
Fault Tolerant Planning: Toward Probabilistic Uncertainty Models in
Symbolic Non-Deterministic Planning ∗

Rune M. Jensen
IT University of Copenhagen,
2400 Copenhagen, Denmark

rmj@itu.dk

Manuela M. Veloso and Randal E. Bryant
Computer Science Department, Carnegie Mellon University

Pittsburgh,PA 15213-3891, USA
{mmv,bryant}@cs.cmu.edu

Abstract
Symbolic non-deterministic planning represents action ef-
fects as sets of possible next states. In this paper, we move
toward a more probabilistic uncertainty model by distinguish-
ing between likely primary effects and unlikely secondary ef-
fects of actions. We consider the practically important case
where secondary effects are failures, and introduce n-fault
tolerant plans that are robust for up to n faults occurring dur-
ing plan execution. Fault tolerant plans are more restrictive
than weak plans, but more relaxed than strong cyclic and
strong plans. We show that optimal n-fault tolerant plans can
be generated by the usual strong algorithm. However, due
to non-local error states, it is often beneficial to decouple the
planning for primary and secondary effects. We employ this
approach for two specialized algorithms 1-FTP (blind) and
1-GFTP (guided) and demonstrate their advantages experi-
mentally in significant real-world domains.

Introduction
MDP solving (e.g., Puterman 1994) and Symbolic Non-
Deterministic Planning (SNDP) (e.g., Cimatti et al. 2003)
can be regarded as two alternative frameworks for solving
planning problems with uncertain outcomes of actions. Both
frameworks are attractive, but for quite different reasons.
The main advantage of MDP solving is the high expressive
power of the domain model: for each state in the MDP, the
effect of an action is given by a probability distribution over
next states. The framework, however, is challenged by a
high complexity of solving MDPs. The main advantage of
SNDP is its scalability. Action effects are modeled as sets of
possible next states instead of probability distributions over
these states. This allows powerful symbolic search methods
based on Binary Decision Diagrams (BDDs, Bryant 1986)
to be applied. SNDP, however, is challenged by its coarse
uncertainty model of action effects. The current solution
classes are suitable when a pure disjunctive model of action

∗This research was carried out while the first author was at
Carnegie Mellon University. The research is sponsored in part by
the Danish Research Agency and the United States Air Force under
Grants Nos F30602-00-2-0549 and F30602-98-2-0135. The views
in this document are those of the authors and should not be inter-
preted as necessarily representing the official policies of DARPA,
the Air Force, or the US Government.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

effects is sufficient (e.g., for controlling worst-case behav-
ior). However, when this is not the case, they often become
too relaxed (weak plans) or too restrictive (strong cyclic and
strong plans).

A large body of work in MDP solving addresses the scal-
ability problem. In particular, symbolic methods based on
Algebraic Decision Diagrams (ADDs, Bahar et al. 1993)
have been successfully applied to avoid explicitly enumer-
ating states (Hoey, St-Aubin, & Hu 1999; Feng & Hansen
2002).

A dual effort in SNDP, where the uncertainty model of ac-
tion effects is brought closer to its probabilistic nature, is still
lacking. In this paper, we take a first step in this direction by
introducing a new class of fault tolerant non-deterministic
plans. Our work is motivated by two observations:

1. Non-determinism in real-world domains is often caused
by infrequent errors that make otherwise deterministic ac-
tions fail.

2. Normally, no actions are guaranteed to succeed.

Due to the first observation, we propose a new uncertainty
model of action effects in SNDP that distinguishes between
primary and secondary effects of actions. The primary effect
models the usual deterministic behavior of the action, while
the secondary effect models error effects. Due to the sec-
ond observation, we introduce n-fault tolerant plans that are
robust for up to n errors or faults occurring during plan exe-
cution. This definition of fault tolerance is closely connected
to fault tolerance concepts in control theory and engineering
(Balemi et al. 1993; Perraju, Rana, & Sarkar 1997). Every
time we board a two engined aircraft, we enter a 1-fault tol-
erant system: a single engine failure is recoverable, but two
engines failing may lead to an unrecoverable breakdown of
the system.

An n-fault tolerant plan is not as restrictive as a strong
plan that requires that the goal can be reached in a finite
number of steps independent of the number of errors. In
many cases, a strong plan does not exist because all possi-
ble combinations of errors must be taken into account. This
is not the case for fault tolerant plans, and if errors are in-
frequent, they may still be very likely to succeed. A fault
tolerant plan is also not as restrictive as a strong cyclic plan.
An execution of a strong cyclic plan will never reach states
not covered by the plan unless it is a goal state. Thus, strong

cyclic plans also have to take all error combinations into ac-
count. Weak plans, on the other hand, are more relaxed than
fault tolerant plans. Fault tolerant plans, however, are al-
most always preferable to weak plans because they give no
guarantees for all the possible outcomes of actions. For fault
tolerant plans, any action may fail, but only a limited number
of failures are recoverable.

One might suggest using a deterministic planning algo-
rithm to generate n-fault tolerant plans. Consider for in-
stance synthesizing a 1-fault tolerant plan in a domain where
there is a non-faulting plan of length k and at most f error
states of any action. It is tempting to claim that a 1-fault
tolerant plan then can be found by using at most kf calls
to a classical deterministic planning algorithm. This analy-
sis, however, is flawed. It only holds for evaluating a given
1-fault tolerant plan. It neglects that many additional calls
to the classical planning algorithm may be necessary in or-
der to find a valid solution. Instead, we need an efficient
approach for finding plans for many states simultaneously.
This can be done with the BDD-based approach of SNDP.

The paper contributes a range of unguided as well as
guided algorithms for generating fault tolerant plans. We
first observe that an n-fault tolerant planning problem can
be reduced to a strong planning problem and solved with
the strong planning algorithm (ICAPS-03 2003). The result-
ing algorithm is called n-FTPS . Since the performance of
blind strong planning is limited, we also consider a guided
version of n-FTPS called n-GFTPS using the approach in-
troduced in Jensen, Veloso & Bryant (2003). The n-GFTPS

algorithm is efficient when secondary effects are local. A
secondary effect is local when there exists a short path lead-
ing from any resulting state of the secondary effect (an error
state) to the resulting state of the primary effect of the ac-
tion (the state reached when the action succeeds). When
secondary effects are local, the error states will be covered
by the search beam of n-GFTPS . In practice, however,
secondary effects may be permanent malfunctions that due
to their impact on the domain cause a transition to a non-
local state. To solve this problem, we decouple the planning
for primary and secondary effects. We restrict our investi-
gation to 1-fault tolerant planning and introduce two algo-
rithms: 1-FTP and 1-GFTP using blind and guided search,
respectively. The algorithms have been implemented in the
BIFROST search engine (Jensen 2003b) and experimentally
evaluated on a range of domains including three real-world
domains: DS1 (Pecheur & Simmons 2000), PRS (Thiébaux
& Cordier 2001), and SIDMAR (Fehnker 1999). The ex-
periments illustrate the natural connection between the exis-
tence of fault tolerant plans and the redundancy characteris-
tics of the modeled system. Moreover, they show that even
1-fault tolerant plans impose much stronger requirements on
the system than weak plans. Finally, they indicate that faults
in real-world domains often cause non-local transitions that
require specialized planning algorithms to be handled effi-
ciently.

Previous work explicitly representing and reasoning about
action failure is very limited. Some reactive planning ap-
proaches take action failure into account (e.g. Georgeff &
Lansky 1986; Williams et al. 2003), but do not involve pro-

ducing a fault tolerant plan. The MRG planning language
(Giunchiglia, Spalazzi, & Traverso 1994) explicitly models
failure effects. However, this work does not include plan-
ning algorithms for generating fault tolerant plans. To our
knowledge, the n-fault tolerant planning algorithms intro-
duced in this paper are the first automated planning algo-
rithms for generating fault tolerant plans given a description
of the domain that explicitly represents failure effects of ac-
tions.

In the following section, we present necessary SNDP ter-
minology and results. We then define n-fault tolerant plans
and describe the developed fault tolerant planning algo-
rithms. Finally, we present our experimental evaluation and
draw conclusions.

Symbolic Non-Deterministic Planning
A non-deterministic planning domain is a tuple 〈S,Act ,→〉
where S is a finite set of states, Act is a finite set of actions,
and→⊆ S × Act × S is a non-deterministic transition re-
lation of action effects. Instead of (s, a, s′) ∈→, we write
s

a
→ s′. The set of next states of an action a applied in state

s is given by NEXT(s, a) ≡ {s′ : s
a
→ s′}. An action a

is called applicable in state s iff NEXT(s, a) 6= ∅. The set
of applicable actions in a state s is given by APP(s) ≡ {a :
NEXT(s, a) 6= ∅}.

A non-deterministic planning problem is a tuple
〈D, s0, G〉 where D is a non-deterministic planning domain,
s0 ∈ S is an initial state, and G ⊆ S is a set of goal
states. Let D be a non-deterministic planning domain. A
state-action pair 〈s, a〉 of D is a state s ∈ S associated
with an applicable action a ∈ APP(s). A non-deterministic
plan is a set of state-action pairs (SAs) defining a function
from states to sets of actions relevant to apply in order to
reach a goal state. States are assumed to be fully observ-
able. An execution of a non-deterministic plan is an alter-
nation between observing the current state and choosing an
action to apply from the set of actions associated with the
state. The set of states covered by a plan π is given by
STATES(π) ≡ {s : ∃a . 〈s, a〉 ∈ π}. The set of possi-
ble end states of a plan is given by CLOSURE(π) ≡ {s′ 6∈
STATES(π) : ∃〈s, a〉 ∈ π . s′ ∈ NEXT(s, a) }.

Following Cimatti et al. (2003), we use CTL to define
weak, strong cyclic, and strong plans. CTL specifies the
behavior of a system represented by a Kripke structure. A
Kripke structure is a pair K = 〈S,R〉 where S is a finite set
of states and R ⊆ S × S is a total transition relation. An
execution tree is formed by designating a state in the Kripke
structure as an initial state and then unwinding the structure
into an infinite tree with the designated state as root.

We consider a subset of CTL formulas with two path
quantifiers A (“for all execution paths”) and E (“for some
execution path”) and one temporal operator U (“until”) to
describe properties of a path through the tree. Given a finite
set of states S, the syntax of CTL formulas are inductively
defined as follows

• Each element of 2S is a formula,

• ¬ψ, E(φ Uψ), and A(φ Uψ) are formulas if φ and ψ are.

In the following inductive definition of the semantics of
CTL, K, q |= ψ denotes that ψ holds on the execution tree
of the Kripke structure K = 〈S,R〉 rooted in the state q
• K, q0 |= P iff q0 ∈ P ,
• K, q0 |= ¬ψ iff K, q0 6|= ψ,
• K, q0 |= E(φ Uψ) iff there exists a path q0q1 · · · and i ≥ 0

such that K, qi |= ψ and, for all 0 ≤ j < i, K, qj |= φ,
• K, q0 |= A(φ Uψ) iff for all paths q0q1 · · · there exists i ≥

0 such that K, qi |= ψ and, for all 0 ≤ j < i, K, qj |= φ.
We will use three abbreviations AFψ ≡ A(S Uψ), EFψ ≡
E(S Uψ), AGψ ≡ ¬EF¬ψ. Since S is the complete set of
states in the Kripke structure, the CTL formula S holds in
any state. Thus, AFψ means that for all execution paths a
state, where ψ holds, will eventually be reached. Similarly,
EFψ means that there exists an execution path reaching a
state where ψ holds. Finally, AGψ holds if every state on
any execution path satisfies ψ.

The execution model of a plan π for the problem
〈D, s0, G〉 of the domainD = 〈S,Act ,→〉 is a Kripke struc-
tureM(π) = 〈S,R〉 where
• S = CLOSURE(π) ∪ STATES(π) ∪ G,

• 〈s, s′〉 ∈ R iff s 6∈ G, ∃a . 〈s, a〉 ∈ π and s a
→ s′, or

s = s′ and s ∈ CLOSURE(π) ∪ G.
Notice that all execution paths are infinite which is required
in order to define solutions in CTL. If a state is reached that
is not covered by the plan (e.g., a goal state or a dead end),
the postfix of the execution path from this state is an infinite
repetition of it. Given a problem P = 〈D, s0, G〉 and a plan
π for D we then have
• π is a weak plan iffM(π), s0 |= EFG,
• π is a strong cyclic plan iffM(π), s0 |= AGEFG,
• π is a strong plan iffM(π), s0 |= AFG.

Weak, strong cyclic, and strong plans can be synthesized
by the NDP algorithm shown below. The algorithm per-
forms a backward breadth-first search from the goal states
to the initial state. The set operations can be efficiently im-
plemented using BDDs. For a detailed description of this
approach, we refer the reader to Jensen (2003a). In each it-
eration (l.2-7), NDP computes the state-action pairs (SAs)
of the backward search frontier of the statesC currently cov-
ered by the plan (l.3). This set of SAs is called a precom-
ponent of C since it contains states that can reach C in one
step. In a guided version of the algorithm (Jensen, Veloso,
& Bryant 2003), the SAs of the precomponent is partitioned
according to a heuristic measure (e.g. an estimate of the dis-
tance to the initial state).

function NDP(s0, G)
1 P ← ∅; C ← G
2 while s0 6∈ C
3 Pc ← PRECOMP(C)
4 if Pc = ∅ then return “no plan exists”
5 else
6 P ← P ∪ Pc

7 C ← C ∪ STATES(Pc)
8 return P

The strong, strong cyclic, and weak planning algorithms
only differ by the definition of the precomponent. Let
PREIMG(C) denote the set of SAs where the action ap-
plied in the state may lead into the set of states C. That
is PREIMG(C) ≡ {〈s, a〉 : NEXT(s, a) ∩ C 6= ∅}. The
weak and strong precomponent are then defined by

PCw(C) ≡ PREIMG(C) \ C ×Act ,

PCs(C) ≡ (PREIMG(C) \ PREIMG(C)) \ C ×Act .

The strong cyclic precomponent depends a fixed point com-
putation. We refer the reader to Jensen (2003a) for details.

Due to the breadth-first search carried out by NDP, weak
solutions have minimum length best-case execution paths
and strong solutions have minimum length worst-case ex-
ecution paths (Cimatti et al. 2003). Formally, for a non-
deterministic planning domain D and a plan π of D let
EXEC(s, π) ≡ {q : q is a path of M(π) and q0 = s} de-
note the set of execution paths of π starting at s. Let the
length of a path q = q0q1 · · · with respect to a set of states
C be defined by

|q|C ≡

{

i : if qi ∈ C and qj 6∈ C for j < i
∞ : otherwise.

Let MIN(s, C, π) and MAX(s, C, π) denote the minimum
and maximum length of an execution path from s to C of a
plan π

MIN(s, C, π) ≡ min
q∈EXEC(s,π)

|q|C ,

MAX(s, C, π) ≡ max
q∈EXEC(s,π)

|q|C .

Similarly, let Π denote the set of all plans of D
and let WDIST(s, C) (weak distance) and SDIST(s, C)
(strong distance) denote the minimum of MIN(s, C, π) and
MAX(s, C, π) for any plan π ∈ Π of D

WDIST(s, C) ≡ min
π∈Π

MIN(s, C, π),

SDIST(s, C) ≡ min
π∈Π

MAX(s, C, π).

Let WEAK and STRONG denote the NDP algorithm where
PRECOMP(C) is substituted with PCw(C) and PCs(C).
For a weak plan πw = WEAK(s0, G) and strong plan πs =
STRONG(s0, G), we then have

MIN(s0, G, πw) = WDIST(s0, G),

MAX(s0, G, πs) = SDIST(s0, G).

N-Fault Tolerant Planning Problems
A fault tolerant planning domain is a non-deterministic plan-
ning domain where actions have primary and secondary ef-
fects. The primary effect is deterministic. However, since
an action often can fail in many different ways, we allow
the secondary effect to lead to one of several possible next
states. Thus, secondary effects are non-deterministic.
Definition 1 (Fault Tolerant Planning Domain) A fault
tolerant planning domain is a tuple 〈S,Act ,→,;〉
where S is a finite set of states, Act is a finite set of

actions, →⊆ S × Act × S is a deterministic transition
relation of primary effects, and ;⊆ S × Act × S is a
non-deterministic transition relation of secondary effects.
Instead of (s, a, s′) ∈→ and (s, a, s′) ∈;, we write
s

a
→ s′ and s a

; s′, respectively.

An n-fault tolerant planning problem is a non-deterministic
planning problem extended with the fault limit n.

Definition 2 (N-Fault Tolerant Planning Problem) An n-
fault tolerant planning problem is a tuple 〈D, s0, G, n〉
where D is a fault tolerant planning domain, s0 ∈ S is an
initial state, G ⊆ S is a set of goal states, and n : N is an
upper bound on the number of faults the plan must be able
to recover from.

An n-fault tolerant plan is defined via a transformation of
an n-fault tolerant planning problem to a non-deterministic
planning problem. The transformation adds a fault counter
f to the state description and models secondary effects only
when f ≤ n.

Definition 3 (Induced Non-Det. Planning Problem) Let
P = 〈D, s0, G, n〉 where D = 〈S,Act ,→ ,;〉 be an
n-fault tolerant planning problem. The non-deterministic
planning problem induced from P is Pnd = 〈Dnd ,

〈s0, 0〉, G × {0, · · · , n}〉 where Dnd = 〈Snd ,Actnd ,→nd〉
given by

• Snd = S × {0, · · · , n},

• Actnd = Act ,

• 〈s, f〉
a
→

nd
〈s′, f ′〉 iff

– s
a
→ s′ and f ′ = f , or

– s
a
; s′, f < n, and f ′ = f + 1.

Definition 4 (Valid N-Fault Tolerant Plan) A valid n-
fault tolerant plan is a non-deterministic plan π for the
non-deterministic planning problem induced from P where
M(π), snd

0 |= AFGnd .

Thus, an n-fault tolerant plan is valid if any execution path,
where at most n failures happen, eventually reaches a goal
state. An n-fault tolerant plan is optimal if it has minimum
worst case execution length.

Definition 5 (Optimal N-Fault Tolerant Plan) An optimal
n-fault tolerant plan is a valid n-fault tolerant plan π where
MAX(snd

0 , Gnd , π) = SDIST(snd
0 , Gnd).

N-Fault Tolerant Planning Algorithms
It follows directly from the definition of strong plans that
the STRONG algorithm returns a valid n-fault tolerant plan,
if it exists, when given the induced non-deterministic plan-
ning problem as input. Moreover, it follows from the op-
timality of STRONG that the returned n-fault tolerant plan
also is optimal. Let n-FTPS denote the STRONG algorithm
applied to an n-fault tolerant planning problem. To im-
prove performance further, we also consider an algorithm
n-GFTPS based on the guided version of STRONG de-
scribed in Jensen (2003a). Due to the pure heuristic search
approach, n-GFTPS may return suboptimal solutions.

We may expect n-GFTPS to be efficient when secondary
effects are local in the state space, because they then will
be covered by the search beam of n-GFTPS . In practice,
however, secondary effects may be permanent malfunctions
that due to their impact on the domain cause a transition to a
non-local state. Indeed, in theory, the location of secondary
effects may be completely uncorrelated with the location of
primary effects. To solve this problem, we develop spe-
cialized algorithms where the planning for primary and sec-
ondary effects is decoupled. We constrain our investigation
to 1-fault tolerant planning and introduce two algorithms: 1-
FTP using blind search and 1-GFTP using guided search.
1-FTP is shown below. The function PREIMGf computes

function 1-FTP(s0, G)
1 F 0 ← ∅; C0 ← G
2 F 1 ← ∅; C1 ← G
3 while s0 /∈ C0

4 f0
c ← PREIMG(C0) \ C0 ×Act

5 f0 ← f0
c \ PREIMGf (C1)

6 while f0 = ∅
7 f1 ← PREIMG(C1) \ C1 ×Act
8 if f1 = ∅ then return “no plan exists”
9 F 1 ← F 1 ∪ f1

10 C1 ← C1 ∪ STATES(f1)

11 f0 ← f0
c \ PREIMGf (C1)

12 F 0 ← F 0 ∪ f0

13 C0 ← C0 ∪ STATES(f0)
14 return 〈F 0, F 1〉

the preimage of secondary effects. 1-FTP returns two non-
deterministic plans F 0 and F 1 for the fault tolerant domain
where F 0 is applied when no error has occurred, and the
recovery plan F 1 is applied when one error has happened.
An example of the non-deterministic plans F 0 and F 1 re-
turned by 1-FTP is shown in Figure 1. 1-FTP performs a
backward search from the goal states that alternate between
blindly expanding F 0 and F 1 such that failure states of F 0

always can be recovered by F 1. Initially, F 0 and F 1 are
assigned to empty plans (l. 1-2). The variables C0 and C1

are states covered by the current plans in F 0 and F 1. They
are initialized to the goal states since these states are covered
by zero length plans. In each iteration of the outer loop (l.
3-13), F 0 is expanded with SAs in f0 (l. 12-13). First, a
candidate f0

c is computed. It is the preimage of the states in
F 0 pruned for SAs of states already covered by F 0 (l. 4).
The variable f0 is assigned to f0

c restricted to SAs for which
all error states are covered by the current recovery plan (l.
5). If f0 is empty the recovery plan is expanded in the inner
loop until f0 is nonempty (l. 6-11). If the recovery plan at
some point has reached a fixed point, and f 0 is still empty,
the algorithm terminates with failure, since in this case no
recovery plan exists (l. 8).

1-FTP expands both F 0 and F 1 blindly. An inherent
strategy of the algorithm, though, is not to expand F 1 more
than necessary to recover the faults of F 0. This is not the
case for n-FTPS that does not distinguish states with dif-
ferent number of faults. The aggressive strategy of 1-FTP,

G

S

S

G

s 1
0

0

0

F

F

s

Figure 1: An example of the non-deterministic plans F 0 and F 1 returned by 1-FTP. Primary and secondary effects of actions
are drawn with solid and dashed lines, respectively. In this example, we assume that F 0 forms a sequence of actions from the
initial state to a goal state, while F 1 recovers all the possible faults of actions in F 0.

however, makes it suboptimal as the example in Figure 2
shows. In the first two iterations of the outer loop, 〈p2, b〉 and

a

a
b

b b

a g

q2

p2

a

p1 b

q1

s0

Figure 2: A problem with a single goal state g showing that
1-FTP may return suboptimal solutions. Dashed lines in-
dicate secondary effects. Notice that action a and b only
have secondary effects in q2 and s0, respectively. In all other
states, the actions are assumed always to succeed.

〈p1, b〉 are added to F 0 and nothing is added to F 1. In the
third iteration of the outer loop, F 1 is extended with 〈p2, b〉
and 〈q2, a〉 and F 0 is extended with 〈q2, a〉. In the last two
iterations of the outer loop, 〈q1, a〉 and 〈s0, a〉 are added to
F 0. The resulting plan is

F 0 = {〈s0, a〉, 〈q1, a〉, 〈q2, a〉, 〈p1, b〉, 〈p2, b〉}

F 1 = {〈p2, b〉, 〈q2, a〉}.

The worst case length of this 1-fault tolerant plan is 4. How-
ever, a 1-fault tolerant plan

F 0 = {〈s0, b〉, 〈p1, b〉, 〈p2, b〉}

F 1 = {〈q1, a〉, 〈q2, a〉}

with worst case length of 3 exists.
Despite the different search strategies applied by 1-FTP

and 1-FTPS , they both perform blind search. A more in-
teresting algorithm is a guided version of 1-FTP called 1-
GFTP. The over all design goal of 1-GFTP is to guide the
expansion of F 0 toward the initial state using a heuristic h
estimating the distance to the initial state, and then guide the

expansion of F 1 toward the failure states of F 0. However,
this can be accomplished in many different ways. Below we
evaluate three different strategies. For each algorithm, F 0

is guided in a pure heuristic manner toward the initial state
using the approach employed by n-GFTPS .

The first strategy is to assume that failure states are local
and guide F 1 toward the initial state as well. The resulting
algorithm is similar to 1-GFTPS and has poor performance.

The second strategy is ideal in the sense that it dynami-
cally guides the expansion of F 1 toward error states of the
precomponents of F 0. This can be done by using a spe-
cialized BDD operation that splits the precomponent of F 1

according to the Hamming distance to the error states. The
complexity of this operation, however, is exponential in the
size of the BDD representing the error states and the size of
the BDD representing the precomponent of F 0. Due to the
dynamic programming used by the BDD package, the aver-
age complexity may be much lower. However, this does not
seem to be the case in practice.

The third strategy is the one chosen for 1-GFTP. It ex-
pands F 1 blindly, but then prunes SAs from the precompo-
nent of F 1 not used to recover error states of F 0. Thus,
it uses an indirect approach to guide the expansion of F 1.
We expect this strategy to work well even if the absolute
location of error states is non-local. However, the strategy
assumes that the relative location of error states is local in
the sense that the SAs in F 1 in expansion i of F 0 are rel-
evant for recovering error states in expansion i + 1 of F 0.
In addition, we still have an essential problem to solve: to
expand F 0 or F 1. There are two extremes:

1. Expand F 1 until first recovery of f0. Compute a com-
plete partitioned backward precomponent of F 0, expand
F 1 until some partition in f0 has recovered error states,
and add the partition with lowest h-value to F 0.

2. Expand F 1 until best recovery of f0. Compute a com-
plete partitioned backward precomponent of F 0, expand
F 1 until the partition of f0 with lowest h-value has re-
covered error states, and add this partition to F 0. If none
of these error states can be recovered then consider the
partition with second lowest h-value and so on.

It turns out that neither of these extremes work well in prac-

tice. The first is too conservative. It may add a partition
with a high h-value even though a partition with a low h-
value can be recovered given just a few more expansions of
F 1. The second strategy is too greedy. It ignores the com-
plexity of expanding F 1 in order to recover error states of
the partition of f0 with lowest h-value. Instead, we consider
a mixed strategy: spend half of the last expansion time on
recovering error states of the partition of f 0 with lowest h-
value and, in case this is impossible, spend one fourth of the
last expansion time on recovering error states of the partition
of f0 with second lowest h-value, and so on. The 1-GFTP
algorithm is shown below. The keys in maps are sorted as-
cendingly. The instantiation of F 0 and F 1 of 1-GFTP is
similar to 1-FTP except that the states in C0 are partitioned
with respect to their associated h-value. Initially the map
entry, C0[hgoal] is assigned to the goal states. 1 The variable
t stores the duration of the previous expansion. Initially, it
is given a small value ε. In each iteration of the main loop

function 1-GFTP(s0, G)
1 F 0 ← ∅; C

0[hg]← G
2 F 1 ← ∅; C1 ← G
3 t← ε
4 while s0 /∈ C0

5 ts ← tCPU

6 PC← PRECOMPFTP(C0)
7 f0 ← ∅; f 0

c ← ∅
8 f

1
c ← emptyMap

9 i← 0
10 while f0 = ∅ ∧ i < |PC|
11 i← i+ 1; t← t/2
12 f0

c ← f0
c ∪ PC[i]

13 〈f1
c , f

0〉 ← EXPANDTIMED(f0
c , f

1
c , C

1, t)
14 if f0 = ∅ then
15 〈f1

c , f
0〉 ← EXPANDTIMED(f0

c , f
1
c , C

1,∞)
16 t← tCPU − ts
17 if f0 = ∅ then return “no plan exists”
18 f1 ← PRUNEUNUSED(f1

c , f
0)

19 F 1 ← F 1 ∪ f1; C1 ← C1 ∪ STATES(f1)
20 F 0 ← F 0 ∪ f0

21 for j = 1 to i
22 C

0[hj]← C
0[hj] ∪ STATES(f0 ∩PC[hj])

23 return 〈F 0, F 1〉

(l. 4-22), the precomponents f 0 and f1 are computed and
added to F 0 and F 1. First, the start time ts is logged by
reading the current time tCPU (l. 5). Then a map PC hold-
ing a complete partitioned precomponent candidate of F 0 is
computed by PRECOMPFTP (l. 6). For each entry in C

0,
PRECOMPFTP inserts the preimage in PC of each partition
of the transition relation of primary effects. We assume that
this partitioning has m subrelations R1, · · ·Rm where the
transitions represented by Ri are associated with a change
δhi of the h-value (in forward direction). The inner loop (l.
10-13) of 1-GFTP expands the two candidates f 0

c and f1
c

1To simplify the presentation, we assume that all goal states
have identical h-value. A generalization of the algorithm is trivial.

function PRECOMPFTP(C0)
1 PC← emptyMap
2 for i = 1 to |C0|
3 for j = 1 to m
4 SA← PREIMGj(C

0[hi]) \ C
0 ×Act

5 PC[hi − δhj]← PC[hi − δhj] ∪ SA
6 return PC

for f0 and f1. In each iteration, a partition of the partitioned
precomponent PC is added to f 0

c (l. 12).2 The function
EXPANDTIMED (shown below) expands f 1

c . In iteration i,

function EXPANDTIMED(f0
c , f

1
c , C

1, t)
1 ts ← tCPU

2 Oldf 1
c ← ⊥

3 i← |f1
c |

4 recovS ← STATES(f1
c) ∪ C1

5 f0 ← f0
c \ PREIMGf (recovS)

6 while f0 = ∅ ∧ Oldf 1
c 6= f1

c ∧ tCPU − ts < t
7 Oldf 1

c ← f1
c

8 i← i+ 1
9 f

1
c [i]← PREIMG(recovS) \ recovS ×Act

10 recovS ← STATES(f1
c) ∪ C1

11 f0 ← f0
c \ PREIMGf (recovS)

12 return 〈f1
c , f

0〉

the time-out bound of the expansion is t/2i. EXPANDTIMED
returns early if:

1. A precomponent f0 in the candidate f0
c is found where all

error states are recovered (l. 5 and l. 11), or
2. f1

c has reached a fixed point.
The preimage added to f1

c in iteration i of EXPANDTIMED
is stored in the map entry f

1
c [i] in order to prune SAs not

used for recovery. Eventually f 0
c may contain all the SAs

in PC without any of these being recoverable. In this case,
1-GFTP expands f1

c (l. 15) untimed. If f1
c has reached a

fixed point but no recoverable precomponent f 0 exists, no 1-
fault tolerant plan exists and 1-GFTP returns with “no plan
exists” (l. 17). Otherwise, f1

c is pruned for SAs of states
not used to recover the SAs in f 0 (l. 18). This pruning is
computed by PRUNEUNUSED (shown below) that traverses
backward through the preimages of f

1
c and marks states that

either are error states of SAs in f 0, or states needed to re-
cover previously marked states. The functions IMG(π) and
IMGf (π) compute the reachable states of a set of SAs π for
primary and secondary effects, respectively.

IMG(π) ≡ {s′ : ∃〈s, a〉 ∈ π . s
a
→ s′},

IMGf (π) ≡ {s′ : ∃〈s, a〉 ∈ π . s
a
; s′}.

The updating of F 0 and F 1 in 1-GFTP (l. 19-22) is sim-
ilar to 1-FTP except that C

0 is updated by iterating over
PC and picking SAs in f0. Notice that in this iteration hj

2Recall that PC is traversed ascendingly such that the partition
with lowest h-value is added first.

function PRUNEUNUSED(f 1
c , f

0)
1 err ← IMGf (f0)
2 img ← ∅; marked ← ∅
3 for i = |f1

c | to 1
4 f

1
c [i]← f

1
c [i] ∩

(

(err ∪ img)×Act
)

5 marked ← marked ∪ STATES(f 1
c [i])

6 img ← IMG(f1
c [i])

7 return f1
c ∩ (marked ×Act)

refers to the keys of PC. The specialized algorithms can
be generalized to n faults by adding more recovery plans
Fn, Fn−1, · · · , F 0. For n-GFTP all of these recovery plans
would be indirectly guided by the expansion of F n.

Experimental Evaluation
The experimental evaluation has two major objectives: to get
a better intuition about the nature of fault tolerant plans and
to compare the performance of the developed algorithms.
1-FTP, 1-GFTP, 1-FTPS , and 1-GFTPS have been imple-
mented in the BIFROST 0.7 search engine (Jensen 2003b).
All experiments have been executed on a Redhat Linux 7.1
PC with kernel 2.4.16, 500 MHz Pentium III CPU, 512 KB
L2 cache and 512 MB RAM. We refer the reader to Jensen
(2003a) for a detailed description of the experiments.

Unguided Search
The main purpose of these experiments is to investigate fault
tolerant plans for significant real-world domains and com-
pare the performance of 1-FTPS and 1-FTP. With respect
to the former, we have studied NASA’s Deep Space One
domain (DS1) and the “simple” Power Supply Restoration
domain (PSR). In addition, we have examined an artificial
power plant domain. For all of these domains, even 1-fault
tolerant plans turn out to inflict high restrictions on the do-
main compared to weak plans. In particular, only 2 of the
original 4 errors of the DS1 experiment could be considered

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200 220

C
P

U
 T

im
e

(s
ec

)

Number of Boolean State Variables

1-FTP
1-FTPs

Figure 3: Results of linear PSR experiments.

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

C
P

U
 T

im
e

(s
ec

)

Number of Boolean State Variables

1-FTP
1-FTPs

Figure 4: Results of Beam experiments.

in the domain model due to lack of redundancy in DS1’s
electrical system. This result is encouraging since it proves
fault tolerant plans to be a substantially stronger solution
class than weak plans and in addition illustrates the natu-
ral connection between the existence of fault tolerant plans
and the redundancy characteristics of the modeled system.

The 1-FTP algorithm roughly outperforms 1-FTPS by a
factor of 2 in all of these experiments. To investigate this
performance difference further, we made additional experi-
ments with a linear version of the PSR domain and the Beam
domain (Cimatti et al. 2003). Figure 3 and Figure 4 show
the results. As depicted 1-FTP has significantly better per-
formance than 1-FTPS also in these domains.

Guided Search
The main purpose of the experiments in this section is to
study the difference between 1-GFTP and 1-GFTPS . In
particular, we are interested in investigating how sensitive
these algorithms are to non-local error states and to what
extent, we may expect this to be a problem in practice. We
study 3 domains, of which one descends from a real-world
study.

LV The LV domain is an artificial domain and has been
designed to demonstrate the different properties of 1-GFTP
and 1-GFTPS . It is an m ×m grid world with initial state
(0,m − 1) and goal state (bm/2c, bm/2c). The actions are
Up, Down, Left, and Right. Above the y = x line, actions
may fail, causing the x and y position to be swapped. Thus,
error states are mirrored in the y = x line. A 9× 9 instance
of the problem is shown in Figure 5. The essential property
is that error states are non-local, but that two states close to
each other also have error states close to each other. This
is the assumption made by 1-GFTP, but not 1-GFTPS that
requires error states to be local. The heuristic value of a state
is the Manhattan distance to the initial state. The results are
shown in Figure 6.

As depicted, the performance of 1-GFTPS degrades very
fast with m due to the misguidance of the heuristic for the

6 71 2 3 4 5

1

2

3

4

5

6

7
(3, 6)

(6, 3)

s0

X

Y

G

Figure 5: An 9× 9 instance of the LV domain.

recovery part of the plan. Its total CPU time is more than
500 seconds after the first three experiments. 1-GFTPS is
fairly unaffected by the error states. To explain this, consider
how the backward search proceeds from the goal state. The
guided precomponents of F 0 will cause this plan to beam
out toward the initial state. Due to the relative locality of
error states, the pruning of F 1 will cause F 1 to beam out in
the opposite direction. Thus, both F 0 and F 1 remain small
during the search.
8-Puzzle The 8-Puzzle further demonstrates this differ-
ence between 1-GFTP and 1-GFTPS . We consider a non-
deterministic version of the 8-Puzzle where the secondary
effects are self loops. Thus, error states are the most local
possible. We use the usual sum of Manhattan distances of
tiles as a heuristic estimate of the distance to the initial state.
The results are shown in Figure 8. Again, 1-FTP performs
substantially better than 1-FTPS . The guided algorithms 1-
GFTP and 1-GFTPS have much better performance than
the unguided algorithms. Due to local error states, however,
there is no substantial performance difference between these

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200

C
P

U
 T

im
e

(s
ec

)

Vertical and Horizontal Board Dimension

1-GFTP
1-GFTPs

Figure 6: The results of the LV experiments.

two algorithms. As depicted, 1-FTP is slightly faster than
1-GFTPS in the experiment with a minimum deterministic
solution length of 14. For such small problems, we may ex-
pect to see this since 1-FTP only expands the recovery plan
when needed while 1-GFTPS expands the recovery part of
its plan in each iteration.

0.1

1

10

100

4 6 8 10 12 14 16 18 20 22

C
P

U
 T

im
e

(s
ec

)

Length of Minimum Deterministic Solution

1-FTP
1-GFTP
1-FTPs

1-GFTPs

1

10

100

1000

6 8 10 12 14 16 18 20 22

C
P

U
 T

im
e

(s
ec

)

Length of Minimum Deterministic Solution

1-FTP
1-GFTP
1-FTPs

1-GFTPs

Figure 8: Results of the 8-Puzzle (top) and the SIDMAR
experiments (bottom).

SIDMAR The final experiments are on the SIDMAR steel
plant domain. The purpose of these experiments is to study
the robustness of 1-GFTP and 1-GFTPS to the kind of er-
rors found in real-world domains. The SIDMAR domain
is an abstract model of a real-world steel producing plant
in Ghent, Belgium used as an ESPRIT case study (Fehnker
1999). The layout of the steel plant is shown in Figure 7.
The goal is to cast steel of different qualities. Pig iron is
poured portion-wise in ladles by the two converter vessels.
The ladles can move autonomously on the two east-west
tracks. However, two ladles can not pass each other and
there can at most be one ladle between machines. Ladles
are moved in the north-south direction by the two overhead
cranes. The pig iron must be treated differently to obtain
steel of different qualities. There are three different treat-

Buffer

Storage

Holding

Converter 1

Converter 2

Continuous

Machine 1

Machine 4

Machine 2 Machine 3

Machine 5

Crane 2

Crane 1
cranes

Overhead

place

place

machine
casting

Figure 7: Layout of the SIDMAR steel plant.

ments: 1) machine 1 and 4, 2) machine 2 and 5, and 3)
machine 3. Before empty ladles are moved to the storage
place, the steel is cast by the continuous casting machine.
A ladle can only leave the casting machine if there already
is a filled ladle at the holding place. We assume that ac-
tions of machine 1,2,4, and 5 and move actions on the track
may fail. The secondary effect of move actions is that noth-
ing happens for the particular move. Later moves, however,
may still succeed. The secondary effect of machine actions
is that no treatment is carried out, and the machine is broken
down permanently.

We consider casting two ladles of steel. The heuristic is
the sum of machine treatments carried out on the ladles. The
experiment compares the performance of 1-FTP, 1-GFTP,
1-FTPS , and 1-GFTPS . The heuristic is the sum of machine
treatments carried out on the ladles. The results are shown
in Figure 8. Missing data points indicates that the associ-
ated algorithm spent more than 500 seconds trying to solve
the problem. The only algorithm with good performance is
1-GFTP. The experiment indicates that real-world domains
may have non-local error states that limit the performance
of 1-GFTPs. Also notice that this is the only domain where
1-FTP does not outperform 1-FTPS . In this domain, 1-FTP
seems to be finding complex plans that fulfills that the re-
covery plan is minimal. Thus, the strategy of 1-FTP to keep
the recovery plan as small as possible does not seem to be
an advantage in general.

Conclusion
In this paper, we have introduced n-fault tolerant plans as a
new solution class of SNDP. Fault tolerant plans reside in the
gap between weak plans and strong cyclic and strong plans.
They are more restrictive than weak plans, but more relaxed
than strong cyclic and strong plans. Optimal n-fault tolerant

plans can be generated by the strong planning algorithm via
a reduction to a strong planning problem. Our experimental
evaluation shows, however, that due to non-local error states,
it is often beneficial to decouple the planning for primary
and secondary effects of actions.

Fault tolerant planning is a first step toward more refined
models of uncertainty in SNDP. A fruitful direction for fu-
ture work is to move further in this direction and consider
fault tolerant plans that are adjusted to the likelihood of
faults or to consider probabilistic solution classes with other
transition semantics than faults.

References
Bahar, R.; Frohm, E.; Gaona, C.; Hachtel, E.; Macii, A.;
Pardo, A.; and Somenzi, F. 1993. Algebraic decision dia-
grams and their applications. In IEEE/ACM International
Conference on CAD, 188–191.
Balemi, S.; Hoffmann, G. J.; Gyugyi, P.; Wong-Toi, H.;
and Franklin, G. F. 1993. Supervisory control of a rapid
thermal multiprocessor. IEEE Trans. on Automatic Control
38(7).
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
8:677–691.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, Strong, and Strong Cyclic Planning via Symbolic
Model Checking. Artificial Intelligence 147(1-2). Elsevier
Science publishers.
Fehnker, A. 1999. Scheduling a steel plant with timed
automata. In Sixth International Conference on Real-Time
Computing Systems and Applications (RTCSA’99). IEEE
Computer Society Press.

Feng, Z., and Hansen, E. 2002. Symbolic LAO* search
for factored markov decision processes. In Proceedings of
the AIPS-02 Workshop on Planning via Model Checking,
49–53.
Georgeff, M., and Lansky, A. L. 1986. Procedural knowl-
edge. Proceedings of IEEE 74(10):1383–1398.
Giunchiglia, F.; Spalazzi, L.; and Traverso, P. 1994. Plan-
ning with failure. In Proceedings of the 2nd International
Conference on Artificial Intelligence Planning Systems.
Hoey, J.; St-Aubin, R.; and Hu, A. 1999. SPUDD: Stochas-
tic planning using decision diagrams. In Proceedings of the
15th Conference on Uncertainty in Artificial Intelligence,
279–288.
ICAPS-03. 2003. Personal communication from anony-
mous ICAPS-03 referees.
Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2003.
Guided symbolic universal planning. In Proceedings of the
13th International Conference on Automated Planning and
Scheduling ICAPS-03, 123–132.
Jensen, R. M. 2003a. Efficient BDD-Based Planning for
Non-Deterministic, Fault-Tolerant, and Adversarial Do-
mains. Ph.D. Dissertation, Carnegie Mellon University.
CMU-CS-03-139.
Jensen, R. M. 2003b. The BDD-based InFoRmed plan-
ning and cOntroller Synthesis Tool BIFROST version 0.7.
http://www.itu.edu/people/rmj.
Pecheur, C., and Simmons, R. 2000. From livingstone to
SMV. In FAABS, 103–113.
Perraju, T. S.; Rana, S. P.; and Sarkar, S. P. 1997. Specify-
ing fault tolerance in mission critical systems. In Proceed-
ings of High-Assurance Systems Engineering Workshop,
1996, 24–31. IEEE.
Puterman, M. L. 1994. Markov Decision Problems. Wiley.
Thiébaux, S., and Cordier, M. O. 2001. Supply restoration
in power distribution systems – a benchmark for planning
under uncertainty. In Pre-Proceedings of the 6th European
Conference on Planning (ECP-01), 85–96.
Williams, B. C.; Ingham, M.; Chung, S. H.; and Elliott,
P. H. 2003. Model-based programming of intelligent em-
bedded systems and robotic space explorers. In Proceed-
ings of the IEEE: Special Issue on Modeling and Design of
Embedded Software, volume 9, 212–237.

