Synthesis of Fault Tolerant Plans for Non-Deter ministic Domains*

Rune M. Jensen, Manuela M. Veloso, and Randal E. Bryant
Computer Science Department,Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh,PA 15213-3891, USA
{runej,mmv,bryant}@cs.cmu.edu

Abstract

Non-determinism is often caused by infrequent errors that
make otherwise deterministic actions fail. In this paper, we
introduce fault tolerant planning to address this problem. An
n-fault tolerant plan is guaranteed to recover from up to n er-
rors occurring during its execution. We show how optimal
n-fault tolerant plans can be generated via the strong uni-
versal planning algorithm. This algorithm uses an implicit
search technique based on the reduced Ordered Binary De-
cision Diagram (OBDD) that is particularly well suited for
non-deterministic planning and has outperformed most al-
ternative approaches. However, the OBDDs used to repre-
sent the blind backward search of the strong algorithm of-
ten blow up. A heuristic version of the algorithm has re-
cently been proposed but is incapable of dynamically guid-
ing the recovery part of the plan toward error states. To ad-
dress this problem, we introduce two specialized algorithms
1-FTP (blind) and 1-GFTP (guided) for 1-fault tolerant plan-
ning that decouples the synthesis of the recovery and non-
recovery part of the plan. Our experimental evaluation in-
cludes 7 domains of which 3 are significant real-world cases.
It verifies that 1-GFTP efficiently can handle non-local fault
states and demonstrates that it due to this property can out-
perform guided fault tolerant planning via strong planning.
In addition, 1-FTP often outperforms strong planning due to
an aggressive expansion strategy of the recovery plan.

I ntroduction

As often noted, classical planning with its deterministic ac-
tions, static environments, and fully observable states is too
restricted to represent most real-world domains. A simple
but effective extension is to consider non-deterministic do-
mains where actions may lead to one of several possible next
states. In this way, dynamic environments and alternative ac-

*We would like to thank Sylvie Thiebaux, Piergiorgio Bertoli,
Reid Simmons, and Anders P. Ravn for providing case study mate-
rial. We also wish to thank Bruce Krogh, Nicola Muscettola, and
reviewers for rewarding discussions and suggestions. The research
is sponsored in part by the Danish Research Agency and the United
States Air Force under Grants Nos F30602-00-2-0549 and F30602-
98-2-0135. The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of the Defense Advanced Research Projects Agency,
the Air Force, or the US Government.

tion behavior can be represented. Compared to MDPs, non-
deterministic models have two important advantages. First,
they are strictly less expressive which makes it possible to
solve larger problems, and second, they avoid the problem
of gathering statistical data to estimate probability distribu-
tions.

Until recently, though, efficient non-deterministic plan-
ning algorithms did not exist. Conditional planning (e.g.
Olawsci & Gini 1990) suffers from an exponential growth
of the plan with the number of sensing actions, and classi-
cal universal planning (Schoppers 1987) lacks an efficient
plan representation. One way to by-pass this problem is
to use reactive planners (e.g. Koenig & Simmons 1995).
However, such approaches are generally incomplete. The
introduction of implicit but complete search methods based
on the reduced Ordered Binary Decision Diagram (OBDD,
Bryant 1986) has changed this picture. In contrast to clas-
sical search approaches, OBDD-based search is particu-
larly well suited for non-deterministic domains. In addi-
tion, the OBDD constitutes a very compact data structure
for representing universal plans. The revived research on
non-deterministic planning has led to a large body of novel
work on universal planning (Cimatti, Roveri, & Traverso
1998; Jensen & Veloso 2000), adversarial planning (Jensen,
Veloso, & Bowling 2001), conformant planning (Cimatti &
Roveri 2000), planning with extended goals (Pistore, Bettin,
& Traverso 2001), and planning under partial observabil-
ity (Bertoli, Cimatti, & Roveri 2001). Despite the general
success of this research, it faces two challenges: 1) Non-
deterministic models of real-world problems are often too
abstract to allow solutions of high quality, 2) OBDDs repre-
senting the search frontier of blind backward search tend to
have a high growth rate in many planning domains.

In this paper, we address both of these problems. With re-
spect to the first, a key observation is that non-determinism
in real-world domains often is caused by infrequent errors
that make actions fail. In many cases, no actions can be guar-
anteed to succeed. For such domains, it may be hard or even
impossible to generate plans that recover from any combi-
nation of errors. We propose a new framework called fault
tolerant planning to handle this kind of non-determinism.
Fault tolerant planning assumes that actions have primary
and secondary effects. The primary effect models the usual
deterministic behavior of the action, while the secondary ef-

fect models the error effects. Fault tolerant plans are robust
to errors occurring during the execution of the plan. How-
ever, since errors are assumed to be rare, only a limited num-
ber of errors are allowed to happen during any execution of
the plan.

We are not aware of any previous work in Al-planning
where faults are modeled explicitly as secondary effects.
Fault tolerance, however, has been studied in control theory.
Basically, two different fault models have been developed:
a transition based (e.g. Chen & Patton 1999) and a state
based (e.g. Klein & Wehlan 1996). The focus in this work,
however, is on theoretical foundation rather than practical
application. Universal planning and fault tolerant planning
are also related. A fault tolerant plan is not as restricted
as a strong universal plan that requires that the goal can be
achieved in a finite number of steps independent of the num-
ber of errors. In many cases, a strong plan does not exist
because all possible errors must be taken into account. This
is not the case for fault tolerant plans, and if errors are in-
frequent, they still may be very likely to succeed. A fault
tolerant plan is also not as restricted as a Strong cyclic plan.
An execution of a strong cyclic plan may be infinite due to
cycles, but it will never reach states not covered by the plan.
Thus, strong cyclic plans also have to take all error combi-
nations into account. The only previous class of universal
plans being more relaxed than fault tolerant plans are weak
universal plans. An execution of a weak plan may reach
states not covered by the plan, it is only guaranteed that some
(maybe just one) execution exists that reaches the goal from
each state covered by the plan. Fault tolerant plans are al-
most always preferable to weak plans. Weak plans for most
non-deterministic domains are useless, because they give no
guarantees for all the possible outcomes of actions. For a
fault tolerant plan, any action may fail, but only a limited
number of fails can occur.

In this paper, we concentrate on n-fault tolerant planning.
An n-fault tolerant plan is guaranteed to reach a goal state as
long as at most n faults happen during execution. The ques-
tion is how to generate these plans. One might suggest to
use a classical planning system. Consider for instance syn-
thesizing a 1-fault tolerant plan in a domain where there is
a non faulting plan of length k and at most f error states of
any action. It is tempting to claim that a 1-fault tolerant plan
then can be found using at most & f calls to a classical plan-
ning algorithm. This analysis, however, is flawed. It only
holds for evaluating a given 1-fault tolerant plan. It neglects
that many additional calls to the classical planning algorithm
may be necessary in order to find a valid solution. Instead,
we need an efficient approach for finding plans for many
states simultaneously. This can be done by reducing fault
tolerant planning to strong universal planning by adding a
fault counter to the domain.

However, this approach does not address the second prob-
lem of OBDD-based planning which is that the blind back-
ward search used by the strong universal planning algorithm
tends to be inefficient. A fruitful idea seems to be to guide
the search using a recent best-first version of strong plan-
ning (Jensen, Veloso, & Bryant 2003). The approach works
well if error states are local and falls within the fraction

of the state space traversed by the best-first search. How-
ever, faults are often caused by permanent mal-functions that
make error states non-local. In this case, the search must
be actively guided toward the error states. For this reason,
we introduce two specialized algorithms 1-FTP (blind) and
1-GFTP (guided) for 1-fault tolerant planning that decou-
ples the synthesis of the recovery and non-recovery part of
the plan. Our experimental results show that 1-GFTP effi-
ciently can handle non-local error states and may have dra-
matic performance gains compared to guided 1-fault toler-
ant planning via strong planning. In addition, our exper-
iments indicate that even an unguided version of 1-GFTP
called 1-FTP often outperforms 1-fault tolerant planning via
strong planning, due to its aggressive expansion strategy of
the recovery part of the plan. The experimental evaluation
includes 7 domains: DS1, PSR, BeamWalk, PowerPlant, LV,
8-puzzle, and SIDMAR. Of these DS1, PSR, and SIDMAR
are real-world case studies.

The paper is organized as follows. We first give prelimi-
naries on heuristic OBDD-based search techniques. We then
define n-fault tolerant planning and describe fault tolerant
planning via strong planning and the two algorithms 1-FTP
and 1-GFTP. Finally, we present experimental results and
draw conclusions.

OBDD-based Search Techniques for
Non-Deter ministic Planning

An OBDD is rooted DAG representing a Boolean function
on a set of linearly ordered Boolean variables. It has one
or two terminal nodes labeled 1 or 0, and a set of variable
nodes. Each variable node is associated with a Boolean
variable and has two outgoing edges low and high. Given
an assignment of the variables, the value of the Boolean
function is determined by a path starting at the root node
and recursively following the high edge, if the associated
variable is true, and the low edge, if the associated vari-
able is false. The function value is true, if the label of the
reached terminal node is 1; otherwise it is false. The graph
is ordered such that all paths in the graph respect the order-
ing of the variables. An OBDD representing the function
f(.Z'l,.'L'Q,.CL'3) =1 Axs V w1 Azao ANx3 V 1 A3 is
shown in Figure 1. OBDDs are canonical due to two reduc-
tion rules that remove unnecessary tests and reuse structure.
Given a “good” ordering of the variables, the reductions may
lead to an exponential space saving compared to the truth-
table representation of the function. Such orderings are of-
ten easy to find in practice. Interestingly, the compactness of
OBDDs is inexpensive in terms of their accessibility. Equiv-
alence and satisfiability tests on OBDDs take constant time
and binary synthesis z ® y has time and space complexity
O(|z||y|) (Bryant 1986). Robust software packages exist for
manipulating OBDDs. In these packages, graphs of several
OBDD:s are represented by a multi-rooted OBDD.

OBDDs were originally applied for verification of com-
binational circuits. Later McMillan 1993 introduced an
OBDD-based method coined symbolic model checking for
verification of sequential circuits and software. The lat-
ter technique forms the foundation of OBDD-based non-

T2

™

|
|
|
| T3
|
|

e
1] [

Figure 1: An OBDD representing the function
f(ﬂfl,IL'g,.’IJ;g) =21 AN Xy V X1 AN X A I3 V x1 A 3.
High and low edges are drawn with solid and dashed lines,
respectively.

deterministic planning. However, in contrast to symbolic
model checking, non-deterministic planning is a synthesis
problem rather than a decision problem. This is an important
reason for choosing OBDDs rather than SAT approaches to
solve these problems. While SAT techniques recently have
been very successful in formal verification, they lack an effi-
cient data structure for representing non-deterministic plans.

By using Boolean vectors to represent states and ac-
tions, an OBDD can encode a set of states and the transi-
tion relation of a search space by representing their char-
acteristic function. Assume two sets of Boolean vectors
¢ and @ are used to represent the states and actions of a
non-deterministic domain. Any subset of states P and ac-
tions @ can then be represented by Boolean functions P (%)
and Q(&). Similarly, the characteristic function T'(v, a@, v"),
where unprimed and primed variables denote current and
next states, can be used to represent the transition relation
of a search space. Union, intersection, and complement of
sets corresponds to disjunction, conjunction and negation
on their characteristic function. In the sequel, we will not
distinguish between set operations and their corresponding
Boolean operations.

The core operation is to find the set of state-action pairs
(SAs) where the action applied in the state may cause a tran-
sition to a state in C. This can be done by computing the
preimage of C

PREIMG(C) = 37'. T(v,a,7") A C(T").

A common problem when computing the preimage is that
the intermediate OBDDs tend to be large compared to the
OBDD representing the result. Another problem is that the
transition relation may be very large if it is represented by a
single OBDD. In symbolic model checking, one of the most
successful approaches to solve this problem is transition re-
lation partitioning. For planning problems, where each tran-
sition normally only modifies a small subset of the state
variables, the suitable partitioning technique is disjunctive
partitioning (Clarke, Grumberg, & Peled 1999). In a dis-
junctive partitioning, unmodified next state variables are un-
constrained in the transition expressions and the abstracted
transition expressions are partitioned such that each partition

only modifies a small subset of the variables. Let 773 denote
the modified next state variables of partition P in a parti-
tion Py, P,---, P,. The preimage computation may now
skip the quantification of unchanged variables and operate
on smaller expressions

PREIMG(C) = \/ (3m;.P,~(17, &,1}) A C ()i /77,)

i=1

where [r73; /mi}] substitutes 173; with 7} in C(7).

In guided non-deterministic planning, the SAs in the
preimage are divided according to a heuristic function h.
For a state s, h(s) estimates the minimum number of actions
necessary to reach s from the initial state. Each partition of
the preimage contains SAs with identical h-value. It has
been shown how this can be accomplished by associating
each transition with the change dh it causes in the value of
the heuristic function (in forward direction) and construct-
ing a disjunctive branching partitioning where each partition
only contains transitions with identical 64 (Jensen, Veloso,
& Bryant 2003).

Let §h; denote oA of partition P;. Further, let C be a set of
states with identical h-value h.. By computing the preimage
separately for each partition

PREIMG;(C) = 3m; . P;(7,a,m;) A C(0)[m;/m],

we split the preimage of C into n components
PREIMG,- - -,PREIMG,, where the value of the heuris-
tic function for all states of SAs in PREIMG; equals
he — Oh;.

Fault Tolerant Planning

A fault tolerant planning domain is similar to a classical
planning domain. However, in addition to the primary ef-
fect of actions, we add a secondary effect that describes the
outcome of a failure. Since an action often can fail in many
different ways, we allow the secondary effect to lead to one
of several possible next states. Thus, secondary effects are
non-deterministic.

Definition 1 (Fault Tolerant Planning Domain) A fault
tolerant planning domain is a tuple (S, Act,—,~)
where S is a finite set of states, Act is a finite set of
actions, - C S x Act x S is a deterministic transition
relation of primary effects, and ~C S x Act x S is a
non-deterministic transition relation of secondary effects.
Instead of (s,a,s’) €— and (s,a,s’) €~ we write
s = s’ and s ~> s', respectively.

An action a is applicable in a state s iff s = s’ for some
state s’. An n-fault tolerant planning problem is similar to
a classical planning problem with a single initial state and a
set of goal states.

Definition 2 (IV-Fault Tolerant Planning Problem) An
n-fault tolerant planning problem is a tuple (D, s¢, G, n)
where D is a fault tolerant planning domain, sq € S is an
initial state, G C S is a set of goal states, and n : N is an
upper bound on the number of faults that can occur during
a plan execution.

An n-fault tolerant plan is obviously not a single sequence
of actions since faults cause the plan to branch. Instead, we
define it to be a function 7 : S x {0,1,---,n} — 24¢,
where a € 7(s,e) implies that a is applicable in s. The
intuition is that for a current state s where e faults have oc-
curred, m(s,e) is a set relevant actions for reaching a goal
state. Notice that this definition assumes that both states and
faults are observable. In order to define valid fault tolerant
plans, we introduce the execution of an n-fault tolerant plan.

Definition 3 (Execution) Let P = (D, sq,G,n) be a n-
fault tolerant planning problem and let 7 be an n-fault tol-
erant plan for P. An execution of « is a possibly infi-
nite sequence (qo, o) {g1,€1) (go,e2)--- of pairs in S x
{0,---,n + 1} such that, go = s, e = 0, and for all
(gi, e;) in the sequence

o either (g;, e;) is the last pair in the sequence in which case
no action a exists such that a € m(g;, e;), or

e a € m(gi,e;), and
-4 5 di+1, €i+1 = €;, OF
a
- @~ Qiy1, €141 —€; + 1.
We define the length of a finite execution gp; - - - p,, t0

be m + 1. An execution is called successful iff e < n for
any pair (s, e) in the execution sequence.

Definition 4 (Valid N-Fault Tolerant Plan) An n-fault
tolerant plan for a planning problem (D, sq, G, n) is valid
iff all successful executions are finite and terminate in a
goal state.

Definition 5 (Optimal N-Fault Tolerant Plan) An n-fault
tolerant plan for a planning problem (D, so, G, n) is optimal
iff it is valid and its longest successful execution is minimal.

Fault Tolerant Planning Algorithms

As described in the introduction, n-fault tolerant planning
can be reduced to strong universal planning. A universal
planning domain is a tuple (S, Act,—) where S and Act
have their usual meaning and - C S x Act x S is a non-
deterministic transition relation of action effects. Thus, in
a universal planning domain we do not distinguish between
primary and secondary effects of actions. A universal plan-
ning problem is a triple (D, s¢, G), where D is a universal
planning domain, so € S is an initial state, and G C S'is
a set of goal states. A strong universal plan is a mapping of
states to sets of actions guaranteed to reach a goal state in a
finite number of steps. An algorithm for synthesizing strong
universal plans is shown in Figure 2. The function STATES
projects the actions in a set of SAs

STATES(Q) = {s | Ja € Act.(s,a) € Q}

The algorithm builds a strong universal plan incrementally
during a blind backward search from the goal states to the
initial state. In each iteration (1.2-8), a precomponent of the
covered states C' is computed and added to the plan. The
precomponent is the SAs in the precomponent of C' pruned
for SAs in the precomponent of the complement of C'. These
SAs are pruned since they might lead to a state outside of C'
and thus do not guarantee progress.

function SP(sq, G)

1 U+0,C«G

2 whilesg ¢ C

3 U, + PREIMG(C) \ PREIMG(C)
4 U,+U,\ CxAct

5 if U, = 0 then return failure
6 else

7 U« UUU,

8 C + CUSTATES(U,)
9 returnU

Figure 2: A strong universal planning algorithm.

An n-fault tolerant planning problem (Dy,so,,Gr,ny)
where Dy = (Sy, Acty, —5,~»y) is transformed into a uni-
versal planning problem (D, s¢, G) where

e D =(S, Act,—),s.t.
—S:Sfx{(),---,n}
— Act = Acty
— (s,e) B (s’ €)=
(s3;s'Ne'=e) V (s~ 3;sNe =e+1)
e 50 = (so,,0)
* G={(g,e)| g€ Gy, e<ny}.

Notice that the expression ¢’ = e + 1 is false if e = n due
to the restriction on the domain of the fault counter. Thus,
the universal planning domain exactly models all successful
executions of any possible n-fault tolerant plan. A strong
universal plan U for the transformed problem is a valid n-
fault tolerant plan n(s,e) = {a]|{(s,e),a) € U} since it
is guaranteed to have finite executions terminating in a goal
state. The solution is also optimal since the strong algorithm
returns plans with minimum worst case execution length.

The blind search algorithm in Figure 2 applied to an n-
fault planning problem is called n-FTPg. As discussed
in the introduction the performance of blind OBDD-based
search in many practical non-deterministic planning do-
mains is limited. For this reason, we also consider a guided
version of n-FTPg called n-GFTPg. This algorithm is sub-
stituting the blind search algorithm of n-FTP g with the best-
first heuristic search algorithm described in (Jensen, Veloso,
& Bryant 2003). This algorithm uses a heuristic estimate of
the distance to the initial state to guide the search. In each
iteration, a complete but partitioned precomponent is com-
puted using a disjunctive branching partitioning. Only the
SAs in the precomponent with lowest h-value are added to
the strong plan.

We may expect this algorithm to work well when sec-
ondary effects are local. In practice, however, secondary
effects may be permanent mal-functions requiring consider-
able recovery activity. Indeed in theory, secondary effects
may be uncorrelated with primary effects. This problem
calls for specialized algorithms where the planning for pri-
mary and secondary effects is decoupled. We concentrate
on 1-fault tolerant planning and introduce two algorithms 1-
FTP using blind search and 1-GFTP using guided search.

The 1-FTP algorithm is shown in Figure 3. Notice that

function 1-FTP(sg, G)

1 Fle0;C' G

2 FO+0,C%« @

3 while so ¢ C*

Il « PREIMG(C!) \ C! x Act

f*« fI\ PREIMG,(C?)

while f1 =0
1% < PREIMG(C?) \ C° x Act
if f© = 0 then return failure
FO « FOy g0

10 C° « C° U STATES(f?)

11 f' < f1\ PREIMG,(CO)

12 F'< Flyft

13 C!' « C' U STATES(f1)

14 return (F!, F°)

O©oo~NO O &~

Figure 3: The 1-FTP algorithm.

it takes a 1-fault tolerant planning problem as input (not
its universal dual). The functions PREIMG and PREIMG,
compute preimages of the primary and secondary effects,
respectively. 1-FTP returns a valid 1-fault tolerant plan rep-
resented by two plans F'!' and F9. F' is robust to one fault
while F is a recovery plan. Let 7é(s) = {a|(s,a) € F}
fori = 0, 1. The corresponding fault tolerant plan is then

m0(s) : e=0

”(S’e):{wl(s) L e=1

1-FTP performs a backward search from the goal states that
alternate between blindly expanding F' and F© such that
failure states of F'* always can be recovered by FO. Initially
F' and F° are assigned to empty plans (1.1-2). The variables
C* and C° are states covered by the current plans in F'* and
FO, They are initialized to the goal states since these states
are covered by zero length plans. In each iteration of the
outer loop (1.3-13), F! is expanded with SAs in f1 (. 12-
13). First, a candidate f! is computed. It is the preimage of
the states in F'! pruned for SAs of states already covered by
F1 (1.4). The variable f! is assigned to f! restricted to SAs
for which all error states are covered by the current recovery
plan (1.5). If f! is empty the recovery plan is expanded in
the inner loop until f! is nonempty (1.6-11). If the recovery
plan at some point has reached a fixed point and f* is still
empty, the algorithm terminates with failure, since in this
case no recovery plan exists (1.8).

1-FTP expands both F° and F! blindly. An inherent
strategy of the algorithm, though, is not to expand F° more
than necessary to recovery faults of F'. This is not the case
for n-FTPg that for n = 1 at least will expand states with
e = 1 as much as states with e = 0. The aggressive strat-
egy, on the other hand, makes 1-FTP suboptimal as the ex-
ample in Figure 4 shows. In the first two iterations of the
outer loop, (p2,b) and (p1,b) are added to F and nothing
is added to FO. In the third iteration of the outer loop, F°
is extended with (p2, b) and (g2, a) and F* is extended with
(g2,a). In the last two iterations of the outer loop, (g1, a)

q1 a g2

—>0.

a7 a
7b

4

L g

|

|a
b b
b p2
Figure 4: A problem with a single goal state g showing that
1-FTP may return suboptimal solutions. Dashed lines in-
dicate secondary effects. Notice that action a and b only

have secondary effects in ¢ and sq, respectively. In all other
states, the actions are assumed always to succeed.

and (so, a) are added to F'*. From this, only a single 1-fault
tolerant plan can be extracted with F'' equal to the sequen-
tial plan aaa. However, this plan has a worst case execution
length of 4 while the plan bbb with a proper recovery plan
has a worst case length of 3.

Despite the different search strategies applied by 1-FTP
and 1-FTPg they both perform blind search. A more in-
teresting algorithm is a guided version of 1-FTP called 1-
GFTP. The over all design goal of 1-GFTP is to guide the
expansion of F'' toward the initial state and guide the ex-
pansion of F° toward the failure states of F'1. However,
this can be accomplished in many different ways. Below we
evaluate three different strategies. For each algorithm, F'!
is guided in a best-first manner toward the initial state using
the approach employed by n-GFTPg.

The first strategy is to assume that failure states are local
and guide F© toward the initial state as well. The resulting
algorithm is similar to 1-GFTPg and has low performance.
The problem is that the best-first approach causes F° only to
cover a narrow beam of states in the search space. Any faults
causing just a slight state change tend not to be covered by
FO°. The strategy can be improved by widening the beam by
taking the search depth into account. However, this does not
provide a satisfactory solution for non-local states.

The second strategy is ideal in the sense that it dynami-
cally guides the expansion of F° toward error states of the
precomponents of F'1. This can be done by using a special-
ized OBDD operation that splits the precomponent of F°
according to the Hamming distance to the error states. The
theoretical complexity of the specialized algorithm for an
OBDD FE representing the error states and an OBDD P rep-
resenting the precomponent of F! is exp(|E||F|). Due to
the dynamic programming used by the OBDD package the
average complexity may be exponentially lower. Unfortu-
nately, this does not seem to be the case in practice.

The third strategy is chosen for 1-GFTP and employs an
indirect guidance. It expands F© blindly but prunes SAs
from the precomponent of F° not used to recover error states
of F'*. We expect this strategy to work well even if the abso-
lute position of error states is non-local. However, the strat-
egy assumes that the relative position of error states is local
in the sense that the SAs in F° in expansion i of F'! are rel-

evant for recovering error states in expansion i + 1 of F*.
In addition, we still have an essential decision problem to
solve: to expand F'! or F°. There are two extremes: 1) com-
pute a complete partitioned backward precomponent of F'!,
expand F° until some SAs in the precomponent of F'! has
recovered error states, and add the SAs with recovered errors
from the partition with least h-value to F'!, or 2) compute a
complete partitioned backward precomponent of F'!, expand
FO until some SAs in the partition with lowest h-value has
recovered error states and add these SAs to F'*. It turns out
that neither of these extremes work well in practice. Instead,
we consider a strategy somewhere in between. The idea is
to spent half of the last expansion time on recovering error
states of the SAs in the partition with lowest h-value and,
in case no such SAs exist, iteratively add SAs from parti-
tions with higher h-value. The resulting algorithm is shown
in Figure 5. By convention bold variables denote maps with

function 1-GFTP(sg, G)

1 F'«§; Cllhy] « G

2 FO+0,C°« G

3 t«0

4 while so ¢ C*

5 ts < tepu

6 PC «+ PReECoMP(C!)

7 L fl«0

8 £0 « emptyMap

9 10

10 while fL =P Ai < |PC|

11 i—i+1 tet/2

12 f1+ f1 U PC[i]

13 (£, f1) « EXPANDTIMED(fL, £2,CO,t)
14 if f1 = @ then

15 (£, f1) + EXPANDTIMED(f1, f0, C?, 00)

16 t<«topy —Ts

17 if f1 = (then return failure

18 f9% «+ PRUNEUNUSED(f?, f1)

19 FO« FOU f9 C° « C° U STATES(f?)

20 F'« Flyujt

21 forj=1toi

22 Cl[h;] + C'[h;] U STATES(f! N PC[h;])
23 return (F1, F°)

Figure 5: The 1-GFTP algorithm.

either h-values or integers as keys and sets of states or SAs
as values. The keys of maps are sorted ascendingly. For a
map M, M[k] is the value associated with key &, |M| is the
current number of entries in M and M is the union of all the
entries in M. All variables of a function are local including
its arguments. The instantiation of F'! and F° of 1-GFTP is
similar to 1-FTP except that the states in C'* are partitioned
with respect to their associated h-value. Initially, C*[hgoa]
is assigned to the goal states. 1 In each iteration of the main
loop (1.4-22), the precomponents f! and f° are computed

1To simplify the presentation, we assume that all goal states
have similar h-value. A generalization of the algorithm is trivial.

and added to F* and F©. First, the start time ¢, is logged by
reading the current time t¢py (1.5). Then a complete parti-
tioned precomponent candidate PC of F'* is computed by
PRECOMP (1.6). For each entry in C', PRECOMP adds the
preimage for each branching partition (we assume there are
m of these) to PC.

function PREComMP(C?)
1 PC « emptyMap

2 fori=1to|C!|

3 forj=1tom

4 SA « PREIMG;(C![h;])
5 SA + SA\ Cl x Act
7 returnPC

The inner loop (1.10-13) of 1-GFTP expands the two can-
didates f! and fO for f! and f°. In each iteration, a
new partition of PC is added to f! (1.12).2 The function
EXPANDTIMED then expands fg’.. In iteration 4, the time
out bound of the expansion is ¢/2*. EXPANDTIMED returns
early if 1) a precomponent f1 in the candidate f! is found
where all error states are recovered (1.5 and 1.12), or 2) f9
has reached a fixed point. The preimages added to £ is kept
in amap £2 in order to prune SAs not used for recovery.

function ExPANDTIMED(f1, £2, C?,¢)
1 t;«tcpy
Oldf? « L
i+ |f2]
recovS + STATES(f0) U C°
ft « f1\ PREIMG,(recovs)
while f1 =0 A OldfS # fO A topy —ts < t
Oldf? + f2
t1+1
recovS + STATES(f0) U C°
10 p « PREIMG(recovS)
11 £hi] « p \ recovS x Act
12 f'« fl\ PREIMG,(recovs)
13 return (£f0, f1)

Eventually f1 may be equal to PC but still not contain a re-
coverable precomponent f1. In this case 1-GFTP expands
72 (1.15) untimed. If f2 has reached a fixed point but no
recoverable precomponent f! exists, no 1-fault tolerant plan
exists and 1-GFTP returns with failure (1. 17). Otherwise,
f2 is pruned for SAs of states not used to recover the SAs
in f' (1.18). This pruning is computed by PRUNEUNUSED
that traverses backward through the preimages of £ and
marks states that either are error states of SAs in f!, or states
needed to recover previously marked states.

O©OoOO~NO UOlhhWwWN

function PRUNEUNUSED(f?, f1)

err < SAIMG,(f1)

img < 0; marked < ()

fori=|fto1l
£21i] + £2[d] N ((err U img) x Act)
marked < marked U STATES(f0[i])

O b wN -

2Recall that PC is traversed ascendingly such that the partition
with lowest h-value is added first.

6 img < SAIMG(fO[i])
7 return f0 N (marked x Act)

The function SAIMG computes next states of primary effects
of a set of SAs

SAIMG(S4) = (35,5. SA(#,8) AT(7,3, 17’)) & /4.

Similarly, SAIMG, computes next states of secondary ef-
fects (error states) of a set of SAs. The updating of F'! and
FO of 1-GFTP (1.19-22) is similar to 1-F TP, except that C*
is updated by iterating over PC and picking SAs in f1. No-
tice that in this iteration h; refers to the keys of PC.

Experimental Evaluation
The algorithms 1-FTP, 1-GFTP, 1-FTPg, and 1-GFTPg
have been implemented in a new OBDD-based search en-
gine called OBS (Jensen 2003). OBS is implemented
in C++/STL and uses the BuDDy OBDD-package (Lind-
Nielsen 1999). All experiments are carried out on a Linux

10000 T T T T T T T T T

1000 o

100 ¢

CPU Time (sec)

10

1 L L L L L L L L L
20 40 60 80 100 120 140 160 180 200 220
Number of Boolean State Variables

le+07 T T T T T T T T T

1-FTP ——
1-FTPS --x---

1e+06 P

100000 ¢

Plan size (OBDD nodes)

10000

1000 SN L L L L L L L L
20 40 60 80 100 120 140 160 180 200 220

Number of Boolean State Variables

Figure 6: Results of the PSR problems.

RedHat 7.1 PC with kernel 2.4.16, 500 MHz Pentium Il
CPU, 512 KB L2 cache and 512 MB RAM. We represent
the parameter setting of the BuDDy package by the tuple
(n, ¢, t), where n is the number of allocated OBDD nodes in
the unique table, ¢ is the number of allocated OBDD nodes
in the operator caches, and ¢ is the total time in seconds
spent by the package on memory allocation. We measure
the size of plans and transition relations as the total number
of OBDD nodes used by the OBDDs to represent them.

Unguided Search

DS1 is a description of the SMV code representing the Liv-
ingstone model used by the Remote Agent for the Deep
Space 1 probe. It is a model of the electrical system of
the spacecraft. An action is a bus command. Primary ef-
fects model the state change given that all units work cor-
rect. Secondary effects assumes that two of the four fail-
ures tested in the experiment happens. The domain has
been written for 1-FTP. The encoding has 84 Boolean state
variables. The BuDDy parameters of the experiment are
(1M,100K,0.31). A partitioned transition relation of size
104881 is computed in 0.42 seconds. The size of the solu-
tion is 535 and the total CPU time is 1.15 seconds. The ex-
periment shows that OBDD-based fault tolerant planning is
mature to be applied on significant real-world problems. In
addition, it demonstrates that even 1-fault tolerance impose
strong restrictions on a physical system. No 1-fault tolerant
plan exists for the problem if all of the original four failures
are considered.

okmSV

ml A okml

oktl okbl p1 m4

- e
| ok2 okb2 pp |okm4
|

|

| oki3 okb3 b3 b

r- >«
f=3 1 Ok4 Okbd pa |OkmS
|

Figure 7: The power plant domain. An open valve is drawn
solid and allows water or steam to flow through it. In the
depicted state, a failure of heat exchanger 1 is a assumed
just to have happened.

PSR is another real-world domain for power supply
restoration. It is a power grid with feeders and switches.
The actions consist of opening and closing switches. The
secondary effect is that they break and get stuck in their
current position. We compare the performance of 1-FTP
and 1-FTPg in two versions of the domain. The first is the
simple domain described in (Bertoli et al. 2002). With the
OBDD package initialization (1M/, 700K, 0.98), 1-FTP and
1-FTPg solve this problem in 6.8 and 11.25 seconds, re-
spectively. The second version is parameterized and is an
n x 2 matrix of switches and feeders connected by lines.

TFTP T-FTPs
#vars || Tiotar | |80l | Tiotar | |80l
40 6.1 | 65K 8.7 | 62K
80 || 157.8 | 1.2M | 189.4 | 1.5M

Figure 8: Results of the power plant experiment. The total
CPU time and plan size is given by T},t4; and |sol|, respec-
tively. The number of Boolean state variables is given by
#vars.

For the result shown in Figure 6, the OBDD package param-
eters are (15M, 500K, 3.38). 1-FTP performs significantly
better than 1-FTPg for this problem. Interestingly, the per-
formance difference is not reflected in the plan sizes. How-
ever, this may be an artifact caused by the fact that the plan
size for 1-FTP is a sum of the size of two OBDDs, while the
plan size for 1-FTPg is the size of a single OBDD.

The powerPlant domain is shown in Figure 7. It is a sim-
ple model of a nuclear power plant consisting of turbines,
heat exchangers, and valves. All units may break perma-
nently. The task is to execute the control actions in order to
satisfy the safety and progress requirements of the plant. A
1-fault tolerant plan exists but only for simple mal-functions.
We compare the performance of 1-FTP and 1-FTPg in two
versions of the domain. The first considers controlling a sin-
gle power plant, while the second considers controlling two
power plants simultaneously. The results are shown in Fig-
ure 8. In both experiments, the parameters of the OBDD
package are (15M,500K,3.4). 1-FTP has a slightly better
performance than 1-FTPg. However, both algorithms suf-
fer from a large growth rate of the OBDDs representing the
frontier of the backward search.

The beamWalk domain considers a robot walking on a
beam. However, it can fall down in each step on the beam.
It represents a worst case scenario for 1-FTP and 1-FTPg
since a fault in the last step to reach the goal causes a transi-
tion to the state furthest away from the goal. Both algorithms
must iterate over all states before a solution is found. The
results are shown in Figure 9. As expected, both algorithms

10000 T T T T T T T T T

1000 ¢ A

CPU Time (sec)
=
o
o
T

10 ¢

0 2 4 6 8 10 12 14 16 18 20
Number of Boolean State Variables

Figure 9: Results of the BeamWalk experiments.

have a limited performance in this domain. Again, however,
we observe a slightly better performance of 1-FTP.

Guided Search

The LV domain has been designed to demonstrate the dif-
ference between 1-GFTP and 1-GFTPg. Itisann x n grid
world with initial state (0, n — 1) and goal state (n/2,n/2).
The actions are up, down, left, and right. Abovethey = z
line actions may fail causing « and y to be swapped. Thus,
error states are mirrored in the y = x line. An9 x 9 prob-
lem of the domain is shown in Figure 10. The essential

Figure 10: The LV domain.

property is that the relative site of error states is local while
their absolute site is not. This is the assumption made by
1-GFTP, but not 1-GFTP g that requires error states to have
local absolute site. The heuristic value of a state is the Man-
hattan distance to the initial state. The BuDDy parameters
are (5M,500K,1.4). The results are shown in Figure 11.
As depicted, the performance of 1-GFTPg degrades very

160 T T T T T T T T

T
1-GFTP —+—
140 | ’,* 1-GFTPs -]

/
120 B

=
1S)
=]
T
I

80 |- M R

CPU Time (sec)

60 | B
/
40

20 |-

H L L L L L
0 20 40 60 80 100 120 140 160 180 200
Vertical and Horizontal Board Dimension

Figure 11: Results of the LV experiments.

fast with n, due to the misguidance of the heuristic. Its total
CPU time is more than 500 seconds after the first three ex-
periments. 1-GF TP is fairly unaffected by the error states.
To explain this consider how the backward search proceeds
from the goal state. The precomponents of F'* will cause
this plan to beam out toward the initial state. Due to the rel-
ative locality of error states, the pruning of F° will cause F©
to beam out in the opposite direction. Thus both F'! and F°
remains small during the search.

The 8-puzzle further demonstrates this difference be-
tween 1-GFTP and 1-GFTPg. We consider a non-

deterministic version of the 8-puzzle where the secondary
effects are self loops. Thus, error states are the most lo-
cal possible. We use the usual sum of Manhattan distances
of tiles as an heuristic for the distance to the initial state.
The experiment compares the performance of 1-FTP, 1-
GFTP,1-FTPg, and 1-GFTPg. The BuDDy parameters are
(1M,100K,0.29). The number of Boolean state variables is
35 in all experiments. The results are shown in Figure 12.
Again, 1-FTP performs substantially better than 1-FTPg.

100 T T T T T T T T
1-FTP —+— -
1-GFTP - x
1-FTPs ------
1-GFTPs & x

10 |

CPU Time (sec)

0.1 L L L L L L L L
4 6 8 10 12 14 16 18 20 22

Length of Minimum Deterministic Solution
1le+06 T T T T T T T T

1-FTP —+—
1-GFTP -
1-FTPs -
1-GFTPs

100000 ¢

10000 ¢

Plan Size (OBDD nodes)

1000 £ 7 =]

P —
B
1

100 I
4 6 8 10 12 14 16 18 20 22

Length of Minimum Deterministic Solution

Figure 12: Results of the 8-puzzle experiments.

The guided algorithms 1-GFTP and 1-GFTPg have much
better performance than the unguided algorithms. Due to lo-
cal error states, however, there is no substantial performance
difference between these two algorithms.

In our final domain SIDMAR, we study the robustness
of 1-GFTP and 1-GFTPg to the kind of non-local errors
found in real-world domains. The domain is shown in Fig-
ure 13 and is an abstract model of a steel producing plant
of SIDMAR in Ghent, Belgium. The primary effects of ac-
tions are to move, lift and perform treatments of ladles on
machines. The secondary effects are that machines break
permanently and moves fail. We consider casting two la-
dles of steel. The heuristic is the sum of machine treatments
carried out on the ladles. The experiment compares the per-
formance of 1-FTP, 1-GFTP, 1-FTPg, and 1-GFTPg. The
BuDDy parameters are (5M,500K,1.41). The number of
Boolean state variables is 47 in all experiments. The results
are shown in Figure 14. Missing data points indicates that
the associated algorithm spent more than 500 seconds trying

Converter 1
O Machine 1 Machine 3
Converter 2

O Machine 4

| Storage Continuous
place D casting
! machine

I Holding ! |
| (O)
Figure 13: Layout of the SIDMAR steel plant.

1000 T T T T T T T

1-FTP —+—
1-GFTP ---x---
1-FTPs -
1-GFTPs @

100 ¢

CPU Time (sec)

10 ¢

6 8 10 12 14 16 18 20 22
Length of Minimum Deterministic Solution

1e+06 T T T T T T T

1-FTP —+—
1-GFTP -
1-FTPs -~

1-GFTPs @

100000

XO

10000

Plan Size (OBDD nodes)
ia]

1000 L L L L L L L
6 8 10 12 14 16 18 20 22

Length of Minimum Deterministic Solution

Figure 14: Results of the SIDMAR experiments.

to solve the problem. The only algorithm with good perfor-
mance is 1-GFTP. Thus, in practical applications 1-GFTPg
can be highly sensitive to non-local error states. Also notice
that this is the only domain where 1-FTP does not outper-
form 1-FTPg.

Conclusions and Future Work

In this paper, we have introduced a new planning framework
called fault tolerant planning. An n-fault tolerant plan can
handle up to n faults during execution caused by rare sec-
ondary effects of actions. Strong and strong cyclic solu-
tions seldom exists for such problems and weak solutions
are mostly useless in practice. By adding a fault counter to
the domain, we show how optimal n-fault tolerant planning
can be reduced to strong universal planning. A major dis-
advantage of the strong algorithm is that it performs a blind
search. Both in artificial and real-world domains this ap-
proach often leads to a blow-up of the OBDDs representing
the search frontier. A guided version of the strong algorithm
has recently been developed. However, for fault tolerant
planning the recovery part of the plan should be dynami-
cally guided toward error states while the non-recovery part
should be statically guided toward the initial state. In two
specialized algorithms for 1-fault tolerant planning 1-FTP
and 1-GFTP, we decouple the synthesis of the recovery and
non-recovery part of the plan. 1-FTP uses a blind search
strategy, while 1-GFTP is guided. Our experimental results
show that 1-GFTP consistently outperforms its strong al-
gorithm counter part 1-GFTPg and in particular is robust
to non-local error states. Our investigation of real-world do-
mains suggests that such error states are frequent and caused
by permanent failures. Despite the blind search of 1-FTP, it
often outperforms its strong algorithm counter part 1-FTPg
since it may avoid producing large recovery plans.

In the near future, we plan to formally prove complete-
ness of 1-FTP and 1-GFTP. More long term goals includes
a generalization of fault tolerant domains to discrete event
systems with exogenous and endogenous events and a de-
velopment of tools to analyse fault tolerant systems.

References

Bertoli, P.; Cimatti, A.; Slanley, J.; and Thiébaux, S. 2002.
Solving power supply restoration problems with planning
via symbolic model checking. In Proceedings of the 15th
European Conference on Atrtificial Intelligence ECAI’02.

Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Conditional
planning under partial observability as heuristic-symbolic
search in belief space. In Pre-Proceedings of the 6th Euro-
pean Conference on Planning (ECP-01), 379-384.

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
8:677-691.

Chen, J., and Patton, R. J. 1999. Robust Model-Based
Fault Diagnosis for Dynamic Systems. Kluwer Academic
Publishers.

Cimatti, A., and Roveri, M. 2000. Conformant planning via
symbolic model checking. Journal of Artificial Intelligence
Research 13:305-338.

Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Strong
planning in non-deterministic domains via model check-
ing. In Proceedings of the 4th International Conference on
Artificial Intelligence Planning System (AIPS’98), 36-43.
AAAI Press.

10

Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model
Checking. MIT Press.

Jensen, R. M., and \Veloso, M. M. 2000. OBDD-
based universal planning for synchronized agents in non-
deterministic domains. Journal of Artificial Intelligence
Research 13:189-226.

Jensen, R. M.; Veloso, M. M.; and Bowling, M. 2001.
Optimistic and strong cyclic adversarial planning. In Pre-
proceedings of the 6th European Conference on Planning
(ECP’01), 265-276.

Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2003.
Guided symbolic universal planning. In Proceedings of the
13th International Conference on Automated Planning and
Scheduling ICAPS-03. To Appear.

Jensen, R. M. 2003. The OBS software package version
0.7. http://www.cs.cmu.edu/"runej.

Klein, E., and Wehlan, H. 1996. Systematic design of a
protective controller in process industries by means of the
boolean differential calculus. In Proceedings of WODES-
96.

Koenig, S., and Simmons, R. G. 1995. Real-time search
in non-deterministic domains. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence
(1JCAI-95), 1660-1667. Morgan Kaufmann.

Lind-Nielsen, J. 1999. BuDDy - A Binary Decision Di-
agram Package. Technical Report IT-TR: 1999-028, In-
stitute of Information Technology, Technical University of
Denmark. http://cs.it.dtu.dk/buddy.

McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publ.

Olawsci, D., and Gini, M. 1990. Deferred planning and
sensor use. In Proceedings, DARPA Workshop on Inno-
vative Approaches to Planning, Scheduling, and Control.
Morgan Kaufmann.

Pistore, M.; Bettin, R.; and Traverso, P. 2001. Sym-
bolic techniques for planning with extended goals in non-
deterministic domains. In Pre-Proceedings of the 6th Eu-
ropean Conference on Planning (ECP-01), 253-264.

Schoppers, M. J. 1987. Universal plans for reactive robots
in unpredictable environments. In Proceedings of the 10th
International Joint Conference on Artificial Intelligence
(1JCAI-87), 1039-1046. Morgan Kaufmann.

