Specification and Verification of Complex Robotics
Tasks

Rune M. Jensen
Department of Information Technology
Technical University of Denmark
Lyngby, Denmark

August 10, 1998

Abstract

This paper applies duration calculus to the specification and ver-
ification of a complex robotics task: Fingers grasping an object. We
present a model of the relevant features of the mechanical design and
provide a specification for sensors, actuators and a controller. Require-
ments are then specified in an assumption commitment style, and it is
checked through calculation that the design satisfies the requirements.

1 Introduction

Developement of complex real-time robotics systems is a challenging en-
gineering task. First, the development of system components is often di-
vided among several subprojects using different design methodologies, which
makes the final behaviour of the integrated robot system hard to predict
and correct [ORS96]. Second, traditional design methods based on separate
mathematical models of each electrical and mechanical component and sta-
tistical models of the timing behaviour of the controller programs has led
to systems with chaotic behaviour, because performance is very sensitive to
initial conditions [SF97].

To overcome these problems developers in robotics should consider in-
tegration of the components during the design. Moreover when specifying
system requirements a coherent and mathematically well-founded formalism
integrating the continuous dynamic properties with the discrete controller
properties should be used to apply mathematical reasoning to determine
whether a system design conforms to specific requirements.

Because robotic systems in contrast to other real-time control systems
usually exhibit asynchronous behaviour, they cannot be modeled by states
that change at fixed time steps [SF97]. Hence, a formalism applicable to
systems with varying time transitions is required. Duration Calculus (DC)
[ZHRY1, HC97] is a temporal logic possessing these properties. Further, DC
makes it possible to formalize properties of real-time hybrid systems with
interacting continuous and discrete states using predicate logic and mathe-
matical analysis.

In this paper we present a design approach suitable for robotic systems
based on the Requirements Language (RL) defined by the Provably Cor-
rect Systems project (ProCoS) [HHF194]. RL embeds Duration Calculus
in Z-schemas [Spi87, Rav95]. The Z-schemas introduce a module concept
which enables structured declarations corresponding to the specifications of
systems and subsystems [ORS96]. There are two advantages of this. First,
it makes the specification easier to share between several developers, and
second, it makes verification less complex by clustering quantities with as-
sociated formulas that only speak about these quantities [ORS96].

The design approach documents the system development through three
phases: System modelling, requirements specification and behaviour verifi-
cation. We use a visual grasping task presented in [SF97] as an example and
verify a selection of sensors and actuators, with a desired program architec-
ture with respect to system requirements and model.

A similar design approach has been used in formal specification of a
gasburner [HHF 94, Rav95], a railroad crossing [ORS96] and a digital con-
troller of a hydraulic arm manipulator [RRH"95]. Compared to this work
we introduce a more exact specification of sensors and actuators and a more
explicit system architecture. Also [SF97] uses a similar design approach, but
here the specification of physical components is stated as controller phase re-
quirements, which makes the design a program design rather than a system
design.

The paper is organized as follows: Section 2 briefly introduces RL. In
Section 3 a hierarchical model of the visual grasping robot is developed,
which leads to specification of requirements in an assumption commitment
style in Section 4. In Section 5 the requirements are verified by means
of formal mathematical reasoning on the design and system assumptions.
Finally in Section 6 we draw conclusions.

2 Introduction to Requirement Language

The main building blocks of RL are DC formulas embedded in Z-schemas.
DC is a dense time temporal logic on time intervals and has evolved from
Moszkowskis’s (discrete time) interval logic (ITL) [Mos85]. A complete def-
inition of DC and a proof system for DC are found in [Rav95, HC97]. Here
we will restrict us to only defining the DC abbreviations used throughout
the paper:

L = [true interval length

[] = /(=0 the point interval

[p] = [p=LAL>0 p holds

[p]" = [p=LAL=T p holds for r time units

oD = true; D ; true D holds somewhere

obD = =<0O-D D holds allways

D —[p] = 0O-(D; [-p]) D is followed by p

D 5 [p] = (DAL=7)—[p] D leads to p within r time units

Consider a system SystemD specified by the DC fomula D. The Z-schema
specification of SystemD is:

__SystemD
UniverseD

D

Where UniverseD denotes the universe comprised of a finite set of state
variables, rigid variables and operators in which D is interpreted. Compo-
sition of schemas is defined iff the basic symbols occurring in both schemas
agree on type and arity [Rav95]. The combined system is constrained by
the conjunction of the duration formulas.

Further, the Z-schema notation allows multiple instances of a schema
specification. A system SystemND specifying n instances of SystemD is
specified by:

SystemND
’7 81582, ey Sp + SystemD

3 System model

The task described in [SF97] consist of grasping moving objects with a planar
two-fingered hand using visual information about the object (see Figure 1).

O

* L.ldlePos RldlePos *

T
|
Drop zone !
|
|
|
|
I
|

Figure 1: The grasping robot system

During the task the fingertips moves from an idle position to the left and
right boundary of the object. When both arms have contact with the object
it is lifted and moved to a drop zone, where it is released.

The computer system controlling the grasping task is assumed to consist
of a finite state machine connected to two robot arms and a task monitor
unit. The task monitor is connected to an intelligent subsystem analyz-
ing the visual information from a camera device situated above the system.
When an object is present, the subsystem continuously calculates the po-
sition of the left and right side of a region in which the object is located
and monitors if an undesirable situation occurs . The exact location of the
object is not known because the object speed fluctuates as specified below:

_ Object
Viow, Vaigh : RZ°
Vobj : Time — R>°
Veon : R20
O (I"| \ I_Vlow < Vobj < Vhigh-|)

Veon denotes the maximal speed difference between the object and a fingertip
when the fingertip makes contact with the object.

3.1 Arm

Because the left and right arm are symmetrical we define them by making
two instances of a general arm specification.

__ Arm

S, S : Time — R?
B . Time — R?
IdlePos : R?

F . Time — R2°
Vieg : R?

O(e.S = b.S + [8)

S denotes the position of the fingertip. S is the speed of the fingertip, which
gives the dynamic relation O (e.S = b.S+ [S) between S and S. B denotes
the position on the boundary of the object region calculated by the intelligent
subsystem. Vi eg is an absolute speed of the fingertip corresponding to a
relative speed between the fingertip and the object below Vi .

F denotes the pressure on the fingertip from the object or an obstacle.
F is measured by a force sensor with the following specification:

__ ForceSen
Arm
v . R2Y
¥ . R20
contact : Time — Bool

[F >~] = [contact]
[F <v] = [~contact]

The force sensor signals contact when the pressure is above a threshold
~. Similar to all other sensors a reaction time of the sensor is assumed.
The reaction time of the force sensor is v. The position of the fingertip is
measured by a position sensor:

__PosSen
Arm
p : R0
atidlepos, atboundary : Time — Bool

[S =B] % [atboundary]

[S #£B] % [~atboundary]

[S = IdlePos] -2 [atidlepos]
[S # IdlePos] -2 [—atidlepos]

The arm is moved by altering the angle of the two arm links. When mod-
elling the arm actuator though, we ignore the mechanics and define the
actuator as acting directly on the fingertip position:

__ArmAct
Arm
Object
) >0
Kby Kgs Kfy His B - R=
movecom : Time — {Gotoboundary, Grasp, Follow, Gotoidlepos}
hold : Time — Bool

[gotoboundary] 5 [S=BAS = (Vorj» 0)]
[grasp] = [S = Vieg]
[follow] 5 [8 = (Vo 0)]
[gotoidlepos] =5 [S = IdlePos A S = 0]
[hold] £ [F = P)

The move commands are given by abbreviations grasp def (movecom =
Grasp) etc. . Grasp makes the arm enter the object region with a speed of
Vg corresponding to a speed between the fingertip and the object equal to
Veon- The control signal Follow is set when the fingertip makes contact with
the object. Hold is used when both fingers have contact with the object and
is used to lift the object from the feed belt. Combined with gotoidlepos it
is used to move the object to the drop zone.

The specification of the general arm is a composition of the three compo-
nents above:

ArmCon
FS : ForceSen
PS : PosSen
AA : ArmAct

3.2 Arm Assembly

The arms are linked to the controller through control states defined in the
schemas ArmCom, LeftArmCom and RightArmCom. The mapping between

the control states and the arm states is specified by the instantiation of the
two arms given by:

__ArmAss
Arm
ArmCom
ArmLeftCom
ArmRightCom
L,R: ArmCon

L-Vreg = (Vobj + VcomO)
atboundary = L.PS.atboundary N\ R.PS.atboundary
L.FS.contact = lcontact
L.AA.gotoboundary = R.AA.gotoboundary = gotoboundary

3.3 Task Monitor

The task monitor receives ObjectAtImage from the intelligent subsystem
indicating the arrival of an object. During the approach phase the subsystem
observes the configuration of the arms. If a critical situation arises the task
monitor receives the signal FailAtImage.

__TaskMon
TaskMonCom
ObjAtImage, FailAtImage : Time — Bool
3 : R0

[ObjAtImage| N [oktograsp|
[—ObjAtImage] N [—oktograsp]
[FailAtImage | N [failure]
[—FailAtImage| LN [—failure]

TaskMonCom defines the control states oktograsp and failure, that links the
task monitor to the controller.

3.4 Controller

The controller consist of a finite state machine given by the diagram in
Figure 2. The behaviour of the controller is specified by the schemas Seq,
ConP, Prog, Stab and Sync. ConP defines the controller phases:

oktograsp

Approach

'

failure V atboundary

failure
Fail Appr.obs

atboundary
Grasp

lcontact V rcontact

'

Graspobs

lconta,%&contact
[Left } [Right]

rcontact lcontact
tidl
atidlepos Move

Figure 2: The controller

ConP
|7 main : Time — {Idle, Approach, Approachobs,

Grasp, Graspobs, Left, Right, Move, Fail}

The controller phases correspond to the phases shown in Figure 2. The
phases are given by abbreviations idle def (main = Idle) etc.

To save space we only specify the Grasp and Graspobs phases in the
remaining schemas. The specification of the rest of the phases can be gen-
eralized from this specification. The sequencing constraints of Grasp and
Graspobs are:

__Seq
ConP

[grasp| — [grasp V graspobs]
[graspobs| — [graspobs V left V right)

When the progression conditions are satisfied progression of the phases hap-
pens within §:

__Prog

ConP
ArmCom
LeftArmCom
RightArmCom
TaskMonCom

0 . R=20

[grasp A (lcontact V rcontact)| LN [—grasp]
[graspobs] N [—graspobs]

Otherwise the phases are stable:

__ Stab

ConP
ArmCom
LeftArmCom
RightArmCom
TaskMonCom

([—grasp] ; [grasp A —(lcontact V rcontact)]) — [grasp]
([graspobs] ; [graspobs A lcontact]|) — [graspobs V left]
([—graspobs] ; [graspobs A rcontact]) — [graspobs V right]

Finally, the synchronization with actuators happens within 7:

— Sync

ConP
ArmCom
LeftArmCom
RightArmCom
TaskMonCom

7 . R=20

[grasp V graspobs V right] —= [lgrasp]
[—(grasp V graspobs V right)] — [=lgrasp]
[grasp V graspobs V left] — [rgrasp]
[—(grasp V graspobs V left)] SN [—rgrasp]

3.5 Grasping Robot

Having specified all the parts of the grasping robot, the entire system is
specified by their composition:

__GRob
TaskMon
ArmAss
Seq
Prog
Stab
Sync

4 Requirements

The requirements consist of assumption and commitment pairs. The as-
sumptions are preconditions to the commitments [HHF*94]. A commitment
C with assumption A thus gives the requirement

A= C

Assumptions are essentially properties which during the design are assumed
to be satisfied by the system. Given assumptions A, commitment C' and a
design D, the verification of the design demonstrates

D= (A= 0C)

The system commitments stated in [SF97] are:

e When a critical event occurs the fingers need to be returned to their
initial positions:

Returns = [FailAtImage] Trey [Idlepos]|, where
IdlePos = L.S = LIdlePos A R.S = R.IdlePos

e To guarantee safety of force sensors and object impedance we require that
the contact force stays below a certain upper bound:

ForceCons = O([|V [LFS.F < Fpoz N R.FS.F < Fpaz1)

10

e Total time of the task execution should not exceed a certain time Ty,4q:

TimeCons = [-atidlepos] Tomag [atidlepos]
The system requirements are thus:

— Regq
GRob

Assumpt; = Returns
Assumpty = ForceCons
Assumpty = TimeCons

5 Verification

The design is verified by proving that it satisfies the requirements. In this
section we sketch a prove of the first requirement Returns by means of the
DC proof system described in [Rav95].

It is assumed that FailAtImage only can become true in the phase
approach and stays true until the arms have returned to their idle positions.
Further, it is assumed, that failure is false when FailAtImage becomes true
and that atboundary is false when FailAtImage is true:

Assumpt;, = [FailAtImage| — [FailAtImage V approach]
[FailAtImage N —1dlePos| — [FailAtImage| A
O ([—FailAtImage] ; [FailAtImage]| =
[~ FailAtImage] ; b.—failure) A
[approach A FailAtImage] — [—atboundary

Let Typet = &€+ 26 +n + p;- Using proof by contradiction gives:

11

true ; [FailAtImage] Tt ; [=IdlePos)

= {Init}
true ; [—FailAtImage] ; ([FailAtImage| AL > Tre) ;
[—IdlePos]

= {Assumpt,, Stab, Propagation}
true ; [~ FailAtImage] ; ([FailAtImage N\ —atboundaryA
—failure A\ approach] A€ > Tye) ; [—1dlePos]

= {TaskMon, Assumpti, Stab, Propagation }
true ; [—FailAtImage] ; £ < &5 ([failure A —atboundary
approach] A€ > 26 +n+ p;) ; [—IdlePos)|

= {Prog, Seq, Propagation}
true ; [~ FailAtImage] ; £ <&+ 6§ ; ([failure N\ —atboundaryA
approachobs| A€ > 6 +n+ p;); [—IdlePos]

= {Prog, Stab, Propagation}
true ; [—FailAtImage] ; £ <&+ 26 ; ([fail| N> n+ pi);
[—IdlePos]

= {Sync, Stab, Propagation}
true ; [—FailAtImage] ; £ <&+25 +n; ([fail A gotoidlepos|A
£> pi); [—IdlePos]

= {ArmAct, Propagation}
true ; [—FailAtImage| ; £ <&+ 25 +n+ p ;
[IdlePos A —1dlePos]

= {logic}
false

6 Conclusion

In this paper we have shown that a specification and verification of a complex
robotics task based on RL has several advantages: First, DC’s capability of
specifying hybrid systems integrates the specification of controller program
and physical devices. Second, the modularity of Z-schemas makes the system
model intuitive reflecting the physical and logical composition of the system,
which third, makes the specification easy to alter and divide between several
developers.

Further, The generic ArmCom Z-schema demonstrates, that RL is very
applicative supporting easy specification of component classes.

12

Acknowledgement

I would like to thank Anders P. Ravn for proposing this work and for invaluable

support during the writing process.

References

[HC97]

[HHF+94]

[Mos85]

[ORS96]

[Rav95]

[RRH*95]

[SF97]

[Spi8T]

[ZHRI1]

M. R. Hansen and Zhou Chaochen. Duration calculus: Logical
foundations. Formal Aspects of Computing, 9(3):283-33, 1997.

Jifeng He, C. A. R. Hoare, M. Franzle, M. Miiller-Olm, E.-R.
Olderog, M. Schenke, M. R. Hansen, A. P. Ravn, and H. Rischel.
Provably correct systems. In H. Langmaack, W.-P. de Roever,
and J. Vytopil, editors, Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 863 of LNCS, pages 288-335.
Springer-Verlag, 1994.

B. Moszkowski. A temporal logic for multi-level reasoning about
hardware. IEEE Computer, 18(2):10-19, 1985.

E. Olderog, A.P. Ravn, and J. U. Skakkebzk. Refining system
requirements to program specifications. In Constance Heitmeyer
and Dino Mandrioli, editors, Formal methods for Real-Time com-
puting. John Wiley & Sons, 1996.

A. P. Ravn. Design of embedded real-time computing systems.
Technical Report ID-TR: 1995-170, IT/DTU, Lyngby, Denmark,
1995.

A. P. Ravn, H. Rischel, Holdgaard, Eriksen, and C. Andersen.
Hybrid control of a robot - a case study. In Hybrid Systems,
volume 999 of Lecture Notes in Computer Science, pages 391—
404. Springer-Verlag, 1995.

E. Shkel and N. J. Ferrier. Specifying and verifying visual grasp-
ing tasks. In Proceedings of the 1997 IEEE International Con-
ference on Robotics and Automation, pages 688—-694, April 1997.

J. M. Spivey. The Z notation. International Series in computer
science. Prentice-Hall, November 1987.

Zhou, Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of
durations. Information Proc. Letters, 40(5), December 1991.

13

