OBDD-based Universal Planning for Multiple Synchronized Agents

in Non-Deterministic Domains

Rune M. Jensen and Manuela M. Veloso

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3891

{runej,mmv}@cs.cmu.edu

Abstract

Model checking representation and search techniques
were recently shown to be efficiently applicable to
planning, in particular to non-deterministic planning.
Ordered Binary Decision Diagrams (0BDDs) encode a
planning domain as a non-deterministic finite automa-
ton (NFA) and fast algorithms from model checking
search for a solution plan. With proper encodings,
0BDDs can effectively scale and can provide universal
plans for complex planning domains. We are particu-
larly interested in addressing the complexities arising
in non-deterministic, multi-agent domains. In this pa-
per, we present UMOP,! a new universal 0BDD-based
planning framework applicable to non-deterministic
and multi-agent domains. We introduce a new plan-
ning domain description language, NADL,? to include
the specification of such non-deterministic, multi-
agent domains. The language contributes the explicit
definition of controllable agents and uncontrollable en-
vironment agents. We describe the syntax and seman-
tics of NADL and show how to build an efficient 0BDD-
based representation of an NADL description. The
UMOP planning systems uses NADL and it includes the
previously developed strong and strong cyclic planning
algorithms (Cimatti et al., 1998a, 1998b). In addition,
we introduce a new optimistic planning algorithm,
which relaxes optimality guarantees and generates
plausible universal plans in some domains where no
strong or strong cyclic solution exists. We present em-
pirical results in a previously tested non-deterministic
domains. We also introduce three new multi-agent
domains with complex environment actions. UMOP is
shown to be a rich and efficient planning system.

Introduction

Traditional planning algorithms can be classified ac-
cording to their search space representation as either
state-space, plan-space, or hierarchical task network
planners, as surveyed by Weld (1994).

A more recent research trend has been to develop
new encodings of planning problems in order to adopt
efficient algorithms from other research areas, leading

! Universal Multi-agent OBDD-based Planner
?Non-deterministic Agent Domain Language.

to significant developments in planning algorithms, as

surveyed by Weld (1999).

More recently, another new planner MBP (Cimatti
et al., 1998b) was introduced that successfully encodes
a planning domain as a non-deterministic finite au-
tomaton (NFA) represented by an Ordered Binary De-
cision Diagram (0BDD) (Bryant, 1986). MBP effectively
extends to non-deterministic domains producing uni-
versal plans. Due to the scalability of the underlying
model checking representation and search techniques,
MBP can be shown to be an efficient non-deterministic

planner (Cimatti et al., 1998a, 1998b).

One of our main research objectives is to develop
planning systems suitable for planning in uncertain,
and in particular multi-agent environments (Veloso
et al., 1998; Stone & Veloso, 1999). The universal
planning approach, as originally developed (Schoppers,
1987), is appealing for this type of environments, as a
universal plan is a set of state-action rules that aim
at covering the possible multiple situations in the non-
deterministic environment.

However, the limitations of universal planning have
been rightly pointed out (e.g., Ginsberg, 1989), due to
the potential exponential growth of the size of the uni-
versal plan size with the number of propositions defin-
ing a domain state. An important contribution of MBP
is thus the use of OBDDs to represent universal plans.
In the worst case, this representation may also grow ex-
ponentially with the number of domain propositions,
but because OBDDs are very compact representations of
boolean functions, this is often not the case for domains
with a regular structure (Cimattiet al., 1998a). There-
fore, we believe that an 0BDD-based planning approach
combined with appropriate encodings and active learn-
ing is a promising approach to a robust integration
of planning and real execution in a non-deterministic
world.

MBP specifies a planning domain in the action de-
scription language AR (Giunchiglia et al., 1997) and
translates it to a corresponding NFA, hence limited
to planning problems with finite state spaces. The
transition relation of the automaton is encoded as an
0BDD, which allows for the use of model checking par-

allel breadth-first search. MBP includes two algorithms
for universal planning called strong and strong cyclic
planning.

In this paper we present our OBDD-based plan-
ning system, uMoP, standing for Universal Multi-agent
OBDD-based Planner, which uses a new 0BDD-based
encoding, generates universal plans in multi-agent non-
deterministic domains, and includes a new optimistic
planning algorithm.

Our overall approach for designing an 0BDD-based
planner is similar to the approach developed for
MBP. Our main contribution is an efficient encod-
ing of a new front end domain description language,
NADL (NADL stands for Non-deterministic Agent Do-
main Language.). NADL has more resemblance with
previous planning languages than the action descrip-
tion language AR currently used by MBP. It has pow-
erful action descriptions that can perform arithmetic
operations on numerical domain variables. Domains
comprised of synchronized agents can be modelled by
introducing concurrent actions based on a multi-agent
decomposition of the domain.

In addition, NADL introduces a separate and explicit
environment model defined as a set of uncontrollable
agents, i.e., agents whose actions cannot be a part of
the generated plan. NADL has been carefully designed
to allow for efficient 0BDD-encoding. Thus, in contrast
to AR NADL allows UMOP to generate a partitioned
transition relation representation of the NFA, which is
known from model checking to scale up well (Burch
et al., 1991). Our empirical experiments suggest that
this is also the case for umor.

Umor includes the previously developed algorithms
for oBDD-based universal planning. In addition, we
introduce a new optimistic planning algorithm, which
relaxes optimality guarantees and generates plausible
universal plans in some domains where no strong or
strong cyclic solution exists.

The paper introduces NADL and umor. It also in-
cludes a brief overview of 0BDDs which may be skipped
by readers already familiar with the subject.

The paper presents empirical experiments that in-
clude domains previously tested by MBP showing
that our uMoP approach and implementation with
its NADL extension to multi-agent and environment
agents is of comparable effectiveness. Finally, we in-
troduce and show results in a few new multi-agent
non-deterministic domains that we hope to contribute
to the general multi-agent planning and execution re-
search community.

Introduction to OBDDs

An Ordered Binary Decision Diagram (Bryant, 1986)
is a canonical representation of a boolean function with
n linear ordered arguments 1, g, ..., Z,.

An 0OBDD is a rooted, directed acyclic graph with
one or two terminal nodes of out-degree zero labeled
1 or 0, and a set of variable nodes u of out-degree

two. The two outgoing edges are given by the functions
high(u) and low(u) (drawn as solid and dotted arrows).
Each variable node is associated with a propositional
variable in the boolean function the OBDD represents.
The graph is ordered in the sense that all paths in the
graph respect the ordering of the variables.

An 0oBDD representing the function f(z1,23) = 21 A
3 is shown in Figure 1 (left). Given an assignment of
the arguments z; and z5, the value of f is determined
by a path starting at the root node and iteratively
following the high edge, if the associated variable is
true, and the low edge, if the associated variable is
false. The value of f is True if the label of the reached
terminal node is 1; otherwise it is Fulse.

=

\‘1

0

(@ (b)

Figure 1: An 0BDD representing the function
f(z1,22) = 21 A z2. True and false edges are drawn
solid and dotted, respectively. (a) and (b) Reductions
of 0BDDs.

An 0BBD graph is reduced so that no two distinct
nodes u and v have the same variable name and low
and high successors (Figure 1(a)), and no variable node
u has identical low and high successors (Figure 1(b)).

The 0BDD representation has two major advantages:
First, most commonly encountered functions have a
reasonable representation (Bryant, 1986). Second, any
operation on two OBDDs, corresponding to a boolean
operation on the functions they represent, has a low
complexity bounded by the product of their node
counts.

In oBDD-based planning OBDDs are used to repre-
sent the transition relation semantics of the planning
domain. This 0BDD representation of finite state tran-
sition systems origins from model checking (McMillan,
1993).

NADL

In this section, we first discuss the properties of
NADL based on an informal definition of the language
and a domain encoding example. We then describe the
formal syntax and semantics of NADL.

An NADL domain description consists of: a defini-
tion of state variables, a description of system and en-
vironment agents, and a specification of an in:itial and
goal conditions.

The set of state variable assignments defines the
state space of the domain. An agent’s description is
a set of actions. The agents change the state of the

world by performing actions, which are assumed to be
executed synchronously and to have a fixed and equal
duration. At each step, all of the agents perform ex-
actly one action, and the resulting action tuple is a
joint action. The system agents model the behavior of
the agents controllable by the planner, while the en-
vironment agents model the uncontrollable world. A
valid domain description requires that the system and
environment agents constrain a disjoint set of variables.

An action has three parts: a set of state variables, a
precondition formula, and an effect formula. Intuitively
the action takes responsibility of constraining the val-
ues of the set of state variables in the next state. It
further has exclusive access to these variables during
execution.

There are two causes for non-determinism in
NADL domains: (1) actions not restricting all their
constrained variables to a specific value in the next
state, and (2) the non-deterministic selection of envi-
ronment actions.

A simple example of an NADL domain description is
shown in Figure 2.3 The domain describes a plan-
ning problem for Schoppers’ (1987) robot-baby do-
main. The domain has two state variables: a numerical
one, pos, with range {0, 1,2, 3} and a propositional one,
robot _works. The robot is the only system agent and it
has two actions Lift-Block and Lower-Block. The baby
is the only environment agent and it has one action
Hit-Robot. Because each agent must perform exactly
one action at each step, there are two joint actions
(Lift-Block, Hit- Robot) and (Lower-Block, Hit- Robot).

Initially the robot is assumed to hold a block at
position 0, and its task is to lift it up to position 3.
The Lift-Block (and Lower-Block) action has a con-
ditional effect described by an if-then-else operator:
if robot_works is true, Lift-Block increases the block
position with one, otherwise the block position is un-
changed.

Initially robot_works is assumed to be true, but it
can be made false by the baby. The baby’s action
Hit-Robot is non-deterministic, as it only constrains
robot _works by the effect expression —robot_works =
—robot_works’. Thus, when robot_works is true in the
current state, the effect expression of Hit-Robot does
not apply, and robot_works can either be true or false
in the next state. On the other hand, if robot_works
is false in the current state, Hit-Robot keeps it false in
the next state.

An NFA representing the domain is shown in Fig-
ure 3.

The explicit representation of constrained state vari-
ables enables any non-deterministic or deterministic ef-
fect of an action to be represented, as the constrained

3Unquoted, e.g. pos and quoted variables, e.g. pos’
refer to the current and next state, respectively. Another
notation like pos, and pos,,, could have been used. We
have chosen the quote notation because it is the common
notation in model checking.

variables
nat(4) pos
bool robot_works
system
agt: Robot
Lift-Block
con:pos
pre: pos < 3
eff: robot_works — pos’ = pos + 1, pos’ = pos
Lower-Block
con:pos
pre: pos > 0
eff: robot_works — pos' = pos — 1, pos’ = pos
environment
agt: Baby
Hit-Robot
con:robot_works
pre: true
eff: —robot_works = —robot_works’
initially
pos = 0 A robot_works
goal
pos =3

Figure 2: The robot-baby NADL domain: An example.

robot_works

=8 & & 6
A

trueo—---o----o----@

2 pos

Figure 3: The NFA of the robot-baby domain. The
Lift-Block and Lower-Block actions are drawn with
solid and dashed arrows, respectively. States marked
with “I” and “G” are initial and goal states.

variables can be assigned to any value in the next state
that satisfies the effect formula. It further turns out
to have a clear intuitive meaning, as the action takes
the “responsibility” of specifying the values of the con-
strained variables in the next state.

Compared to the action description language AR
that is the only prior language used for non-
deterministic 0BDD-based planning (Cimatti et al.,
1998a, 1998b), NADL introduces an explicit environ-
ment model, a multi-agent decomposition and numer-
ical state variables. It can further be shown that
NADL can be used to model any domain that can be
modelled with AR (see Appendix A).

In NADL actions cannot be performed concurrently
if: 1) they have inconsistent effects, or 2) they con-
strain an overlapping set of state variables. The first
condition is due to the fact that state knowledge is ex-
pressed in a monotonic logic which cannot represent
inconsistent knowledge. The second rule addresses the

problem of sharing resources. Consider for example
two agents trying to drink the same glass of water.
If only the first rule defined interfering actions both
agents, could simultaneously empty the glass, as the
effect glass_empty of the two actions would be consis-
tent. With the second rule added, these actions are
interfering and cannot be performed concurrently.

Syntax

Formally, an NADL description is a 7-tuple D =
(SV,S,E, Act,d,I,q), where:

e SV finite set of propositional and numerical state
variables.

e S is a finite, nonempty set of system agents.
e [is a finite set of environment agents.

e Act is a set of action descriptions (¢, p, €) where ¢ is
the state variables constrained by the action, p is a
precondition state formula in the set SForm and e is
an effect formula in the set Form. The sets SForm
and Form are defined below.

e d: Agt — 24¢" is a function mapping agents (Agt =
S U E) to their actions.

e [€ SForm is the initial condition.
o G € SForm is the goal condition.

The set of formulas Form are arithmetic and boolean
expressions on state variables of the current and next
state. SForm C Form is a subset of the formulas only
referring to current state variables. These formulas are
called state formulas.

OBDD Representation of
NADL Descriptions

The formal semantics of a domain description D =
(SV, S, E, Act,d, I,) is given in terms of an NFA M:

Definition 1 (NFA)

A Non-deterministic Finite Automaton is a 3-tuple,
M = (Q,%,0), where @ is a set of states, 3 is a set
of input values and 6 : Q x ¥ — 29 is a next state
function.

The states @@ of M equals the set of all possible variable
assignments. The input X of M is the set of joint
actions of system agents. In order to define the next
state function § we express it as a transition relation
T(s,i,s") = (s’ € d(s,1)) and represent it by an 0BDD

To construct 7" we must define a set of boolean vari-
ables to represent the current state s, the joint action
input 7 and the next state s’. Joint action inputs are
represented in the following way: assume action a is
identified by a number p and can be performed by
agent a. a is then defined to be the action of agent
a, if the number expressed binary by a set of boolean
variables A,, used to represent the actions of «, is
equal to p. Propositional state variables of the current

state s and next state s’ are represented by a single
boolean variable, while numerical state variables are
represented binary by a set of boolean variables.

Let A., to AelEl and A, to ASlSl denote sets of
boolean variables used to represent the joint action of
system and environment agents. Further, let J:ﬁ‘j and

m’ﬁj denote the k’th boolean variable used to represent
state variable v; € SV in the current and next state.
An ordering of the boolean variables, known to be ef-
ficient from model checking, puts the input variables
first followed by an interleaving of the boolean vari-
ables of current state and next state variables:

A€1'<""<A€|E|'<AS1'<""<AS|S|

WAL

pl 1 11 ,
<z, <xr, <-=<x, <z,

<ah <, <<l <)

where m; 1s the number of boolean variables used to
represent state variable v; and n is equal to |SV|. An
OBDD representing a logical expression is built in the
standard way. Arithmetic expressions are represented
as lists of 0BDDs defining the corresponding binary
number. They collapse to single 0BDDs when related
by arithmetic relations.

T is a conjunction of three relations A, " and I. We
first build a transition relation with the joint actions
of both system and environment agents as input and
then reduces it to a transition relation with only joint
actions of system agents as input.

A defines the constraints on the current state_and
next state of joint actions. In order to build A we
need to refer to the values of the boolean variables
representing the actions. Let i(a) be the function that
maps an agent a to the value of the boolean variables
representing its action and let b(a) be the identifier
value of action a. Further let P(a) and E(a) denote
0BDD representations of the precondition and effect
formula of an action a. A is then given by:

A= A (i(a) = b(a) = P(a) A E(a))

Note that logical operators denote the corresponding
OBDD operators in the above formula . A also ensures
that actions with inconsistent effects cannot be per-
formed concurrently, as A reduces to false if any pair
of actions in a joint action have inconsistent effects.
Thus, A also states the first rule for avoiding interfer-
ence between concurrent actions.

F is a frame relation ensuring that unconstrained
variables maintain their value:

Fe A (0N (@) =ba) = v g cla) =5, =),
veSV o€ Agt
a € d(a)

where ¢(a) is the set of constrained variables of action
a and s, = s, expresses that all current and next state
boolean variables representing v are pairwise equal.
The expression v ¢ c(a) evaluates to True or False
and is represented by the oBDD for True or Fulse.

I ensures that concurrent actions constrain a non
overlapping set of variables and thus states the sec-
ond rule for avoiding interference between concurrent
actions:

= A
(Cll,OZQ) € 52
(a1, a2) € ¢(a1, az)

/\ (i(al) =b(a1) = i(az) # b(az))

(041,042) € E2
(a1,a2) € ¢(a1, az)

(i(al) =b(ar) = i(a2) # b(az))

where ¢(a1, @) = {(a1,az2) | (a1, a2) € d(a1) x d(az) A
c(a1) Ne(ay) # 0B}

_ Finally the oBDD representing the transition relation
T'is the conjunction of A, F' and I with action variables
of the environment agents existentially quantified:

Ae o ANF AT

ey’ Ty dle g

T=13A

Partitioning the transition relation

The algorithms we use for generating universal plans
all consist of a backward search from the states sat-
isfying the goal condition to the states satisfying the
initial condition. Empirical studies in model checking
have shown that the most complex operation for this
kind of algorithms normally is to find the preimage of
a set of visited states V.

Definition 2 (Preimage) Given an NFA M =
(Q,X,0) and a set of states V C @, the preimage of V
is the set of states {s|s € Q NFi € X, s’ € §(s,i).5' €
V}.

Note that states already belonging to V can also be
a part of the preimage of V. Assume that the set of
visited states are represented by an 0BDD expression V
on next state variables and that we for iteration pur-
poses, want to generate the preimage P also expressed
in next state variables. An efficient way to calculate
the preimage is to use a partitioned representation of
the transition relation (T = Tl A A Tn combined
with early quantification (Burch et al., 1991):

U = @, Ty A--- NGB T AV)--)[E/T]

P = 3.0

where ¢, ¥; and f; denote input, current state and next

state variables of partition j, and [#;/&}] denotes the
substitution of current state variables with next state
variables of partition j. 7} can refer to all variables,

T can refer to all variables except 7, T3 can refer to
all variables except #| and &% and so on.

The set expressed by U consists of state input pairs
(s,1), for which the state s belongs to the preimage of
V and the input ¢ may cause a transition from s to a
state in V.

The input of an NFA representing a planning domain
is actions. Thus, for a planning domain the elements
in U are state-action pairs. The generated universal
plans of the universal planning algorithms presented
in the next section are sets of these state-action pairs.
We refer to the state-action pairs as state-action rules,
because they associate states to actions that can be
performed in these states.

NADL has been carefully designed to allow a parti-
tioned transition relation representation. The relations
A, F and I all consist of a conjunction of subexpres-
sions that normally only refer to a subset of next state
variables.

OBDD-based Universal Planning
Algorithms

In this section we will describe two prior algorithms
for oBDD-based universal planning and discuss which
kind of domains they are suitable for. Based on this
discussion we present a new algorithm called optimistic
planning that seems to be suitable for some domains
not covered by the prior algorithms.

The three universal planning algorithms discussed
are all based on an iteration of preimage calcula-
tions. The iteration corresponds to a parallel back-
ward breadth first search starting at the goal states
and ending when all initial states are included in the
set of visited states (see Figure 4). The main differ-
ence between the algorithms is the way the preimage
is defined.

Strong and Weak Preimages

Let us introduce two different kinds of preimages
namely strong and weak preimages. A strong preim-
age is defined by:

Definition 3 (Strong Preimage) Given an NFA
M = (Q,X,0) and a set of states V C @, the strong
preimage of V is the set of states {s|s € @ AJi €
X .4(s,i) CV}
Thus, for a state s belonging to the strong preimage of
a set of states V| there exists at least one action ¢ where
all the transitions from s associated with ¢ leads into V.
Consider the example shown in Figure 4. The dots and
arrows in this figure denote states and transitions for
an NFA with a single action. For the set of goal states
shown in the figure the three states having a transition
into the goal set is a strong preimage (indicated by a
solid ellipse), as all transitions from these states lead
to a goal state.

A weak preimage is equal to an ordinary preimage
defined in Definition 2. Thus, in Figure 4 all the strong

Figure 4: Preimage calculations: Solid and dashed el-
lipses denote preimages that are both strong and weak,
and only weak, respectively. The domain has only one
action. Dashed transitions cause a state to belong to
a weak preimage rather than to a strong preimage.

preimages are also weak preimages, but the preimages
shown by dashed ellipses are only weak preimages, as
the dashed transitions do not satisfy the strong preim-
age definition.

Strong and Strong Cyclic Planning

A strong or strong cyclic plan is the union of the state-
action rules U found when calculating the preimages
necessary for covering the set of initial states.

Strong planning only considers strong preimages. If
a sequence of strong preimages starting at the set of
goal states can be calculated, such that the set of initial
states is covered, strong planning succeeds and returns
the universal plan consisting of the union of all the
state-action rules of the calculated strong preimages.
Otherwise it fails.

Consider the example in Figure 4. As depicted in
the figure a strong preimage can be found in the first
preimage calculation, but only a weak preimage can
be found in the second calculation. Thus, no strong
solution exist for this problem.

Strong planning is complete with respect to strong
solutions. If a strong plan exists for some planning
problem the strong planning algorithm will return it,
otherwise, it returns that no solution exists. Strong
planning is also optimal due to the breadth first search.
Thus, a strong plan with the fewest number of steps in
the worst case is returned.

Strong cyclic planning is a relaxed version of strong
planning, because it also considers weak preimages.
Strong cyclic planning finds a strong plan, if it ex-
ists. Otherwise, if the algorithm at some point in the
iteration is unable to find a strong preimage it adds a
weak preimage. It then tries to prune this preimage by
removing all states that have transitions leading out of
the preimage and the set of visited states V. If it suc-
ceeds, the remaining states in the preimage are added
to V and it again tries to add strong preimages. If

it fails, it adds a new, weak preimage and repeats the
pruning process.

Figure 4 shows a strong cyclic solution that could
could have been computed by the strong cyclic plan-
ning algorithm. A strong cyclic plan only guarantees
progress towards the goal in the strong parts. In the
weak parts, cycles can occur.

Strengths and Limitations of Strong and
Strong Cyclic Planning

Strong planning and strong cyclic planning algorithms
contribute by providing complete 0BDD-based algo-
rithms for universal planning.

A limitation of strong and strong cyclic planning is
that they can not find a solution in domains where no
strong or strong cyclic plan exists. The domains that
strong and strong cyclic planning fail in are character-
ized by having unrecoverable dead-ends that cannot be
guaranteed to be avoided.

Unfortunately, real world domains often have these
kinds of dead-ends. Consider, for example, Schoppers’
robot-baby domain. As depicted in Figure 3, no uni-
versal plan represented by a set of state-action rules
can guarantee the goal to be reached in a finite or in-
finite number of steps, as all relevant actions may lead
to an unrecoverable dead-end.

Another limitation of strong and strong cyclic plan-
ning is the inherent pessimism of these algorithms.
Consider for example the domain (Domain 1) illus-
trated in Figure 5. The domain consists of n + 1
states and two different actions (dashed and solid).
The strong cyclic algorithm returns a strong plan

. \) P --—
IS > Gs
0 1 n
Figure 5: Domain 1.
{(0, solid), (1, solid), -, (n — 1,solid)}. This plan

would have a best and worst case length of n. But
a strong cyclic plan {(0,dashed), (n — 1, solid)} also
exists and could be preferable because the best case
length of 1 of the cyclic solution may have a much
higher probability than the infinite worst case length.
Strong cyclic planning will always prefer to return a
strong plan, if it exists, even though a strong cyclic
plan may exist with a shorter, best case plan length.

By adding an unrecoverable dead-end for the
dashed action and making solid actions non-
deterministic (see Domain 2, Figure 6), strong
cyclic planning now returns the strong cyclic plan
{(0, solid), (1, solid), - - -, (n— 1, solid)}. But we might
still be interested in the plan {(0,dashed),(n —
1, s0lid)} even though the goal is not guaranteed to
be achieved.

Figure 6: Domain 2.

Optimistic Planning

The analysis in the previous section shows that there
are domains and planning problems for which we may
want to use a fully relaxed algorithm that always in-
cludes the best case plan and returns a solution even,
if it includes dead-ends which cannot be guaranteed
to be avoided. An algorithm similar to the strong

procedure OptimisticPlanning(/nit,Goal)
VisitedStates := Goal
UniversalPlan := 0
while (Init ¢ VisitedStates)
StateActions := Preimage(VisitedStates)
PrunedState Actions := Prune(StateActions, VisitedStates)
if StateActions # (0 then
UniversalPlan := UniversalPlan U PrunedStateActions
VisitedStates := VisitedStates
U StatesOf(PrunedStateActions)
else
return “No optimistic plan exists”
return UniversalPlan

Figure 7: The optimistic planning algorithm.

planning algorithm that adds an ordinary preimage
in each iteration has these properties. Because state-
action rules leading to unrecoverable dead-ends may be
added to the universal plan, we call this algorithm op-
timistic planning. The algorithm is shown in Figure 7.
The function Preimage(VisitedStates) returns the set
of state-action rules U associated with the preimage of
the visited states. Prune(StateActions, VisitedStates)
removes the state-action rules, where the state al-
ready is included in the set of visited states, and
StatesOf(PrunedState Actions) returns the set of states
of the pruned state-action rules. UMOP includes the
optimistic planning algorithm.

The purpose of optimistic planning is not to sub-
stitute strong or strong cyclic planning. In domains
where strong or strong cyclic plans can be found and
goal achievement has the highest priority these algo-
rithms should be used. On the other hand, in domains
where goal achievement cannot be guaranteed or the
shortest plan should be included in the universal plan,
optimistic planning might be the better choice.

Consider again, as an example, the robot-baby do-
main. For this problem the optimistic solution makes
the robot try to lift the block when the position of the
block is less than 3 and the robot is working. This

Domain Strong Strong Cyclic Optimistic
best | worst | best worst | best | worst
1 n n 1 o0 1 00
2 - - n n 1 D

Table 1: The best and worst case plan length of strong,
strong cyclic and optimistic planning in Domains 1 and
2 (see Figure 5 and 6). “” means that no solution
exists. “D” means that a solution exists, but may lead
to an unrecoverable dead-end.

seems to be the only reasonable strategy.

For domains 1 and 2 shown in Figure 5 and
6, optimistic planning returns a universal plan
{(0, dotted), (n — 1, solid)}. For both domains this is
a universal plan with the shortest best case length.
Compared to the strong cyclic solution the price in
the first domain is that the plan may have an infinite
length, while the price in the second domain is that a
dead-end may be reached. The results of strong, strong
cyclic and optimistic planning in Domain 1 and 2 are
summarized in Table 1.

Empirical Results

The input to UMOP is an NADL description* and a
specification of which planning algorithm to use. This
description is then converted to a set of 0BDDs repre-
senting the partitioned transition relation. The 0BDD
representation is used by either the Strong, Strong
Cyclic or Optimistic planning algorithm to generate
a plan. The output of UMOP is an universal plan if it
exists.

In the following four subsections we present results
obtained with the UMOP planning system.® A more
detailed description of the experiments can be found
in Jensen (1999). NADL descriptions of the domains
are posted at http://www.cs.cmu.edu/ runej.

Domains Tested by MBP

One of the domains solved by MBP is a non-deterministic
transportation domain. The domain consists of a set of
locations and a set of actions like drive-truck, drive-train
and fly to move between the locations. Non-determinism
is caused by non-deterministic actions (e.g., a truck may
use the last fuel) and environmental changes (e.g., fog at
airports). We defined the two domain examples tested by
MBP for strong and strong cyclic planning in NADL and
ran UMOP using strong and strong cyclic planning. Both
examples were solved in less than 0.05 seconds. Similar
results were obtained with MBP.

The problem in the beam walk domain is for an agent to
walk from one end of a beam to the other without falling
down. If the agent falls, it has to walk back to the end of the

*In fact, the NADL description accepted by the current
implementation includes only the arithmetic operators +
and —, but an implementation of the remaining operators
is straightforward and is a part of our current work.

SAll experiments were carried out on a 450 MHz Pen-

tium PC with 1 GB RAM running Red Hat Linux 4.2.

beam and try again. The finite state machine of the domain
is shown in Figure 8. The propositional state variable up
is true if the agent is on the beam. The numerical state
variable pos denotes the position of the agent either on the
beam or on the ground.

up

true .——.<\. .<\@
=000 - 0@
0 1 2

n-2 n-1 pos

Figure 8: The beam walk domain. The propositional
state variable up is true if the agent is on the beam.

We implemented a generator
program for NADL descriptions of beam walk domains and
produced domains with 4 to 4096 positions. Because the
domain only contains two state variables, UMOP cannot ex-
ploit a partitioned transition relation for this domain. As

10000 F T T T T T T T T
1000 |
100 |

10

Time / Sec

1}

001 UMOP -3
MBP —+-
0001 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Beam Locations

Figure 9: Comparable planning time of UMOP and MBP
in the beam walk domain. The MBP data has been
extracted with some loss of accuracy from (Cimatti

et al., 1998a).

shown in Figure 9 the performance of UMOP is comparable
to MBP when using a monolithic transition relation.

The Magnetic Bar Domain

The magnetic bar domain has been constructed to show all
the modelling features of NADL . It further demonstrates
how the different universal planning algorithms can be used
to extract information about the domain structure.

The Magnetic Bar Domain is a multi-agent domain con-
sisting of two moving bars and two metal objects. By mag-
netizing the bars, the objects can be lifted and moved. The
goal is to move the objects from random positions on a 8 x 8
grid to a drop zone in the upper right corner of the grid. A
solution to an instance of this problem is shown in Figure
10.

To make the problem non-trivial we assume that the ob-
jects and bars can interact in the following way: an object
located in front of some moving object blocks its way. An

<

—e-H
o-H ||

6 7 5 6 7 5 6 7

ENEG IO N
ENEG N
ENENC IO NN

I
[]
]
5

Figure 10: A solution example for the Magnetic Bar
Domain. Notice the needed collaboration between the
bars in moving the left object into the drop zone.

object attached to a bar blocks the way for the other bar.
Thus in the first state in Figure 10 the object under the
vertical bar would block the horizontal bar from moving
up if the vertical bar was magnetized. Finally, The domain
is made non-deterministic by adding an environment agent
that at any time can occupy a random grid position. When
a grid position is occupied a bar can not pass it.

The NADL description of the domain has three agents:
Two system agents one for each bar and one environment
agent that can occupy grid positions. The size of the state
space is 227, To state a universal planning problem the
initial states are defined to be all other states than the goal
states.

Using the universal planning algorithms to analyze the
domain it turns out that UMOP in less than 0.89 seconds
fails to find a strong solution (only one strong preimage
can be computed). This is not surprising as the occupation
of grid positions can prevent progress towards the goal. A
strong cyclic solution is found by UMOP in 602 seconds after
59 preimage. Thus, despite the restrictions there is in fact
a cyclic solution covering all the initial states.

The generated plan is large (45 MB) but has a sufficiently
low lookup time to be used in a practical implementation
(less than 0.001 second). Partitioning of the transition re-
lation (6 partitions in this case) is crucial for the efficiency
of uMor. With a monolithic transition relation UMOP is
magnitudes slower and uses more memory after the fifth
preimage calculation than is used after the last preimage
calculation when using a partitioned transition relation.

The Power Plant Domain

The power plant domain demonstrates a multi-agent do-
main with an environment model and further exemplifies
optimistic planning. It consists of reactors, heat exchang-
ers, turbines and valves. A domain example is shown in
Figure 11. In the power plant domain each controllable
unit is associated with an agent such that all control ac-
tions can be performed simultaneously. The environment
consists of a single agent that at any time can fail a num-
ber of heat exchanges and turbines and ensure that already
failed units remain failed.

The state space of the power plant can be divided into
three disjoint sets: good, bad and failed states. In the good
states, therefore the goal states, the power plant satisfies
its safety and activity requirements. In our example the
safety requirements ensure that energy can be transported
away from the plant, and that failed units are shut down.
The activity requirements state that the energy production
equals the demand and that all valves to working turbines
are open.

ok hl bl ok h2 b2
vi ok tl sl

|

|

oy 2 <l

R ‘

p v3 Ok t3 s3 I
) g
|

ok h3 b3 ok h4 b4

Figure 11: A power plant domain with four heat ex-
changes (H1-H4) and turbines (T1-T4). The ok vari-
ables capture the working status of the units.

In a bad state the plant does not satisfy the safety and
activity requirements, but on the other hand is not unre-
coverably failed. In a failed state all heat exchangers or
turbines are failed.

The environment can fail any number of units during
execution, thus, for any bad state the resulting joint action
may loop back to a bad state or cause the plant to end in
a failed state. For this reason no strong or strong cyclic
solution exists to the problem.

An optimistic solution simply ignores that joint actions
can loop back to a bad state or lead to a failed state and
finds a solution to the problem after one preimage calcula-
tion.

The size of the state space of the above power plant
domain is 2**. An optimistic solution was generated by
UMOP in 0.92 seconds and contained 37619 OBDD nodes.

The Soccer Domain

The purpose of the soccer domain is to demonstrate a
multi-agent domain with a more elaborate environment
model than the power plant domain. It consists of two
teams of players that can move in a grid world and pass
a ball to each other. The task is to generate a universal
plan for one of the teams that can be applied, whenever
the team possesses the ball in order to score a goal.

A simple NADL description of The team possessing the
ball and the opponent team is modeled by a set of system
and environment agents, respectively. The goal of the uni-
versal plan is to move a player possessing the ball in front
of the opponent goal without having any opponents in the
goal area.

We implemented an NADL generator for soccer domains
with different field sizes and numbers of agents. The Multi-
Agent graph in Figure 12 shows UMOP’s planning time using
the strong planning algorithm in soccer domains with 64
locations and one to six players on each team.

The planning time seems to grow exponential with the
number of players. This is not surprising as not only the
state space but also the number of joint actions grow ex-
ponential with the number of agents. To investigate the
complexity introduced by joint actions we constructed a
version of the soccer domain with only a single system and
environment agent and ran UMOP again. The Single-Agent
graph in Figure 12 shows the dramatic decrease in compu-
tation time. Its is not obvious though, that a parallelization
of domain actions increases the computational load, as this

10000 f T T T T T

I Multi-Agent ——
Single-Agent -+~
Power Plant -2-

1000 F a

Time / Sec
=
o
T

001 [1 1 1 1 1
0 2 4 6 8 10 12
Number of Players

Figure 12: Planning time of umMoP in soccer domains
with 1-6 players per team.

normally also reduces the number of preimage calculations,
because a larger number of states is reached in each itera-
tion. Indeed, in a deterministic version of the power plant
domain we found the planning time to decrease (see the
Power Plant graph in Figure 12), when more agents were
added (Jensen, 1999).

Previous Work

Universal planning was introduced by Schoppers (1987)
who used decision trees to represent plans. Recent ap-
proaches include Kabanza et al. (1997) and Cimatti et al.
(1998a, 1998b). Kabanza et al. (1997) represents universal
plans as a set of Situated Control Rules. Their algorithm
incrementally adds SCRs to a final plan. The goal is a
formula in temporal logic that must hold on any valid se-
quence of actions.

Reinforcement Learning (RL) (Sutton & G., 1998) can
also be regarded as universal planning. In RL the goal is
represented by a reward function in a Markov Decision Pro-
cess (MDP) model of the domain. In the precursor version
of RL, the MDP is assumed to be known and a control
policy maximizing the expected reward is found prior to
execution. Because RL is a probabilistic approach, its do-
main representation is more complex than the domain rep-
resentation used by a non-deterministic planner. Thus, we
may expect non-deterministic planners to be able to handle
domains with a larger state space than RL.

All previous approaches to universal planning, except
Cimatti et al. (1998a, 1998b), use an explicit representation
of the universal plan (e.g., SCRs). Thus, in the general
case exponential growth of the plan size with the number
of propositions defining a domain state must be expected,
as argued by Ginsberg (1989).

The compact and implicit representation of universal
plans obtained with OBDDs does not necessarily grow ex-
ponentially for regular domains as shown by Cimatti et al.
(1998a). Further, the oBDD-based representation of the
NFA of a non-deterministic domain enables the application
of efficient search algorithms from model checking, capable
of handling very large state spaces.

Conclusion

In this paper we have presented a new OBDD-based plan-
ning system called UMOP for planning in non-deterministic,
multi-agent domains. An expressive domain description
language called NADL has been developed and an efficient
OBDD representation of its NFA semantics has been de-
scribed. We have analyzed previous planning algorithms
for oBDD-based planning and deepened the understanding
of when these planning algorithms are appropriate. Fi-
nally, we have proposed a planning algorithm called opti-
mistic planning for finding sensible solutions in some do-
mains where no strong or strong cyclic solution exists.

Future challenges include extending NADL to handle con-
structive synergetic effects and adding domain knowledge
by stating the goal as a formula in temporal logic on the
sequence of actions leading to the goal. Further, we are
interested in introducing abstraction in OBDD-based plan-
ning and defining specialized planning algorithms for multi-
agent domains and deterministic domains (Jensen et al.,
2000).

Acknowledgments

Special thanks to Paolo Traverso, Marco Roveri and the
other members of the IRST group for introducing us to
MBP and for many rewarding discussions on OBDD-based
planning and model checking. We also wish to thank Ran-
dal E. Bryant, Edmund Clarke, Henrik R. Andersen, Jgrn
Lind-Nielsen and Lars Birkedal for advice on OBDD issues
and formal representation.

This research was sponsored in part by Grants Nos.
F30602-98-2-0135 and F30602-97-2-0250, and by McKin-
sey & Company, Selmer & Trane’s Fond. The content of
this publication does not necessarily reflect the position of
the funding agencies and no official endorsement should be
inferred.

Appendix A. NADL includes AR

Theorem 1 If A is a domain description in some AR lan-
guage, then there exists a domain description D in NADL
with the same semantics as A.

Proof: let M, = (Q, £,) denote the NFA (see Definition 1)
equal to the semantics of A as defined by Giunchiglia et al.
(1997). An NADL domain description D with semantics
equal to M, can obviously be constructed in the following
way: let D be a single-agent domain, where all fluents are
encoded as numerical state variables and there is an action
for each element in the alphabet ¥ of M,. Consider the ac-
tion a associated to input ¢ € . Let the set of constrained
state variables of a equal the set of state variables in D.
The precondition of a is an expression that defines the set
of states having an outgoing transition for input :. The
effect condition of a is a conjunction of conditional effects
(P: = N.). There is one conditional effect for each state
that has an outgoing transition for input :. P in the con-
ditional effect associated with state s is the characteristic
expression for s and N, is a characteristic expression for
the set of next states §(s,1). O

References
Bryant, R. E. (1986). Graph-based algorithms for

boolean function manipulation. IEEE Transac-
tions on Computers, 8, 677-691.

Burch, J., Clarke, E., & Long, D. (1991). Symbolic
model checking with partitioned transition rela-
tions. In International Conference on Very Large
Scale Integration, pp. 49-58. North-Holland.

Cimatti, A., Roveri, M., & Traverso, P. (1998a). Auto-
matic OBDD-based generation of universal plans
in non-deterministic domains. In Proceedings of
AAAD9S, pp. 875-881. AAAI Press/The MIT

Press.

Cimatti, A., Roveri, M., & Traverso, P. (1998b).
Strong planning in non-deterministic domains
via model checking. In Proceedings of AIPS’98,
pp- 36-43. AAAI Press.

Ginsberg, M. L. (1989). Universal planning: An (al-
most) universal bad idea. AI Magazine, 10(4),
40-44.

Giunchiglia, E., Kartha, G. N.; & Lifschitz, Y. (1997).
Representing action: Indeterminacy and ramifi-
cations. Artificial Intelligence, 95, 409-438.

Jensen, R. M. (1999). OBDD-based universal planning
in multi-agent, non-deterministic domains. Mas-
ter’s thesis, Technical University of Denmark,
Department of Automation. IAU99F02.

Jensen, R. M., Bryant, R. E., & Veloso, M. M. (2000).
Efficient encoding for OBDD-based determinis-
tic planning. In Proceedings of AIPS’00 work-
shop on model-theoretic approaches to planning.
Forthcoming.

Kabanza, F., Barbeau, M., & St-Denis, R. (1997).
Planning control rules for reactive agents. Ar-
tificial Intelligence, 95, 67-113.

McMillan, K. L. (1993). Symbolic Model Checking.
Kluwer Academic Publ.

Schoppers, M. J. (1987). Universal plans for reac-
tive robots in unpredictable environments. In
Proceedings of IJCAI-87, pp. 1039-1046. Morgan

Kaufmann.

Stone, P., & Veloso, M. (1999). Task decomposition,
dynamic role assignment, and low-bandwidth
communication for real-time strategic teamwork.

Artificial Intelligence, 110(2), 241-273.
Sutton, R.S., & G., B. A. (1998). Reinforcement learn-

ing: an introduction. MIT Press.

Veloso, M. M., Pollack, M. E.; & Cox, M. T. (1998).
Rationale-based monitoring for planning in dy-

namic environments. In Proceedings of AIPS’98,
pp- 171-179. AAAT Press.

Weld, D. (1994). An introduction to least-commitment
planning. Al Magazine, 27-61.

Weld, D. (1999). Recent advances in Al planning. Al
Magazine, 93-123.

