > s then return best

14 else sideSteps < sideSteps + 1

The arguments to PSLS are the problem instance , the popu-
lation size k, a swap probability p, and the maximum number
of plateau side steps s. The initial search state is computed
by MKSEED(7). In each iteration of the search, EXPAND(F')
computes the children of all the search states in the father set
F'. The children are sorted by SORT(C') in ascending order
of their cost. The stochastic element of the search is due to
PERMUTE(C, p) that swaps each child (except the first) with
a random other child with probability p. Finally, the function
FIRST(C, k) returns the first k elements of C.

4.1 Level 1: Learn Modification Sets

The top-level PSLS algorithm searches in a space of propo-
sition modification sets of actions that are consistent with the

execution examples. For each assignment of the modifica-
tion sets, the algorithm calls the base-level search algorithm
to learn the rule-set of each action. Since, we may expect the
same action to be learned several times for the same modifi-
cation set, dynamic programming is applied by maintaining a
cache of previous results.

The theoretical size of the space of modification sets is
21Pll4¢tl which is prohibitively large for a generate-and-test
approach. Hence, we need a way to make the search example-
driven. Let A(S,S")* and A(S,S’)” denote the proposi-
tions in a positive example (S, J, S’) that change from false
to true and true to false, respectively. Further, let A(S,S”) =
A(S,8") T UA(S,S")~.! For the modification sets of the ac-
tions in J to be valid, we require that 1) the modification sets
are disjoint (Vaj,a9 € J.a1 # as = My, N M,, = 0),
and 2) at least one action modifies a proposition that changes
truth-value (Vp € A(S,S5")3a € J.p € M,). This problem
can be decomposed into a set of independent constraints on
each proposition. Thus, for each positive example (S, J, S’),
each proposition in A(S,S") is modified by exactly one ac-
tion in J.

We use BDDs to represent this search space efficiently. A
BDD is a compact data structure for representing and manip-
ulating Boolean functions. For each proposition p € P, we
compute a BDD representing the Boolean function

mi mi 2 M1 |act,|

ma ma 2 0 MY acts|
Pl)

M| Agt|,1 T Agt|,2 M Agt|,lact|agy |

where act; denotes the set of actions of agent ¢ for some or-
dering of the agents, and m; ; is a Boolean variable that in-
dicates whether p is modified by action j of agent i for some
ordering of the actions in act;. We define f, to be true iff
the assignment of its arguments corresponds to valid modifi-
cations of p. Our experimental results show that each of these
BDDs can be computed in a few seconds even when con-
sidering large domains with thousands of positive execution
examples. Moreover, the final BDDs are typically very small
with just a few hundred nodes.

MkSeed For each proposition p, MKSEED uses a greedy
approach to find an assignment of the arguments of f, that
has minimum Hamming distance” to the assignment of the
arguments that corresponds to the modification sets of the
initial domain D. This is done by iteratively choosing an m-
variable that, when assigned to the truth-value it has in 25,
allows the largest number of remaining variables to be as-
signed their truth-value in D. The computations may be time
consuming but often generate modification sets from which a
domain with a local minimum cost can be found.

Expand For each father f € F', EXPAND makes a child for
each proposition p € P by changing which actions modify
p. This is done in the same way as MKSEED with the fa-
ther assignment being the target. All other propositions in the

'Notice that A(S, S") = @) is possible.
>The Hamming distance between two bit vectors is the number
bits with different signs.

child are modified by the same actions as the father. For each
child, EXPAND calls the base-level search algorithm to learn
each action of the domain. Thus, the problem instance 7 of
the base-level search algorithm is the modification set of a
single action.

4.2 Level 2: Learn Action Rule-Sets

Given a modification set of an action a, the base-level PSLS
algorithm searches in the space of rule-sets of a that is consis-
tent with the positive and negative execution examples. The
task is to find a set of rules that covers all the positive exam-
ples where a is a part of the joint action and excludes all the
negative examples where a is unapplicable.

LearnRule An important subfunction LEARNRULE learns
arule r = (pre,., eff) for an action a given its precondition
pre,. Let @, denote the positive examples covered by the
rule. That is, the set of positive examples (S, J, S’) where
a € J and pre,. is satisfied in state S. The effects of a rule are
computed from the initial domain C and the positive execution
examples @,.. For each positive example (S, J,S") € @,.,
we can derive an effect e, where et = A(S, S’)" N M, and
e~ = A(S,S")” NM,. If the action description of the current
domain includes additional effects covered by the rule, then
these are added to the set of effects of the rule. Thus, the
effects of a rule can be computed in linear time in the number
of positive examples and the size of the action description of
the current domain. However, the resulting rule is only valid
if 1) @, # 0, 2) pre, does not cover any negative examples,
and 3) the effects are non-overlapping. That is, Uec e €™ C

pre; and Uecep et C pre, .

MkSeed The initial rule-set of an action is derived from the
rule-set of the action in the current domain C and the execu-
tion examples. Each rule r of this action is computed using
LEARNRULE and is added to the rule-set if it is valid accord-
ing to the requirements above. Otherwise,

o if the precondition of r does not exclude all negative ex-
amples, then it is greedily extended with literals that ex-
clude most negative examples,

e clse if there is a proposition p that the effects of r both
can make positive and negative, then 7 is split into two
new rules with preconditions pre,. U p and pre, U —p,

e clse the precondition of 7 is extended with literals that
make the effects non-overlapping.

Positive examples not covered by the resulting rule-set, are
added as single, most specific rules where the precondition
is equal to the source state of the positive example. The ap-
proach ensures that the resulting rule-set has disjoint precon-
ditions.

Expand Foreach father f € F', EXPAND makes children of
f by specializing and generalizing the rule-set of f. It is en-
sured that the resulting rule-set has a disjoint set of precondi-
tions and that it excludes all negative execution examples and
includes all positive execution examples. There is a child for
each possible rule-set resulting from specializing or general-
izing a rule r in the rule-set of f. A rule r can be specialized
in two ways

1. by adding a literal to its precondition that does not re-
duce the set of positive execution examples &, covered
by the rule,

2. by splitting r into two new rules with precondition
pre,. U p and pre,. U —p that each covers a nonempty
set of positive execution examples.

A rule r can be generalized in one way, by removing a literal
from its precondition. If the new rule is valid, the rule-set
of the child is constructed by removing all rules subsumed
by the new rule. However, the child is only added, if the
resulting rule-set is disjoint. It is easy to realize that this set
of operations are complete.

Proposition 1 Any disjoint valid rule-set t1, ..., t,, on ex-
ecution examples £ can be constructed from some disjoint
valid rule-set r1,...,r, on £ using the specialization and
generalization operations of EXPAND.

Proof. Specialize each rule in rq,...,r, until it covers a
single state. Let the resulting rule-set be s1, ..., s. For each
rule ¢ in t1,...,t,,, identify a rule s in sq,...,S; cover-
ing a positive example of ¢. Specialize s until pre, = pre,. O

The hard question is whether the cost-function (i.e, the cost
of a rule-set) guarantees that the search escapes local minima.
In this case, the learning problem would be polynomial in the
number of execution examples. Learning the preconditions of
the rules, however, involves learning a disjoint DNF formula
from positive and negative examples. Thus, we have

Proposition 2 Learning a disjoint valid rule-set is as hard as
learning a disjoint DNF.

This is a negative result since the learnability for disjoint DNF
remains unresolved in any reasonable learning model [Blum
et al., 1998]. Hence, we may not expect to escape all local
minima. The chosen cost function, however, performs well
on the domain instances we have investigated.

5 Experimental Evaluation

The learning algorithm has been implemented in C/C++/STL.
The program includes a parser for our domain representa-
tion language and a simulator to generate execution examples.

The inputs are the current domain hypothesis C, the target do-
main C*, and the number of positive and negative execution
examples. The execution examples are generated by applying
joint actions of the target domain to random legal states and
producing outcomes according to a probability distribution
over the effects.

Domains We have defined two non-deterministic multi-
agent planning domains for our experimental evaluation. The
first, nblocks, is a non-deterministic version of the blocks
world with multiple gripper agents. There are four actions
pickup, putdown, stack, and unstack with their usual seman-
tics except that stack and unstack are non-deterministic. For
these actions, there is 10 percent chance that blocks fall to
the table. The second domain, nlogistics, considers multi-
ple plane agents flying between a number of cities. There is a
non-deterministic fly action for each city pair. The outcome of
these actions, however, is only uncertain when it rains. In this

case, there is 10 percent chance that the plane is re-routed to a
third city that is specific to the action. The two domains pose
complementary learning challenges. In nblocks, the gripper
agents are highly dependent which significantly reduces the
number of applicable joint actions of a state. In nlogistics,
the plane agents are independent, but here the problem is to
learn the correct re-route city of each action.

Experiments The experimental evaluation investigates the
convergence rate of the implemented algorithm as a function
of 1) the domain size and type, 2) the agent decomposition,
and 3) the quality of the initial domain hypothesis. In ad-
dition, we examine the trade-off between CPU time and the
quality of the produced domains. The experiments are carried
out on a Linux 2.6 PC with two 2.4GHz Pentium 4 CPUs,
512KB level 2 cache, and 512MB RAM. For both PSLS al-
gorithms, we use £k = 2, p = 0.1, and s = 2. For all
experiments, we use the same number of positive and neg-
ative execution examples. For each experiment, the quality
of the learned domain is estimated by counting the number of
classification errors on 1000 (500) random positive (negative)
execution examples. Unless otherwise mentioned, the initial
domain hypothesis of nblocks and nlogistics assumes that all
actions are deterministic. Thus, neither the modification sets
nor rule-sets are correct for all actions.

Domain Size and Type Two target domains with different
sizes are constructed for nblocks and nlogistics. For nblocks,
we consider 2 gripper agents moving 3 and 6 blocks. For nl-
ogistics, we consider 2 plane agents and 5 and 10 cities. The
results are shown to the left in Figure 2. Even for the small-
est set of execution examples covering all actions, none of
the learned domains has an error rate higher than 15 percent.
Convergence is fast. The small and large target domains have
1125/953 and 3941/4915 words in the domain description
(nblocks/nlogistics). Thus, the domains converge to the tar-
get domains within a small factor of their description size. A
visual inspection of the learned actions shows that they have
close resemblance with the target actions. The large domains
were learned by just using the seed assignment of modifica-
tion sets computed by the level 1 search algorithm. Thus, the
results indicates that the BDD-based precomputation of valid
assignments of modification sets combined with the heuristic
for choosing the seed assignment is strong enough for find-
ing the correct assignment given enough training examples.
None of the instances took more than 150 seconds.

Concurrent Activity In this experiment, we examine how
well the learning algorithm copes with concurrent activity.
For an nlogistics domain with 5 cities and 3 planes, we con-
sider an increasing number of concurrent agents controlling
the planes. In 1nlog3-5, one agent controls all planes. Thus,
only one plane fly at a time. In 2nlog3-5, two agents control
the planes, etc.. The results are shown in the middle of Fig-
ure 2. Despite an initial higher error rate, 3nlog3-5 converges
faster than Inlog3-5 and 2nlog3-5. However, 3nlog3-5 gets
information for three actions for each positive execution ex-
ample, while 1nlog3-5 and 2nlog3-5 only get information for
one and two. The results show that the learning algorithm ef-
ficiently resolves concurrency and can exploit the extra infor-
mation given for the positive execution examples of 3nlog3-5.

3500

250 T T T T T T T T T 300

200 nblock2-6 @ | 250

200 [
150 -

Number of errors
=)

Number of errors
*

Number of execution examples

150 X
5, i
\ B-g 100 b 4
.. el x d
X s}
e 50 b
Koo a8 e
0 2000 4000 6000 8000 10000 1200014000 16000 1800020000 0 2000 4000

Number of execution examples

nlog3-5 —— Anlog2-5 ——
2nlog3-5 - Bnlog2-5 - o
3nlog3-5 - | 3000 | Cnlog2-5 - K
2500 -
B
£ 2000 -
o
£
> 1500 |
o
S
1000 -
500 -
0
8000 10000 12000 14000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of execution examples

Figure 2: Left: Convergence rates for large and small nblocks and nlogistics domains. Middle: Convergence rates for nlogistics
domains with increasing concurrency. Right: CPU time for an nlogistics domain with decreasing quality of the initial domain.

The domains were learned by just using the seed assignment
of the modification sets.

Quality of the Initial Domain Hypothesis In this experi-
ment, we change the quality of the initial domain hypothesis.
We consider 3 initial domain hypotheses A, B, and C for an
nlogistics domain with 2 planes and 5 cities. A is the usual
initial domain hypothesis. The fly actions in B, do not mod-
ify the location proposition of the destination city, while in
C, they are empty (i.e., they apply in all states and have no
effects). The learner is given the same set of execution ex-
amples for the three cases. For these experiments, level 2
performs a complete search. The domain learned is identi-
cal in all three cases. This shows that the search is robust to
changes in the initial condition. However, as shown to the
right in Figure 2, the learner can use a high-quality initial do-
main hypothesis to achieve lower search times.

6 Conclusions and Future Work

In this paper, we have presented an algorithm for learning
non-deterministic multi-agent domains using a hierarchy of
two population-based stochastic local search algorithms. Our
experimental results show that the learner has fast conver-
gence rates and is time and space efficient. Moreover, it effi-
ciently handles concurrent activities and may benefit from an
initial domain hypothesis with high quality. Future work in-
cludes extending the approach to relational actions and noisy
execution examples.

References

[Benson, 1995] S. Benson. Inductive learning of reactive ac-
tion models. In Proceedings of the 12th International Con-
ference on Machine Learning, pages 47-54, 1995.

[Blum et al., 1998] A. Blum, R. Khardon, E. Kushilevitz,
L. Pitt, and D. Roth. On learning read-k-satisty-j DNF.
Journal of Computing, 27:1515-1530, 1998.

[Bryant, 1986] R. E. Bryant. Graph-based algorithms for
boolean function manipulation. [EEE Transactions on
Computers, 8:677-691, 1986.

[Jensen and Veloso, 2000] R. M. Jensen and M. M. Veloso.
OBDD-based universal planning for synchronized agents

in non-deterministic domains. Journal of Artificial Intelli-
gence Research, 13:189-226, 2000.

[Jensen et al., 2004] R. M. Jensen, M. M. Veloso, and R. E.
Bryant. Fault tolerant planning: Toward probabilistic
uncertainty models in symbolic non-deterministic plan-
ning. In Proceedings of the 14th International Conference
on Automated Planning and Scheduling ICAPS-04, pages
235-344,2004.

[Oates and Cohen, 1996] T. Oates and P. R. Cohen. Search-
ing for planning operators with context-dependent and
probabilistic effects. In Proceedings of the 13th national
Conference on Artificial Intelligence (AAAI-96), pages
863-868, 1996.

[Pasula et al., 2004] H. M. Pasula, L. S. Zettlemoyer, and
L. P. Kaebling. Learning probabilistic relational planning
rules. In Proceedings of the 9th International Conference
on Principles of Knowledge Representation and Reason-

ing (KR2004), pages 683692, 2004.

[Shen and Simon, 1989] W. Shen and H. A. Simon. Rule cre-
ation and rule learning through environment exploration.
In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 675-680, 1989.

[Tan, 1993] M. Tan. Multi-agent reinforcement learning:
Independent vs. cooperative agents. In Proceedings of
the 10th International Conference on Machine Learning,
pages 330-337, 1993.

[Wang, 1995] X. Wang. Learning by observation and prac-
tice: An incremental approach for planning operator ac-
quisition. In Proceedings of the 12th International Con-
ference on Machine Learning, pages 549-557, 1995.

[Yang er al.,2005] Q. Yang, K. Wu, and Y. Jiang. Learning
action models from plan examples with incomplete knowl-
edge. In Proceedings of the 15th International Confer-
ence on Automated Planning and Scheduling (ICAPS-05),
pages 241-252,2005.

[Yolanda, 1992] G. Yolanda. Acquiring Domain Knowledge
for Planning by Experimentation. PhD thesis, Carnegie
Mellon University, 1992.

