Interleaving Deliberative and Reactive Planning in Dynamic

Multi-Agent Domains

Rune M. Jensen
Department of Automation
Technical University of Denmark
2800 Lyngby, Denmark
ex04@iau.dtu.dk

Abstract

Reactive planning, consisting of pre-defined sensor-
action rules, is well suited to effectively respond to
dynamic changes in real-time environments. How-
ever, it is in general challenging to strategically rea-
son about long or short-term objectives using reac-
tive planning. Therefore, ideally, deliberative and
reactive planning should be integrated. In this pa-
per, we introduce an adaptive interleaving of de-
liberative and reactive planning as our approach
for dealing with real-time dynamic environments.
Two main aspects are responsible for the success of
the approach. First, the deliberative planner uses
depth-bounded forward chaining guided by goal-
based heuristics. Second, the real-time state space
is discretized as a function of the average time that
the deliberative planner needs to generate a plan.
This ensures that the state, as seen by the delib-
erative planner, does not change in average while
the plan is being generated. When a plan fails or a
new plan is needed, the reactive planner takes over.
We extend our approach to multi-agent real-time
domains, where the need for collaborative deliber-
ative planning is particularly needed. We imple-
mented and demonstrate our integration using the
Prodigy deliberative planner and the RoboCup soc-
cer simulator server.

1 Introduction

In one of Monty Phyton’s sketches, ancient Greek
philosophers play a soccer match. After the kickoff,
the ball lies surprisingly untouched in the grass with
the philosophers wandering scrutinizing about. Sud-

Manuela M. Veloso
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213-3891, U.S.A.

mmv@cs.cmu.edu

denly one of the philosophers shows an expression of
great insight and initiates a sequence of precise passes
among his team mates that finally places the ball in
the opponent goal.

From an Artificial Intelligence (AI) point of view
this sketch is amusing because it illustrates the prob-
lems of applying high-level reasoning systems like Al-
planners to dynamic real-time domains. As impli-
cated by the untouched ball due to the lack of actions
to perform a major problem is the plan generation
time. What should the agents do during plan gener-
ation? And how can we ensure that a generated plan
is executable by the agents given the changes of their
state during plan generation?

Another problem is indicated by the ironical suc-
cess of the approach used by the Greek philosophers.
In areal soccer match planning a goal from the kickoff
to the scoring kick is impossible. Due to the dynamic
changes of the environment (e.g., the opponent move-
ments) the state (environmental conditions) assumed
by a given plan only have a limited duration of con-
sistency. Hence, an approach for integrating planning
in these environments must be based on short limited
plans. Further, even with this constraint, the plan ex-
ecution is still vulnerable to failing during execution
of plan step actions.

An alternative approach to deliberative plan gen-
eration followed by execution is real-time reactive
planning, where the agent immediately responds re-
actively to dynamic changes in the environment. Re-

active planning can be viewed as consisting of a set
of pre-defined sensor-action response rules. The ad-
vantage of this approach is that it allows short reac-
tion time to environmental changes. The drawback is
that the greedy strategy for applying actions result-
ing from only considering the current situation draws
the agent towards local optimal states. Long or short-
term objectives cannot easily be reasoned about and
there is no immediate guarantee that a goal-based
satisfying state is reachable. The focus on choosing
an action in the current situation makes long-term
behavior hard to represent and predict.

Consequently, the ideal approach for real-time dy-
namic domains seems to be a combination of classi-
cal deliberative and reactive planning. In this paper
we present such an approach allowing the agent to
execute plans when the environmental demand for
response is low, and degenerate to reactive behavior
when the environmental demand is high or a failure
occurs.

Our approach has been inspired by MRR-planning
introduced in [9]. In MRR-planning reactive and clas-
sical planners compete in each cycle for choosing the
next action of the agent. If the response demand
is low the action selection mechanism waits until all
planners have finished processing making the agent
behavior deliberative. Otherwise, if the response de-
mand is high action proposals from reactive planners
are weighted higher and an action is chosen as soon
as its summed weight exceeds a threshold. Because
the reactive planning is faster than the classical plan-
ning the agent’s behavior in these situations becomes
reactive with short response time.

In our approach we relax the requirement, that full-
scale plans must be generated in each cycle in order to
behave deliberative. Instead the agent iteratively ex-
ecutes time bounded plans. The plans are generated
by a concurrently working forward chaining planning
system, that repeatedly receives updated state infor-
mation from the agent. Thus, as long the environ-
mental demand is low, the agent can keep behaving
deliberatively taking dynamic changes of the environ-
ment into account.

In each cycle the response demand of the environ-
ment is measured. If the demand is too high or the
plan execution fails the agent degenerates to reactive

behavior. Hence, the agent adapts dynamically to its
own failures and changes of the environment overrid-
ing the planned actions.

In contrast to MRR-planning we further generalize
our approach to multi-agent domains making collab-
oration between the agents an important goal of the
deliberative planning. As an example domain, the
RoboCup robotic soccer simulator [11] is used as a
very challenging real-time dynamic environment. We
further use the Prodigy deliberative planner [15].

The paper is organized as follows: section 2 dis-
cusses previous reasoning systems dealing with dy-
namic environments. In section 3 we introduce in-
terleaving of reactive and deliberative planning for
single agents in dynamic environments. In section 4
the approach is extended to multi-agent domains and
demonstrated in the RoboSoccer multi-agent domain
in section 5. Finally in section 6 we draw conclusions.

2 Previous Approaches

Several approaches have been pursued for the inte-
gration of planning and execution, which is related to
the integration of deliberative and reactive planning.
Our discussion of some approaches in this section is
clearly not exhaustive, but we try to identify close
work.

Most existing architectures for integrating deliber-
ative planning in dynamic environments consist of
a plan constructor and a plan executer interleav-
ing passive planning phases and active plan execu-
tion phases. Recent systems in this category is the
ROGUE architecture [7, 8] that integrates and learns
from dynamic changes in the environment, and a sys-
tem developed by Nourbakhsh [12] that uses condi-
tional planning for dealing with environmental uncer-
tainty.

As noted in the introduction, these approaches
faces problems in domains with a high frequency of
dynamic changes. Consider for example a flight con-
trol or a battle field scenario. Activity of agents dur-
ing plan generation in these domains is crucial. More-
over, the agents must be able to respond instantly to
changes in the environment during plan execution.

Architectures for addressing these problems have

been proposed by Lansky’s Procedural Reasoning Sys-
tem (PRS) [6] and Brooks’ subsumption architec-
ture [2]. The subsumption architecture decomposes
the behavior problem into task-achieving units real-
izing distinct behaviors of the agent separately. The
units are ordered hierarchically with more complex
behavior inhibiting simpler default behavior accord-
ing to environmental demands. The subsumption ar-
chitecture has proved to be efficient for implementing
highly reactive behavior. Unfortunately the lack of
high level problem-solving and lookahead makes the
approach inflexible and hard to reuse in other envi-
ronments.

The PRS architecture reasons about means and
ends in much the same way as traditional planners,
but further provides reactivity to dynamic changes
of the environment. During execution a reasoner
chooses different procedures (KAs), according to the
state of the environment and the goals of the agent. If
some important new fact or request becomes known,
PRS will reassess its goals, and perhaps choose to
skip the current active KA and work on another one.

Recently PRS has been applied to the RoboSoc-
cer simulator domain [1]. Here KAs takes the form
of simple plays among several agents (e.g. restart
plays). In this way agents are capable of behaving
deliberatively and perform actions not reactively op-
timal but efficient in the overall game (e.g., making a
backward pass to confuse an opponent). Further, the
PRS architecture allows agents to degenerate to reac-
tive behavior, when the environment is demanding.
A limitation of this approach though is the hand-
coded nature of KAs. Agents should be able to de-
velop new plays exploring the current situation using
the available actions. In our approach the purpose of
the depth bounded forward chaining planning is just
to do that.

The Agenda Based Control for Agents Behaviors
Coordination model (ABC?) [10] also addresses the
problem of combining classical and reactive planning.
This model resembles PRS by having a central control
process selecting acts from an agenda containing a set
of acts currently under consideration. An act can ei-
ther consist of processing or sending information to
another agent or do some action, which may be re-
quested by another agent. Like reactive systems the

ABC? model is able to respond to dynamic changes,
but in contrast to these systems ABC? also consid-
ers current goals of the agent when choosing actions.
Unfortunately ABC? like PRS does not reason about
future states. When applied to the RoboSoccer simu-
lator domain this approach thus has much in common
with elaborate reactive approaches, where collabora-
tion is handled by role based formations [14].

An important difference between our approach and
PRS and ABC? is, that we base reactive and delib-
erative planning on different representations of the
domain allowing a long lookahead of the deliberative
planning while keeping a low response time of the
reactive planning.

3 Single-Agent Deliberative

and Reactive Planning

Regardless of whether the agent uses deliberative or
reactive planning it needs to process sensor informa-
tion and to generate low level actions with a high
frequency. Due to the fact that each planning mode
uses different control principles and has direct access
to sensors and actuators, the agent architecture can
be described as a layered architecture (see Figure 1).
The deliberative control layer controls the agent by
executing plans generated by a concurrently work-
ing deliberative planner, while the reactive control
layer controls the agent by executing actions gener-
ated by a reactive planner situated within the layer.
In the single-agent case the deliberative planner can
be integrated in the agent architecture. In our ap-
proach though the planner system must be an inde-
pendent system in the multi-agent case, as the plan-
ner is shared by all of the agents.

In order to shift to deliberative planning a repre-
sentation of the state of the agent must be estimated
and sent to the planner system. The goal state is
implicitly defined by a state evaluation function, and
thus need not to be sent by the agent. To main-
tain the deliberative behavior we need repeated re-
planning with an updated state. The frequency of re-
planning depends on the stability of the environment.
An unstable environment with a high frequency of

Planner

Sate Plan

Deliberative

—_—
Control

Actuators

—=

Sensors

Reactive
Control

Figure 1: Agent architecture.

dynamic changes forces a short lookahead and con-
sequently frequent re-planning. On the other hand a
stable environment with only a few dynamic changes
allows a high planning depth resulting in a longer

lookahead.

3.1 Deliberative planning

In order to use a classical Al planner for reasoning
in real-time domains a discrete state space represen-
tation of the domain is required. Finding the ap-
propriate discretization is quite challenging. On one
hand, the granularity of the discretization depends on
which level of abstraction we would like to apply de-
liberative planning to. On the other hand, we would
also like the state used by the deliberative planner
to remain constant while the planner is generating a
plan. Choosing an abstraction too fine can result in
a long planning time and a high probability of not
being able to apply the plan due to the state changes
during planning.

To address this problem, we investigate a new
method to determine an approximately correct gran-
ularity: planner-dependent state discretization. The
key idea is that we discretize the state as a function
of the average planning time required. We introduce
a discrete planner state space S such that, for all the
states s € S, the average planning time is sufficiently
less than the average time it takes a transition from
s to occur.

Due to this

inevitable boundary conditions,

method is offers no absolute guarantee that the gen-
erated plan is still applicable in the state where ex-
ecution should start. However empirical evidence in
our implementation showed that the technique was
suitable even for in our highly dynamic environment.

The planning problems we consider are character-
ized by having a specific initial state (e.g. the current
agent position) and a loosely specified goal state as a
disjunctive set of equally good positions on the field.
Because this gives a one (current location) to many
(several possible goal positions) search, we use for-
ward chaining planning.

The operators used by the planner are classical
STRIPS operators [5] and we use the Prodigy plan-
ner [15].

As the planning progresses we reason about the un-
certainty of the plan being generated. The dynamic
changes in the state cause regions of uncertainty to
grow in the state space, that in turn inhibits further
consistent planning. Hence, in our domain and plan-
ning algorithm, planning is depth bounded with a
chosen depth, such that planning stops before it gets
inconsistent.

The planning continues until the depth bound is
reached. The achieved state is evaluated to determine
if it is a goal state. If that is the case, then the cor-
responding plan is returned to the agent. Otherwise,
the planner backtracks and finds another solution.

3.2 Reactive planning

In contrast to the deliberative planning the reactive
planning is based on the current state without any
lookahead. It uses a set of hand-coded sensor-action
rules. The role of the reactive planning is to enable
the agent to make fast responses to urgent demands
of the environment and provide the agent with a basic
behavior, that takes over if the deliberative planning
fails.

Because the reactive planning is based solely on the
current state it is defined as a decision tree, where
nodes represent state conditions and leaves represent
primitive actions.

3.3 Interleaving of deliberative and

reactive planning

Due to the advantage of lookahead, the behavior of
the agent is based on deliberative planning whenever
it is possible. Thus when in a non-demanding situa-
tion the agent sends its state to the planning system
and shifts to deliberative control as soon as the plan
arrives (see Figure 2).

To make a continuous transition between the exe-
cution of two plans, the agent sends its new state just
in time to receive the new plan before the old plan
runs out. To raise the probability that the generated
plan is applicable the new state is based on the as-
sumption that the old plan succeeds. As noted in [1]

D%lbetra.tllve Situation
Plan ontro demand
received Vv
Reactive Ezecution
Control failure
_/
—Situation demand
[Send state]

Figure 2: Interleaving of deliberative and reactive
planning for single-agent domains.

an environmental demand can be both positive and
negative. A positive demand is a sudden opportunity
for the agent to explore the environment and reach a
better state than possible by following its plan. On
the other hand a negative demand is a problem not
taken care of by the plan. In both cases the agent
degenerates to reactive behavior. Further, a shift to
reactive behavior also happens if the agent is unable
to commit to the plan (see Figure 2).

4 Multi-Agent Deliberative

and Reactive Planning

An extension of the single-agent architecture de-
scribed above requires multi-agent planning and
multi-agent plan execution. Current research in
this field mainly deals with how to represent and

share multi-agent plans in order to make distributed
plan generation and negotiate which plan to fol-
low [13, 4, 17]. We use one central planning system,
which all agents connect to. The resulting architec-
ture is shown in Figure 3. The multi-agent plan gen-
eration consists of three steps:

1. Fusion of possibly inconsistent and inaccurate
world state observations from each agent to a
consistent global world state defining the initial
state of the planner.

. Generation of a multi-agent plan.

. Decomposition of the generated multi-agent plan
to a coordinated single-agent plan for each agent.

In order to reduce the problem of coordinating the
agents, their actions are synchronized by assuming
all operators to take a fixed and equal amount of
time. Further, to allow the planning system to han-
dle an arbitrary number of agents, an operator only
changes the state of a single agent. Nothing prevents

Planner
Deliberative Deliberative Deliberative
Control Control Control
Reactive Reactive Reactive
Control Control Control

Figure 3: Multi-agent architecture.

the planning it-self to be asynchronous. But because
operators for interactions between agents require syn-
chronous state knowledge about the involved agents,
we use synchronous planning. Thus, all agents must
at least have reached time t before any operator,
that leads an agent to time ¢ + 1 can be applied.
Consequently the depth bounded forward chaining
planning takes the form of a simulation of the com-
bined multi-agent state some number of steps ahead
in time. The reactive planning used in the multi-
agent extension of the architecture is similar to the

reactive planning used in the single-agent case. As
argued by [14] roles are assigned to agents to enable
efficient collaboration.

The last modification of the multi-agent extension
concerns the interleaving of the deliberative and reac-
tive planning. Due to synchronization of the agents
during a deliberative phase the agents must enter this
phase at the same time. But the agents should also
exit the phase simultaneously, as the planned collab-
oration between the agents may be violated when one
agent fails to commit to the plan. The agents achieve

Situation demand
‘ Deliberative [Say(Reactive)]
Control %
Plan . .
received Execution failure
R [Say(Reactive)]
Reactive ’
Hear(Reactive)
_/

- Situation demand
[Send state, Say(Deliberative)]
v

Hear(Deliberative)
[Send state]

Figure 4: Adaptive interleaving of deliberative and
reactive planning for multi-agent domains.

this by direct communication. When an agent cannot
commit to the plan it communicates this to the other
agents, which make a simultaneous degeneration to
reactive behavior. On the other hand, when an agent
finds the environment low demanding it communi-
cates this to the other agents, which then try to enter
a deliberative phase (see Figure 4).

5 Real-time Dynamic Multi-
agent Domain: Robotic Soc-
cer Simulator

Our example implementation uses an artificial envi-
ronment provided by the RoboCup soccer server [11]
and multi-agent plans generated by the nonlinear
planner PRODIGY4.0 [3]. Each agent represents
a player and is implemented as a separate pro-
gram, that communicates with the soccer server and

PRODIGY. The agent program generates an action
command whenever it receives visual information
send by the soccer server every 100 ms.

We base the deliberative planning on the position
and direction of the ball and players. In order to
obtain a discrete representation of the soccer domain
we superimpose a grid to the soccer field. To reduce
the branching factor of the search space we further
require, that an operator can only make an agent
move to an adjacent position.

As described in section 4 the synchronization of
the agents during plan execution requires all plan-
ning operators to take a fixed amount of time. To
facilitate the synchronization between agents during
execution the transition between plan steps is based
on the progression of time rather than the state of the
agent. To ensure that the agents commit to the plan
the agent state is monitored during plan execution.

The choice of the grid distance, operators and op-
erator execution time has been based on multi-agent
plan execution experiments and estimates of the cor-
responding planning time. Based on these experi-
ments we have been able to define a set of operators
that in addition to satisfying the timing constraints
also is general by allowing many different plans to
be defined and robust by having a high probability
execution success.

The operator set contains four operators corre-
sponding to the four combinations of possessing the
ball before and after the execution of the operator:

move <time> <agt> <x> <y> The move operator is
used to move an agent who does not possess the
ball and who is not going to possess the ball at
its next synchronization position. Similar to the
remaining three operators the parameter set of
the move operator contains the variables <time>,
<agt>, <x> and <y>. The <time> variable speci-
fies the next synchronization time, while <x> and
<y> specify the next synchronization position of
the agent <agt>. During the execution the agent
position is monitored. If the agent at some point
becomes unable to reach the goal position, the
execution of the plan step fails.

recv <time> <agt> <x> <y> <nextx> <nexty>
The recv operator is used to move agents who

do not possess the ball, but who are going to
possess the ball at their next synchronization
position. The parameters <nextx> and <nexty>
specify the position the agent is supposed to
move to after receiving the ball. The knowledge
about this position allows the agent to position
itself behind the ball directed towards the next
position in order to increase the probability
of a successful receive. The agent position
is monitored during the execution of recv,
which fails if the receive position at some point
becomes unreachable.

drib <time> <agt> <x> <y> <nextx> <nexty>
The drib operator makes the agent dribble the
ball. The agent thus possess the ball both at the
current and the next synchronization position.
Similar to the recv operator the parameters
<nextx> and <nexty> specify the position
the agent is supposed to move to during the
execution of the next operator. The agent uses
this information to alter the direction of the ball
in the end of the execution of drib such that the
ball is heading towards the next synchronization
position. During the execution of drib, the
agent kicks the ball in front of it and stays close
to the ball. The execution of drib fails if the
agent does not succeed to commit to the timing

of these kicks.

pass <time> <agt> <x> <y> <recvx> <recvy>

The pass operator makes the agent kick the
ball to the position specified by <recvx> and
<recvy>. The kick power is adjusted such that
the ball arrives at the receive position at the
next synchronization time. After the pass, the
agent moves to its synchronization position.
The execution of the pass fails if the agent does
not succeed to kick the ball before some preset
time limit or if the agent during the move phase
becomes unable to reach the goal position at
synchronization time.

PRODIGY4.0 is a domain-independent non-linear
state-space planner. To generate multi-agent plans
in the discrete soccer domain, we specified a forward

chaining domain for PRODIGY including the opera-
tors above and the following literals:

(at <time> <agt> <x> <y> <dir>)
(has-ball <time> <agt>)
(init-pos <opp> <x> <y>)

where <time>, <x>, <y> and <dir> are discrete
variables and <agt> and <opp> denote player agents
and players from the opponent team. We only con-
sider plans for attacks, i.e. the agents are assumed to
possess the ball.

Consider the situation shown in Figure 5 (a). The

i -
c//ﬁf o

-1
Ourl Oppl
0 o (@
Opp!
1
Our2 s j
2
3

(at 0 ourl 6 -1 -45)
(at 0 our2 6 1 -90)

(has-ball 0 our?2)
(init-pos oppl 8 -1)

(b)

(init-pos opp2 8 0)

pass 1 our2 7 2 2 -2

recv 1 ourl 7 -2 8 -3

drib 2 ourl 8 -3 9 -3 (©
nove 2 our2 8 2

drib 3 ourl 9 -3 10 -2

nmove 3 our2 9 1

Figure 5: The plan generation sequence for generat-
ing plans of three steps for two agents.

agents Qurl and Our2send their state to the planner,
which fuses the agent states to an initial state for
the planning problem (Figure 5 (b)). The planner
then generates a multi-agent plan of n steps (Figure

5 (¢)), which is decomposed into single-agent plans
and finally send back to the agents.

The application of operators is restricted such that
agents cannot move outside the field or to a position
occupied by a team mate. Further, only passes to
a position where the ball can be received by a team
mate are considered. Moreover, movements of oppo-
nents are modelled by defining a region around ev-
ery opponent player that grows with time according
to the average speed of opponents. Only moves and
passes avoiding these regions are considered. We use
control rules to guide the search towards a desired fi-
nal state. Thus, the planning goal is implicitly stated
by the control rules. Note though, that backtracking
still occurs as the control rule guided forward chain-
ing can lead to dead-ends, where no operators are
applicable.

The timing diagram in figure 6 illustrates how plan
generation and plan execution changes the low level
action generation of an agent. In the diagram it is as-
sumed, that the system consist of two agents. Thus,
state; denotes the state send by agent i to Prodigy,
while plan; denotes the plan received by agent ¢ from
prodigy. With a grid distance of 5 meters and an
operator execution duration of 2000 ms PRODIGY
is able to generate a multi-agent 3-step plan for two
agents in less than 400 ms. As described in section
3.1 the application of the generated plan requires
that the preconditions of the operators of the plan
still hold at application time. In the soccer domain
the main preconditions are, that the positions of the
agents in the abstract planner space do not change
during planning. As the average speed of the agents
is 2.5 m/s, the average time for a position change of
one agent is 2000 ms. For two agents the average
time for a position change to occur is less than 2000
ms, but with a planning time less than 400 ms the
probability that the generated plan is applicable is
still very high.

In our example scenario we consider an attack
by two agents interleaving deliberative and reactive
planning against two defenders solely using reactive
planning. The reactive planning used by the attack-
ers consist of moving towards the ball if the ball is not
possessed, and dribble towards the goal and eventu-
ally try to score if the ball is possessed. When drib-

Agent 1 Pi%)lev
R —

] } 100 ms Sate
R N 2
RT—— Sate, —

R —

R Plan 1
Rl<— Plan,

o M
D—, : stepl (ooomy A\ n,
D— - N
D— dep2 te,
D— ~ — Statepsyre .

o I Plan 2
D— . step3 : :
D— ! sepl h n,
D — -

{ i

R : Reactive action
D : Deliberative action

Figure 6: Action generation timing diagram (nsep =
3 and ngg = 2).

bling the ball the agents try to avoid defenders by
kicking the ball in the opposite direction of any de-
fenders they see. Role based collaboration between
the two attackers at the reactive level is restricted to
avoiding the attackers to compete for the ball. When
one attacker realizes, that the other attacker is nearer
the ball it stops moving towards the ball, but keeps
within a suitable passing distance. The defenders use
a zone strategy to defend the right goal. Whenever
the ball enters a circular region on the left and right
side of the goal the agent protecting this zone moves
towards the ball and tries to kick the ball to the left
side of the field.

Attackers shift from deliberative to reactive plan-
ning if defenders come too near (negative demand),
the goal is score-able (positive demand) or the plan
execution fails. When no defenders are nearby and
the goal is unscore-able the attackers send their state
information to PRODIGY and immediately starts ex-
ecuting the generated plan. At the beginning of the
last plan step they send their new state information

to PRODIGY assuming that the current plan suc-
ceeds. Thus, the attackers will stay in a continuous
phase of deliberative planning as long the demand
from the environment is low and the plan execution
succeeds. Figure 7 shows a plot of the positions of

Opponent too near
shifts to reactive planning

-3
ZSends state I\/l) %§§d|
DRI B
) e ,____,\(\ Ourl
\ Oppl
1 Receives plan
) Our2
0 Receives plan °
[e®
1 — v Opp2
MOVE \
Sends state
2 Hear: Reactive!
shifts to reactive planning
3

3 4 5 6 7 8 9 10

Figure 7: Position plot of defenders and attackers
during an attack.

defenders and attackers during the first part of the
execution of a real attack. Note how the reactive
planning before the plan is received makes Qur2 move
towards the ball. After the third plan step the sit-
uation becomes too demanding for Quri as Oppl is
approaching. OQurl communicates a shifts to reactive
planning, which controls the rest of the actions. Dur-
ing the attack the ball only enters the defense zone
of Oppl, thus Opp2 does not move towards the ball.
The experimental results show that deliberative and
reactive planning can be integrated successfully.

6 Conclusion

In this paper we have shown, that integration of
deliberative planning in real-time dynamic environ-
ments is feasible and efficient given an abstract rep-
resentation of the domain. We introduce a planner-
dependent approach for constructing a state abstrac-

tion used for the deliberative planning. Further, we
describe adaptive interleaving of reactive and delib-
erative planning, that in contrast to other previous
approaches (e.g. [6, 1, 10]) builds on different rep-
resentations of the domain. The paper contributes
to the current discussion on how to generate plans
in dynamic domains by proposing frequent depth
bounded re-planning as a means for integrating dy-
namic changes. We find this approach suitable for
highly dynamic real-time domains like the soccer do-
main or a flight control domain. For domains with
a low frequency of dynamic changes the price of re-
planning may be too high. In these domains plan
monitoring and elaboration may be more feasible [16].

Acknowledgments

This work was carried out while the first author was visiting
Carnegie Mellon University. This research is sponsored in part
by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL) under agree-
ment number F30602-97-2-0250. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense Ad-
vanced Research Projects Agency (DARPA), the Air Force Re-
search Laboratory (AFRL) or the U.S. Government.

References

[1] T. F. Bersano-Begey, P. G. Kenny, and E. H.
Durfee. Multi-agent teamwork, adaptive learn-
ing, and adversarial planning in robocup using
PRS architecture. submitted to the Robocup 97
Workshop, 1997.

[2] R. A. Brooks. A robust layered control system
for a mobile robot. Technical Report 864, Arti-
ficial Intelligence Laboratory, Massachusetts In-
stitute of Technology, 1985.

[3] J. G. Carbonell, J. Blythe, O. Etzioni, Y. Gil,
R. Joseph, D. Kahn, C. Knoblock, S. Minton,
A. Pérez, S. Reilly, M. M. Veloso, and X. Wang.
PRODIGY4.0: The manual and tutorial. Tech-
nical Report CMU-CS-92-150, Department of

[10]

Computer Science, Carnegie Mellon University,

1992.

E. H. Durfee and V. R. Lesser. Partial global
planning: A coordination framework for dis-
tributed hypothesis formation. [EEE Trans-
actions on Systems, Man, and Cybernetics,
21(5):1167-1183, September 1991. Special Issue
on Distributed Sensor Networks.

R. E. Fikes and N. J. Nilsson. STRIPS: A new
approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189—
208, 1971.

M. P. Georgeff and A. L. Lansky. Rective rea-
soning and planning. In Proceedings of AAAI
pages 677-682, 1987.

K. Z. Haigh. Situation-Dependent Learning for
Interleaved Planning and Robot Ezxecution. PhD
thesis, School of Computer Science, Carnegie
Mellon University, February 1998. CMU-CS-98-
108.

K. Z. Haigh and M. M. Veloso. Planning, execu-
tion and learning in a robotic agent. In R. Sim-
mons, M. Veloso, and S. Smith, editors, Proceed-
ings Fourth International Conference on Artifi-
ctal Intelligence Planning Systems, pages 120-
127. ATPS’98, AAAI Press, June 1998.

S. Kurihara, S. Aoyago, and R. Onai. Adap-
tive selection of reactive/deliberate planning for
the dynamic environment. In M. Boman and
W. Velde, editors, Multi-Agent Rationality, vol-
ume 1237 of Lecture Notes in Artificial Intelli-
gence, pages 112-127. 8th European Workshop
on Modelling Autonomous Agents in a Multi-

Agent World, MAAMAW’97, 1997.

V. Matellan and D. Borrajo. Combining clas-
sical and reactive planning: the ABC? model.
In R. Bergmann and A. Kott, editors, AIPS5’98
Workshop: Integrating Planning, Scheduling and
Ezecution in Dynamic and Uncertain Environ-
ments, pages 121-126. AIPS’98, The AAAI
Press, June 1998.

10

[11]

[12]

[13]

[14]

[15]

[16]

[17]

I. Noda. Soccer server: a simulator of robocup.
In Proceedings of Al symposium 95, pages 29—
34. Japanese Society for Artificial Intelligence,
December 1995.

I. Nourbakhsh. Interleaving Planning and Eze-
cution for Autonomous Robots. PhD thesis, De-
partment of Computer Science, Stanford Univer-

sity, Stanford, CA, 1997. STAN-CS-TR-97-1593.

A.E. F.Seghrouchni and S. Haddad. A recursive
model for distributed planning. In M. Tokoro,
editor, Proceedings Second International Con-

ference on Multi-Agent Systems, pages 307-314.
ICMAS-96, AAAI Press, 1996.

P. Stone and M. M. Veloso. Task decomposi-
tion and dynamic role assignment for real-time
strategic teamwork. Third International Con-
ference on Multi-Agent Systems (ICMAS’98),
1998.

M. M. Veloso, J. Carbonell, M. A. Pérez, D. Bor-
rajo, E. Fink, and J. Blythe. Integrating plan-
ning and learning: The PRODIGY architecture.
Journal of Ezxperimental and Theoretical Artifi-
cial Intelligence, 7(1):81-120, 1995.

M. M. Veloso, M. E. Pollack, and M. T. Cox.
Rationale-based monitoring for planning in dy-
namic domains. In R. Simmons, M. Veloso, and
S. Smith, editors, Proceedings Fourth Interna-
tional Conference on Artificial Intelligence Plan-
ning Systems, pages 171-179. AIPS’98, AAAI
Press, June 1998.

M. Wooldridge and N. R. Jennings. Towards a
theory of cooperative problem solving. In J. W.
Perram and J. Muller, editors, Distributed Soft-
ware Agents and Applications, volume 1069 of
Lecture Notes in Artificial Intelligence, pages
40-53. 6th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World,
MAAMAW’94, Springer-Verlag, 1994.

