
Learning Non-Deterministic Multi-Agent Planning Domains∗

Rune M. Jensen
IT University of Copenhagen,

Copenhagen, DK-2300,
Denmark

Manuela M. Veloso
Computer Science Department,

Carnegie Mellon University,
Pittsburgh, PA 15213-3891, USA

Abstract

In this paper, we present an algorithm for learning non-
deterministic multi-agent planning domains from execution
examples. The algorithm uses a master-slave decomposi-
tion of two population-based stochastic local search algo-
rithms and integrates binary decision diagrams to reduce the
size of the search space. Our experimental results show that
the learner has high convergence rates due to an aggressive
exploitation of example-driven search and an efficient sep-
aration of concurrent activities. Moreover, even though the
learning problem is at least as hard as learning disjoint DNF
formulas, large domains can be learned accurately within a
few minutes.

Introduction
In order to compute plans to control an environment, it is
necessary to define a planning domain that accurately de-
scribes its activities. A planning domain is typically devel-
oped by experts and often reflects deep understanding of the
physical nature of activities. However, it may be incomplete
or incorrect initially, and should be updated to incrementally
better models of the environment. Thus, it is desirable to de-
velop techniques to automatically adapt a planning domain
to execution examples. This adaptation, however, should be
conservative since the initial domain often has high quality.
For this reason, techniques for learning a planning domain
solely from execution examples (e.g., Oates & Cohen 1996;
Pasula, Zettlemoyer, & Kaebling 2004; Yang, Wu, & Jiang
2005) are not directly applicable to this problem.

Moreover, most real environments have concurrent activ-
ities. A significant part of the learning problem is therefore
to determine which activities cause which state changes. To
our knowledge, however, this problem has not been stud-
ied by previous work on learning declarative planning do-
mains. The most related work seems to be on multi-agent
reinforcement learning (e.g.,Tan 1993) and game playing,

∗This research is partly sponsored by BBNT Solutions LLC un-
der its prime contract number FA8760-04-C-0002 with the U.S. Air
Force and DARPA. The views and conclusions contained hereinare
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, eitherexpressed
or implied, of the sponsoring institutions, the U.S. Government or
any other entity.

but these approaches often focus on learning to achieve par-
ticular goals rather than learning domain knowledge to be
used by a planning system.

In this paper, we introduce an algorithm for learning non-
deterministic multi-agent planning domains. We use a do-
main representation language inspired by NADL (Jensen &
Veloso 2000). Thus, a state is a set of true propositions and
the domain contains a set of controllable agents that each are
defined by a set of actions. Each action modifies a fixed set
of propositions and consists of a set of rules that can model
conditional and non-deterministic effects. We assume that
state changes are due to joint synchronized actions of the
agents.1

In this work, we focus on the multi-agent aspect. That is,
learn which action in a joint action is responsible for which
state changes. Other dimensions of learning problem are
kept simple. First, we assume that known labelled actions
by known labelled agents are observed, that all propositions
are known, and that what is learned is a set of precondi-
tions and effects for each action. Second, we assume that
execution examples are without noise. Several previous ap-
proaches can handle noise (e.g., Oates & Cohen 1996; Ben-
son 1995). Third, we do not learn relational action descrip-
tions. This problem is well studied (e.g., Shen & Simon
1989; Yolanda 1992; Wang 1995), and we believe our ap-
proach is easy to extend. Fourth, we learn non-deterministic
rather than probabilistic effects as in (Pasula, Zettlemoyer,
& Kaebling 2004; Oates & Cohen 1996).

Our approach uses two population-based stochastic lo-
cal search algorithms in a hierarchical decomposition. The
top-level algorithm searches in the space of possible sets of
propositions that each action can modify. Due to the large
number of these, a key idea is to use binary decision dia-
grams (BDDs, Bryant 1986) to efficiently restrict the search
to those modification sets that are consistent with the execu-
tion examples.

The base-level algorithm learns each action given a modi-
fication set chosen by the top-level algorithm and applies dy-
namic programming to avoid recomputing previous results.
The search is seeded by the current planning domain. The

1This problem is not easy to reduce to single-agent learning of
joint actions since indiviual actions of agents would then not be
learned.



purpose of the population-based approach is to search in a
breadth-first manner to find a consistent planning domain
that lies as close to the current planning domain as possible.
The learning is biased towards 1) finding succinct descrip-
tions and 2) reducing non-determinism. The first criterion is
a classical language bias. The second reflects that we believe
that the main purpose of fitting a planning domain to execu-
tion data is to determine the outcome of actions in different
situations to make activities in the domain more controllable
via planning.

The learning problem is at least as hard as learning dis-
joint DNF formulas. Since the learnability of disjoint DNF
remains unresolved (Blumet al. 1998), we are left with
heuristic approaches. Compared with the approach sug-
gested in (Pasula, Zettlemoyer, & Kaebling 2004), however,
we avoid an NP-hard subproblem of learning overlapping
effects. Our experimental results show that the learner has
high convergence rates due to an aggressive use of example-
driven search and a good ability to learn concurrent activi-
ties. Moreover, the time and space requirements of the algo-
rithm are low.

The remainder of the paper is organized as follows. We
first introduce our domain representation language. Next,
we define the stochastic local search algorithms. We then
present experimental results in two representative planning
domains. Finally, we conclude and discuss directions for
future work.

Domain Representation
A planning domainis a tripleD = 〈P,Agt ,Act〉, where
P = {p1, . . . , pn} is a set ofstate propositions, Agt is a set
of agents, andAct is a set ofactions. For each agentα ∈
Agt there is a partition of actionsActα ⊆ Act that this agent
can execute. Each actiona ∈ Act is a pair〈Ma, Ra〉, where
Ma ⊆ P is a set propositions modified bya andRa is set
of execution rulesof the action. LetL(Q) = {l,¬l | l ∈ Q}
denote the literals of a set of propositionsQ. A rule r ∈ Ra

is then a pair〈prer, eff r〉, whereprer ⊆ L(P ) is a set of
literals of the propositionsP defining apreconditionof the
rule, andeff r is a nonempty set ofeffectsof the rule. Each
effecte ∈ eff r is a set of literals of the propositions modified
by a (e ⊆ L(Ma)). Let L+ andL− denote the positive and
negative propositions of a set of literalsL. It is required that
eache ∈ eff is distinct and thate+ ∩ e− = ∅. If |eff r| > 1,
the rule is non-deterministic, otherwise it is deterministic.

A domain stateS ⊆ P is the set of propositions that are
true in the state. All other propositions are assumed to be
false. A preconditionpre is satisfied in a stateS, if S in-
cludes all of its positive and none of its negative literals (i.e.,
pre+ ⊆ S andpre− ∩ S = ∅). An actiona is applicable
in a state if it has a ruler ∈ Ra with satisfied precondition.
To make the application of rules unambiguous, the precon-
ditions are assumed to be disjoint. Thus, ifprev andprew

are preconditions of two distinct rules inRa, we either have
pre+

v ∩ pre−
w 6= ∅ or pre−

v ∩ pre+
w 6= ∅.

An action a is applied in a stateS by non-
deterministically choosing one of the effectse ∈ eff r of the
rule r ∈ Ra with satisfied precondition. In the single-agent

case, the resulting next state isS′ = (S∪e+)\e−. In this for-
mulation, however, effects may be overlapping. As an exam-
ple, consider a rule withpre = ∅ andeff = {{l}, ∅}. This
rule is applicable in any state. However, if the rule is applied
in a state wherel is true, then it is impossible to determine
whether the first or second effect of the rule is applied. This
problem makes effect learning NP-hard. We solve the prob-
lem by requiring that all effect propositions change sign.
Thus for a ruler, we require that∪e∈eff

r

e− ⊆ pre+
r and

∪e∈eff
r

e+ ⊆ pre−
r . In the worst case, this may cause an

exponential blow-up in the description length of an action.
The restriction, however, is naturally met by most planning
domains and has been used in previous work (Wang 1995;
Oates & Cohen 1996). Moreover, it reduces the complexity
of effect learning to linear in the number of positive execu-
tion examples.

When the domain includes multiple agents, they are as-
sumed to execute actions synchronously. At each step, all
agents execute exactly one action. The resulting action tuple
is a joint action J ∈

∏

α∈Agt Actα and is applicable in a
state, if all of its actions are applicable. The actions, how-
ever, are assumed to modify disjoint sets of propositions to
avoid interference. As an example, consider the two actions
shown below of a blocks world domain with two gripper
agentsG1 andG2 and three blocksB1, B2, andB3.

agt : G1

act : pickupG1B1

mod :{clearB1 , ontableB1 , handemptyG1 , G1holdingB1}

pre : {clearB1 , ontableB1 , handemptyG1 , ¬G1holdingB1}

eff : {¬clearB1 , ¬ontableB1 ,¬handemptyG1 , G1holdingB1}

agt : G2

act : stackG2B2B3

mod :{ontableB2 , G2holdingB2 , clearB2 , B2onB3 , clearB3 , handemptyG2}

pre : {¬ontableB2 , G2holdingB2 , ¬clearB2 ,¬B2onB3 , clearB3 ,

¬handemptyG2, ontableB3}

eff : {¬G2holdingB2 , clearB2 , B2onB3 ,¬clearB3 , handemptyG2},

{ontableB2 ,¬G2holdingB2 , clearB2 , handemptyG2}

pre : {¬ontableB2 , G2holdingB2 , ¬clearB2 ,¬B2onB3 , clearB3 ,

¬handemptyG2, ¬ontableB3}

eff : {¬G2holdingB2 , clearB2 , B2onB3 ,¬clearB3 , handemptyG2}

The pickupG1B1 action is deterministic while
stackG2B2B3 is non-deterministic, but only ifB3 is
on the table. The two actions can form a joint action since
they modify a disjoint set of propositions. Figure 1 shows
the two possible outcomes of executing the joint action.

G1 G2G1 G2

G1 G2

B3B2

B1

B3

B1 B2
B1 B3

B2

Figure 1: Execution of〈pickupG1B1 , stackG2B2B3 〉.



Domain Learning

The objective of the learning algorithm is to fit an initial do-
main hypothesis to execution examples. We assume that the
execution examples are sampled without noise from a target
domainD∗. The execution examples are either positive or
negative. The positive examples are triples〈S, J, S′〉, where
S is a current state,J is a joint action of the agents, andS′

is the next state reached by executingJ in S. The negative
examples are pairs〈S, a〉, whereS is a current state anda
is an unapplicable action inS. The set of agents and the set
of possible actions, each agent can apply, is assumed to be
known.

The input to the learning algorithm is an initial domain
hypothesisD̂ and set of positive⊕ and negative⊖ execu-
tion examples. The output is a domain hypothesisD̂′ that
is “close” to D̂, consistentwith execution examples (i.e.,
includes positives and excludes negatives), and asdetermin-
istic andsuccinctas possible.

It is hard to define these output requirements formally.
First, how do we ensure that̂D′ is “close” to D̂? Our solu-
tion is to perform a search in the syntax space of the domain
representation that starts from̂D. Our approach is inspired
by (Pasula, Zettlemoyer, & Kaebling 2004) that maps the
syntax hierarchy into a hierarchy of local search algorithms.
In contrast to this work, however, we use population-based
stochastic local search to approximate a breadth-first traver-
sal of the search space and achieve higher robustness. Sec-
ond, how do we ensure that learned domain is consistent
with the given execution examples? Since the examples are
assumed to be noise-free, we can solve the problem by us-
ing example-driven search that only considers domains that
are consistent with the execution examples. It is, however,
challenging to generate consistent domains efficiently. In
particular, we need to compute consistent sets of proposi-
tions that can be modified by each action. A key insight
is that the problem can be decomposed and solved for each
proposition independently and that precomputed BDDs can
be used to represent the valid modification sets compactly.
Third, how do we ensure that the learned domain is as de-
terministic and succinct as possible? In fact, the two criteria
are in conflict since, in our representation, two determinis-
tic rules often can be combined to a single more compact
non-deterministic one. Our solution is to summarize these
requirements into adomain costthat the search algorithms
try to minimize. The cost of a domainD = 〈P,Agt ,Act〉 is
the sum of the cost of each action

cost(D) =
∑

a∈Act

cost(a), where

cost(a) = |Ma|+
∑

r∈Ra

cost(r),

cost(r) = w(r)size(r),

size(r) = |prer|+
∑

e∈eff
r

|e|,

w(r) =

{

| ⊕r | : |eff r| > 1
1 : otherwise.

The weightw(r) of a rule is equal to the number of positive
examples⊕r it covers, if it is non-deterministic, and other-
wise 1. The purpose of penalizing non-deterministic rules in
this way is to ensure that if a deterministic component of the
rule can be “factored out” from a non-deterministic rule in
a rule-set, the resulting rule-set has lower cost. However,if
no deterministic rule can be factored out, the most succinct
version of the rule-set has lowest cost (e.g., by coalescing
two non-deterministic rules into a single more general rule).

Hierarchical Stochastic Local Search

The hierarchical decomposition of the domain representa-
tion has three levels. Since the set of agents and the set of
actions of each agent is assumed to be known, the first level
defines the set of propositions that is modified by each ac-
tion. Given a modification set of each action, the second
level defines the precondition of each action rule. Given the
preconditions of rules, the third and final level defines the
effects of the rules. Since we require that effects are non-
overlapping, the effects of a particular rule can be computed
from the execution data and the initial domain model in lin-
ear time. For this reason, we map the 3-level syntactical hi-
erarchy into a 2-level search hierarchy. The top-level search
algorithm traverses the space of consistent modification sets,
while the base-level search algorithm traverses the space of
consistent rule-sets for each action given a modification set
from the top-level. Each level uses a similar population-
based stochastic local search algorithm. The pseudo code of
this algorithm is shown below.

function PSLS(π, k, p, s)
1 best ←MK SEED(π)
2 F ← {best}
3 sideSteps ← 0
4 loop
5 C ←EXPAND(F )
6 if C = ∅ then return best
7 C ←PERMUTE(SORT(C), p)
8 F ←FIRST(C, k)
9 if F [1].cost < best .cost
10 sideSteps ← 0
11 best ← F [1]
12 else ifF [1].cost > best .cost then return best
13 else ifsideSteps > s then return best
14 elsesideSteps ← sideSteps + 1

The arguments toPSLS are the problem instanceπ, the
population sizek, a swap probabilityp, and the maximum
number of plateau side stepss. The initial search state is
computed byMK SEED(π). In each iteration of the search,
EXPAND(F ) computes the children of all the search states
in the father setF . The children are sorted bySORT(C) in
ascending order of their cost. The stochastic element of the
search is due toPERMUTE(C, p) that swaps each child (ex-
cept the first) with a random other child with probabilityp.
Finally, the functionFIRST(C, k) returns the firstk elements
of C.



Level 1: Learn Modification Sets

The top-levelPSLS algorithm searches in a space of propo-
sition modification sets of actions that are consistent withthe
execution examples. For each assignment of the modifica-
tion sets, the algorithm calls the base-level search algorithm
to learn the rule-set of each action. Since, we may expect the
same action to be learned several times for the same modifi-
cation set, dynamic programming is applied by maintaining
a cache of previous results.

The theoretical size of the space of modification sets is
2|P ||Act| which is prohibitively large for a generate-and-
test approach. Hence, we need a way to make the search
example-driven. Let∆(S, S′)+ and∆(S, S′)− denote the
propositions in a positive example〈S, J, S′〉 that change
from false to true and true to false, respectively. Further,
let ∆(S, S′) = ∆(S, S′)+ ∪∆(S, S′)−.2 For the modifica-
tion sets of the actions inJ to be valid, we require that 1)
the modification sets are disjoint (∀a1, a2 ∈ J . a1 6= a2 ⇒
Ma1

∩Ma2
= ∅), and 2) at least one action modifies each

proposition that changes truth-value (∀p ∈ ∆(S, S′)∃a ∈
J . p ∈ Ma). This problem can be decomposed into a set of
independent constraints on each proposition. Thus, for each
positive example〈S, J, S′〉, each proposition in∆(S, S′) is
modified by exactly one action inJ .

We use BDDs to represent this search space efficiently. A
BDD is a compact data structure for representing and ma-
nipulating Boolean functions. For each propositionp ∈ P ,
we compute a BDD representing the Boolean function

fp









m1,1 m1,2 · · · m1,|act1|

m2,1 m2,2 · · · m2,|act2|

...
...

...
...

m|Agt|,1 m|Agt|,2 · · · m|Agt|,|act|Agt||









,

whereact i denotes the set of actions of agenti for some
ordering of the agents, andmi,j is a Boolean variable that
indicates whetherp is modified by actionj of agenti for
some ordering of the actions inact i. We definefp such that
it is true if the assignment of its arguments corresponds to
valid modifications ofp. Our experimental results show that
each of these BDDs can be computed in a few seconds even
when considering large domains with thousands of positive
execution examples. Moreover, the final BDDs are typically
very small with just a few hundred nodes.

MkSeed For each propositionp, MK SEED uses a greedy
approach to find an assignment of the arguments offp that
has minimum Hamming distance3 to the assignment of the
arguments that corresponds to the modification sets of the
initial domainD̂. This is done by iteratively assigning an
m-variable that maintains the largest number of remaining
m-variables that can get the same assignment as inD̂. The
computations may be time consuming but often generate
modification sets from which a domain with a local mini-
mum cost can be found.

2Notice that∆(S, S′) = ∅ is possible.
3The Hamming distance between two bit vectors is the number

bits with different signs.

Expand For each fatherf ∈ F , EXPAND makes a child for
each propositionp ∈ P by changing the actions modifying
p. This is done in the same way asMK SEED with the father
assignment being the target. That is, find an assignment of
the arguments offp that has minimum Hamming distance to
the father. All other propositions in the child are modified
by the same actions as the father. For each child,EXPAND
calls the base-level search algorithm to learn each action of
the domain. Thus, the problem instanceπ of the base-level
search algorithm is the modification set of a single action.

Level 2: Learn Action Rule-Sets
Given a modification set of an actiona, the base-levelPSLS
algorithm searches in the space of rule-sets ofa that is con-
sistent with the positive and negative execution examples.
The task is to find a set of rules that covers all the positive
examples wherea is a part of the joint action and excludes
all the negative examples wherea is unapplicable.

LearnRule An important subfunctionLEARNRULE learns
a rule r = 〈prer, eff r〉 for an actiona given its precon-
dition prer. Let ⊕r denote the positive examples covered
by the rule. That is, the set of positive examples〈S, J, S′〉
wherea ∈ J and prer is satisfied in a stateS. The ef-
fects of a rule are computed from the initial domainĈ and
the positive execution examples⊕r. For each positive ex-
ample〈S, J, S′〉 ∈ ⊕r, we can derive an effecte, where
e+ = ∆(S, S′)+ ∩ Ma and e− = ∆(S, S′)− ∩ Ma. If
the action description of the current domain includes addi-
tional effects covered by the rule, then these are added to the
set of effects of the rule. Thus, the effects of a rule can be
computed in linear time in the number of positive examples
and the size of the action description of the current domain.
However, the resulting rule is only valid if 1)⊕r 6= ∅, 2)
prer does not cover any negative examples, and 3) the ef-
fects are non-overlapping. That is,∪e∈eff

r

e− ⊆ pre+
r and

∪e∈eff
r

e+ ⊆ pre−
r .

MkSeed The initial rule-set of an action is derived from
the rule-set of the action in the current domainĈ and the
execution examples. Each ruler of this action is computed
usingLEARNRULE and is added to the rule-set if it is valid
according to the requirements above. Otherwise,

• if the precondition ofr does not exclude all negative ex-
amples, then it is greedily extended with literals that ex-
clude most negative examples,

• else if there is a propositionp that the effects ofr both
can make positive and negative, thenr is split into two
new rules with preconditionsprer ∪ p andprer ∪ ¬p,

• else the precondition ofr is extended with literals that
make the effects non-overlapping.

Positive examples not covered by the resulting rule-set, are
added as single, most specific rules. The approach ensures
that the resulting rule-set has disjoint preconditions.

Expand For each fatherf ∈ F , EXPAND makes children
of f by specializingandgeneralizingthe rule-set off . It is



ensured that the resulting rule-set has a disjoint set of pre-
conditions and that it excludes all negative execution exam-
ples and includes all positive execution examples. There is
a child for each possible rule-set resulting from specializing
or generalizing a ruler in the rule-set off . A rule r can be
specialized in two ways

1. by adding a literal to its precondition that does not reduce
the set of positive execution examples⊕r covered by the
rule,

2. by splittingr into two new rules with preconditionprer ∪
p andprer ∪ ¬p that each covers a nonempty set of posi-
tive execution examples.

A rule r can be generalized in one way, by removing a literal
from its precondition. If the new rule is valid, the rule-set
of the child is constructed by removing all rules subsumed
by the new rule. However, the child is only added, if the
resulting rule-set is disjoint. It is easy to realize that this set
of operations are complete.

Proposition 1 Any disjoint valid rule-sett1, . . . , tm on ex-
ecution examplesE can be constructed from some disjoint
valid rule-setr1, . . . , rn on E using the specialization and
generalization operations ofEXPAND.

Proof. Specialize each rule inr1, . . . , rn until it covers a
single state. Let the resulting rule-set bes1, . . . , sk. For
each rulet in t1, . . . , tm, identify a rule s in s1, . . . , sk

covering a positive example oft. Specializes until
preg = pres. 2

The hard question is whether the cost-function (i.e, the cost
of a rule-set) guarantees that the search escapes local min-
ima. In this case, the learning problem would be polynomial
in the number of execution examples. Learning the precon-
ditions of the rules, however, involves learning a disjoint
DNF formula from positive and negative examples. Thus,
we have

Proposition 2 Learning a disjoint valid rule-set is as hard
as learning a disjoint DNF.

This is a negative result since the learnability for disjoint
DNF remains unresolved in any reasonable learning model
(Blum et al. 1998). Hence, we may not expect to escape all
local minima. The chosen cost function, however, performs
well on the domain instances we have investigated.

Experimental Evaluation
The learning algorithm has been implemented in
C/C++/STL. The program includes a parser for our
domain representation language and a simulator to generate
execution examples. The inputs are the current domain hy-
pothesisĈ, the target domainC∗, and the number of positive
and negative execution examples. The execution examples
are generated by applying joint actions of the target domain
to random legal states and producing outcomes according to
a probability distribution over the effects.

Domains We have defined two non-deterministic multi-
agent planning domains for our experimental evaluation.
The first, nblocks, is a non-deterministic version of the

blocks world with multiple gripper agents. There are four
actions pickup, putdown, stack, and unstack with their
usual semantics except that stack and unstack are non-
deterministic. For these actions, there is 10 percent chance
that blocks fall to the table. The second domain,nlogistics,
considers multiple plane agents flying between a number of
cities. There is only a single non-deterministicfly action.
The outcome of this action, however, is only uncertain when
it rains. In this case, there is 10 percent chance that the plane
is re-routed to a random city. The two domains pose comple-
mentary learning challenges. In nblocks, the gripper agents
are highly dependent which significantly reduces the number
of applicable joint actions of a state. In nlogistics, the plane
agents are independent, but here the problem is to learn the
correct re-route city of each action.

Experiments The experimental evaluation investigates
the convergence rate of the implemented algorithm as a
function of 1) the domain size and type, 2) the agent decom-
position, and 3) the quality of the initial domain hypothesis.
In addition, we examine the trade-off between CPU time and
the quality of the produced domains. The experiments are
carried out on a Linux 2.6 PC with two 2.4GHz Pentium 4
CPUs, 512KB level 2 cache, and 512MB RAM. For both
PSLS algorithms, we usek = 2, p = 0.1, ands = 2. For all
experiments, we use the same number of positive and neg-
ative execution examples. For each experiment, the quality
of the learned domain is estimated by counting the number
of classification errors on 1000 (500) random positive (neg-
ative) execution examples. Unless otherwise mentioned, the
initial domain hypothesis of nblocks and nlogistics assumes
that all actions are deterministic. Thus, neither the modifi-
cation sets nor rule-sets are correct for all actions.

Domain Size and Type Two target domains with different
sizes are constructed for nblocks and nlogistics. For nblocks,
we consider 2 gripper agents moving 3 and 6 blocks. For nl-
ogistics, we consider 2 plane agents and 5 and 10 cities. The
results are shown to the left in Figure 2. Even for the small-
est set of execution examples covering all actions, none of
the learned domains has an error rate higher than 15 percent.
Convergence is fast. The small and large target domains
have 1125/953 and 3941/4915 words in the domain descrip-
tion (nblocks/nlogistics). Thus, the domains converge to the
target domains within a small factor of their description size.
A visual inspection of the learned actions shows that they
have close resemblance with the target actions. The large
domains were learned by just using the seed assignment
of modification sets computed by the level 1 search algo-
rithm. Thus, the results indicates that the BDD-based pre-
computation of valid assignments of modification sets com-
bined with the heuristic for choosing the seed assignment
is strong enough for finding the correct assignment given
enough training examples. None of the instances took more
than 150 seconds.

Concurrent Activity In this experiment, we examine how
well the learning algorithm copes with concurrent activity.
For an nlogistics domain with 5 cities and 3 planes, we con-
sider an increasing number of concurrent agents controlling
the planes. In 1nlog3-5, one agent controls all planes. Thus,



 0

 50

 100

 150

 200

 250

 0  2000  4000  6000  8000  10000 12000 14000 16000 18000 20000

N
um

be
r 

of
 e

rr
or

s

Number of execution examples

nlog2-5
nlog2-10

nblock2-3
nblock2-6

 0

 50

 100

 150

 200

 250

 300

 0  2000  4000  6000  8000  10000  12000  14000

N
um

be
r 

of
 e

rr
or

s

Number of execution examples

1nlog3-5
2nlog3-5
3nlog3-5

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

C
P

U
 ti

m
e 

(s
ec

)

Number of execution examples

Anlog2-5
Bnlog2-5
Cnlog2-5

Figure 2:Left : Convergence rates for large and small nblocks and nlogistics domains.Middle : Convergence rates for nlogistics
domains with increasing concurrency.Right: CPU time for an nlogistics domain with decreasing quality of the initial domain.

only one plane fly at a time. In 2nlog3-5, two agents con-
trol the planes, etc.. The results are shown in the middle
of Figure 2. Despite an initial higher error rate, 3nlog3-
5 converges faster than 1nlog3-5 and 2nlog3-5. However,
3nlog3-5 gets information for three actions for each posi-
tive execution example, while 1nlog3-5 and 2nlog3-5 only
get information for one and two. The results show that the
learning algorithm efficiently resolves concurrency and can
exploit the extra information given for the positive execu-
tion examples of 3nlog3-5. The domains were learned by
just using the seed assignment of the modification sets.

Quality of the Initial Domain Hypothesis In this experi-
ment, we change the quality of the initial domain hypothesis.
We consider 3 initial domain hypotheses A, B, and C for an
nlogistics domain with 2 planes and 5 cities. A is the usual
initial domain hypothesis. The fly actions in B, do not mod-
ify the location proposition of the destination city, whilein
C, they are empty (i.e., they apply in all states and have no
effects). The learner is given the same set of execution ex-
amples for the three cases. For these experiments, level 2
performs a complete search. The domain learned is identi-
cal in all three cases. This shows that the search is robust to
changes in the initial condition. However, as shown to the
right in Figure 2, the learner can use a high-quality initial
domain hypothesis to achieve lower search times.

Conclusions and Future Work
In this paper, we have presented an algorithm for learn-
ing non-deterministic multi-agent domains using a hierarchy
of two population-based stochastic local search algorithms.
Our experimental results show that the learner has fast con-
vergence rates and is time and space efficient. Moreover,
it efficiently handles concurrent activities and may benefit
from an initial domain hypothesis with high quality. Future
work includes extending the approach to relational actions
and noisy execution examples.

References
Benson, S. 1995. Inductive learning of reactive action
models. InProceedings of the 12th International Confer-
ence on Machine Learning, 47–54.

Blum, A.; Khardon, R.; Kushilevitz, E.; Pitt, L.; and Roth,
D. 1998. On learning read-k-satisfy-j DNF.Journal of
Computing27:1515–1530.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation.IEEE Transactions on Computers
8:677–691.
Jensen, R. M., and Veloso, M. M. 2000. OBDD-
based universal planning for synchronized agents in non-
deterministic domains.Journal of Artificial Intelligence
Research13:189–226.
Oates, T., and Cohen, P. R. 1996. Searching for planning
operators with context-dependent and probabilistic effects.
In Proceedings of the 13th national Conference on Artifi-
cial Intelligence (AAAI-96), 863–868.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaebling, L. P.
2004. Learning probabilistic relational planning rules.
In Proceedings of the 9th International Conference on
Principles of Knowledge Representation and Reasoning
(KR2004), 683–692.
Shen, W., and Simon, H. A. 1989. Rule creation and rule
learning through environment exploration. InProceedings
of the International Joint Conference on Artificial Intelli-
gence, 675–680.
Tan, M. 1993. Multi-agent reinforcement learning: Inde-
pendent vs. cooperative agents. InProceedings of the 10th
International Conference on Machine Learning, 330–337.
Wang, X. 1995. Learning by observation and practice: An
incremental approach for planning operator acquisition. In
Proceedings of the 12th International Conference on Ma-
chine Learning, 549–557.
Yang, Q.; Wu, K.; and Jiang, Y. 2005. Learning action
models from plan examples with incomplete knowledge. In
Proceedings of the 15th International Conference on Auto-
mated Planning and Scheduling (ICAPS-05), 241–252.
Yolanda, G. 1992.Acquiring Domain Knowledge for Plan-
ning by Experimentation. Ph.D. Dissertation, Carnegie
Mellon University.


