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Abstract

Symbolic non-deterministic planning represents action effects as sets of possible next
states. In this article, we move toward a more probabilistic uncertainty model by dis-
tinguishing between likely primary effects and unlikely secondary effects of actions. We
consider the practically important case, where secondary effects are failures, and introduce
n-fault tolerant plans that are robust for up to n faults occurring during plan execution.
Fault tolerant plans are more restrictive than weak plans, but more relaxed than strong
cyclic and strong plans. We show that optimal n-fault tolerant plans can be generated by
the usual strong algorithm. However, due to non-local error states, it is often beneficial
to decouple the planning for primary and secondary effects. We employ this approach for
two specialized algorithms 1-FTP (blind) and 1-GFTP (guided) and demonstrate their
advantages experimentally in significant real-world domains.

1. Introduction

MDP solving (e.g., Sutton & Barto, 1998) and Symbolic Non-Deterministic Planning (SNDP
e.g., Cimatti, Pistore, Roveri, & Traverso, 2003) can be regarded as two alternative frame-
works for solving planning problems with uncertain outcomes of actions. Both frameworks
are attractive, but for quite different reasons. The main advantage of MDP solving is the
high expressive power of the domain model: for each state in the MDP, the effect of an
action is given by a probability distribution over next states. The framework, however, is
challenged by a high complexity of solving MDPs. The main advantage of SNDP is its
scalability. The domain model has less expressive power than an MDP. Action effects are
modeled as sets of possible next states instead of probability distributions over these states.
This allows powerful symbolic search methods based on Binary Decision Diagrams (BDDs,
Bryant, 1986) to be applied. SNDP, however, is challenged by its coarse uncertainty model
of action effects. The current solution classes are suitable when a pure disjunctive model
of action effects is sufficient (e.g., for controlling worst-case behavior). However, when this
is not the case, they often become too relaxed (weak plans) or too restrictive (strong cyclic
and strong plans).

A large body of work in MDP solving addresses the scalability problem (e.g., Sutton &
Barto, 1998; Tesauro, 1995). In particular, symbolic methods based on Algebraic Decision
Diagrams (ADDs, Bahar, Frohm, Gaona, Hachtel, Macii, Pardo, & Somenzi, 1993) have
been successfully applied to avoid explicitly enumerating states (Hoey, St-Aubin, & Hu,
1999; Feng & Hansen, 2002).
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A dual effort in SNDP, where the uncertainty model of action effects is brought closer to
its probabilistic nature, is still lacking. In this article, we take a first step in this direction
by introducing a new class of fault tolerant non-deterministic plans. Our work is motivated
by two observations:

1. Non-determinism in real-world domains is often caused by infrequent errors that make
otherwise deterministic actions fail.

2. Normally, no actions are guaranteed to succeed.

Due to the first observation, we propose a new uncertainty model of action effects in SNDP
that distinguishes between primary and secondary effects of actions. The primary effect
models the usual deterministic behavior of the action, while the secondary effect models
error effects. Due to the second observation, we introduce n-fault tolerant plans that are
robust for up to n errors or faults occurring during plan execution. This definition of fault
tolerance is closely connected to fault tolerance concepts in control theory and engineering.
Every time we board a two engined aircraft, we enter a 1-fault tolerant system: a single
engine failure is recoverable, but two engines failing may lead to an unrecoverable breakdown
of the system.

An n-fault tolerant plan is not as restrictive as a strong plan that requires that the goal
can be reached in a finite number of steps independent of the number of errors. In many
cases, a strong plan does not exist because all possible errors must be taken into account.
This is not the case for fault tolerant plans, and if errors are infrequent, they may still be
very likely to succeed. A fault tolerant plan is also not as restrictive as a strong cyclic plan.
An execution of a strong cyclic plan will never reach states not covered by the plan unless,
it is a goal state. Thus, strong cyclic plans also have to take all error combinations into
account. Weak plans, on the other hand, are more relaxed than fault tolerant plans. Fault
tolerant plans, however, are almost always preferable to weak plans because they give no
guarantees for all the possible outcomes of actions. For fault tolerant plans, any action may
fail, but only a limited number of failures are recoverable.

One might suggest using a deterministic planning algorithm to generate n-fault tolerant
plans. Consider for instance synthesizing a 1-fault tolerant plan in a domain, where there
is a non-faulting plan of length k and at most f error states of any action. It is tempting
to claim that a 1-fault tolerant plan then can be found using at most kf calls to a classical
deterministic planning algorithm. This analysis, however, is flawed. It only holds for
evaluating a given 1-fault tolerant plan. It neglects that many additional calls to the
classical planning algorithm may be necessary in order to find a valid solution. Instead, we
need an efficient approach for finding plans for many states simultaneously. This can be
done with the BDD-based approach of SNDP.

The article contributes a range of unguided as well as guided algorithms for generating
fault tolerant plans. We first observe that an n-fault tolerant planning problem can be
reduced to a strong planning problem and solved with the strong planning algorithm. The
resulting algorithm is called n-FTPS . Since the performance of blind strong planning is
limited, we also consider a guided version of n-FTPS called n-GFTPS using the approach
introduced in Jensen, Veloso, and Bryant (2003). The n-GFTPS algorithm is efficient,
when secondary effects are local in the state space, because they then will be covered by
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the search beam of n-GFTPS . In practice, however, secondary effects may be permanent
malfunctions that due to their impact on the domain cause a transition to a non-local state.
To solve this problem, we decouple the planning for primary and secondary effects. We
restrict our investigation to 1-fault tolerant planning and introduce two algorithms: 1-FTP

and 1-GFTP using blind and guided search, respectively.
The algorithms have been implemented in the BIFROST search engine (Jensen, 2003b)

and experimentally evaluated on a range of domains including three real-world domains:
DS1 (Pecheur & Simmons, 2000), PRS (Thiébaux & Cordier, 2001), and SIDMAR (Fehnker,
1999). The purpose of the experiments is twofold. First, we want to characterize the
performance of the four algorithms introduced in the article and investigate to what extend
secondary effects of realistic actions transition to non-local states that require specialized
heuristic algorithms like 1-GFTP to be handled efficiently. Second, we want to study
concrete examples of fault tolerant planning to understand the advantages and limitations
of this approach. With respect to the first objective, the experiments show that there is
a natural connection between the existence of fault tolerant plans and the redundancy of
the modeled system. Surprisingly, however, it turns out that even 1-fault plans require
a fairly high level of redundancy since the plans must be able to recover from a failure
happening at any point of execution. With respect to the second objective, the results
from the SIDMAR domain shows that realistic failures of production machines are more
efficiently solved by decoupling the guidance of the planning for primary and secondary
effects as done by 1-GFTP.

The reminder of this article is organized as follows. In Section 2, we define the current
three classes of non-deterministic plans and present a blind and guided BDD-based algo-
rithm for synthesizing these plans. Section 3 introduces n-fault tolerant planning problems
and defines valid and optimal n-fault tolerant plans in terms of induced non-deterministic
plans. In Section 4, we introduce n-FTPS and n-GFTPS for generating n-fault toler-
ant plans via the blind and guided strong planning algorithm and the specialized blind
and guided algorithms 1-FTP and 1-GFTP that decouples the planning for primary and
secondary effects. The characteristics of fault tolerant plans and the performance of the
developed algorithms are empirically evaluated in Section 5. A discussion of related work
in AI and control theory is given in Section 6, and finally, in Section 7, we draw conclusions
and suggest directions for future work.

2. Symbolic Non-deterministic Planning

A non-deterministic planning domain is a tuple 〈S,Act ,→〉, where S is a finite set of states,
Act is a finite set of actions, and →⊆ S ×Act ×S is a non-deterministic transition relation
of action effects. Instead of (s, a, s′) ∈→, we write s

a
→ s′. The set of next states of an

action a applied in state s is given by

Next(s, a) ≡ {s′ : s
a
→ s′}.

An action a is called applicable in state s iff Next(s, a) 6= ∅. The set of applicable actions
in a state s is given by

App(s) ≡ {a : Next(s, a) 6= ∅}.

3



Jensen, Veloso & Bryant

A non-deterministic planning problem is a tuple 〈D, s0, G〉, where D is a non-deterministic
planning domain, s0 ∈ S is an initial state, and G ⊆ S is a set of goal states. Let D be a non-
deterministic planning domain. A state-action pair 〈s, a〉 of D is a state s ∈ S associated
with an applicable action a ∈ App(s). A non-deterministic plan is a set of state-action pairs
(SAs) defining a function from states to sets of actions relevant to apply in order to reach a
goal state. States are assumed to be fully observable. An execution of a non-deterministic
plan is an alternation between observing the current state and choosing an action to apply
from the set of actions associated with the state. The set of states covered by a plan π is
given by

States(π) ≡ {s : ∃a . 〈s, a〉 ∈ π}.

The set of possible end states of a plan is given by

Closure(π) ≡ {s′ 6∈ States(π) : ∃〈s, a〉 ∈ π . s′ ∈ Next(s, a) }.

An execution of a strong plan is guaranteed to reach states covered by the plan until a
goal state is reached after a finite number of steps. An execution of a strong cyclic plan is
also guaranteed to reach states covered by the plan or a goal state. However, due to cycles,
it may never reach a goal state. An execution of a weak plan may reach states not covered
by the plan, it only guarantees that some execution exists that reaches the goal from the
initial state.

gq1 q2a
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Figure 1: A non-deterministic planning domain 〈S,Act ,→〉 where S = {s0, q1, q2, q3, g},
Act = {a, b, c} and s

x
→ s′ holds iff there is a transition in the graph from s to s′

labeled x.

Example 1 Consider a planning problem for the non-deterministic planning domain shown
in Figure 1 where the initial state is s0 and g is the only goal state. Let

πw = {〈s0, a〉, 〈q2, a〉},

πsc = {〈s0, b〉, 〈q2, b〉, 〈q3, b〉},

πs = {〈s0, c〉, 〈q2, c〉, 〈q3, c〉}.

We have, πw is a valid weak plan, but not a valid strong cyclic or strong plan, πsc is a valid
weak and strong cyclic plan, but not a valid strong plan, and πs is a valid weak, strong
cyclic, and strong plan. 3
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Following Cimatti et al. (2003), we use CTL to formally define weak, strong cyclic, and
strong plans. CTL specifies the behavior of a system represented by a Kripke structure. A
Kripke structure is a pair K = 〈S, R〉, where S is a finite set of states and R ⊆ S × S is a
total transition relation. An execution tree is formed by designating a state in the Kripke
structure as an initial state and then unwinding the structure into an infinite tree with the
designated state as root.

We consider a subset of CTL formulas with two path quantifiers A (“for all execution
paths”) and E (“for some execution path”) and one temporal operator U (“until”) to describe
properties of a path through the tree. Given a finite set of states S, the syntax of CTL
formulas are inductively defined as follows

• Each element of 2S is a formula,

• ¬ψ, E(φ Uψ), and A(φ Uψ) are formulas if φ and ψ are.

In the following inductive definition of the semantics of CTL, K, q |= ψ denotes that ψ holds
on the execution tree of the Kripke structure K = 〈S, R〉 rooted in the state q

• K, q0 |= P iff q0 ∈ P ,

• K, q0 |= ¬ψ iff K, q0 6|= ψ,

• K, q0 |= E(φ Uψ) iff there exists a path q0q1 · · · and i ≥ 0 such that K, qi |= ψ and, for
all 0 ≤ j < i, K, qj |= φ,

• K, q0 |= A(φ Uψ) iff for all paths q0q1 · · · there exists i ≥ 0 such that K, qi |= ψ and,
for all 0 ≤ j < i, K, qj |= φ.

We will use three abbreviations AFψ ≡ A(S Uψ), EFψ ≡ E(S Uψ), AGψ ≡ ¬EF¬ψ. Since
S is the complete set of states in the Kripke structure, the CTL formula S holds in any
state. Thus, AFψ means that for all execution paths a state, where ψ holds, will eventually
be reached. Similarly, EFψ means that there exists an execution path reaching a state,
where ψ holds. Finally, AGψ holds, if every state on any execution path satisfies ψ. We will
often consider CTL formulas on sets of states. To simplify the presentation, we therefore
introduce the short notation

K, Q |= ψ ≡ ∀q ∈ Q .K, q |= ψ.

The execution model of a plan π for the problem 〈D, s0, G〉 of the domain D = 〈S,Act ,→〉
is a Kripke structure M(π) = 〈S, R〉, where

• S = Closure(π) ∪ States(π) ∪ G,

• 〈s, s′〉 ∈ R iff s 6∈ G, ∃a . 〈s, a〉 ∈ π and s
a
→ s′, or s = s′ and s ∈ Closure(π) ∪ G.

Notice that all execution paths are infinite which is required in order to define solutions
in CTL. If a state is reached that is not covered by the plan (e.g., a goal state or a dead
end), the postfix of the execution path from this state is an infinite repetition of it. Given
a problem P = 〈D, s0, G〉 and a plan π for D we then have
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• π is a weak plan iff M(π), s0 |= EFG,

• π is a strong cyclic plan iff M(π), s0 |= AGEFG,

• π is a strong plan iff M(π), s0 |= AFG.

Example 2 Consider the planning problem defined in Example 1. As expected, we have

M(πw), s0 |= EF {g},

M(πsc), s0 |= AGEF {g},

M(πs), s0 |= AF {g}.

2.1 Blind Planning Algorithms

Weak, strong cyclic, and strong plans can be synthesized by a backward breadth-first search
from the goal states to the initial states. The search algorithm is shown in Figure 2. The
set operations can be efficiently implemented using BDDs. For a detailed description of this
approach, we refer the reader to Jensen (2003a). In each iteration (l.2-7), a precomponent Pc

of the plan is computed from the states C currently covered by the plan. If the precomponent
is empty, a fixed point of P has been reached that does not cover the initial states and “no
solution exists” is returned. Otherwise, the precomponent is added to the plan and the
states in the precomponent are added to the set of covered states (l.6-7). The strong, strong

function NDP(s0, G)
1 P ← ∅; C ← G
2 while s0 6∈ C
3 Pc ← PreComp(C)
4 if Pc = ∅ then return “no solution exists”
5 else
6 P ← P ∪ Pc

7 C ← C ∪ States(Pc)
8 return P

Figure 2: A generic algorithm for synthesizing non-deterministic plans.

cyclic, and weak planning algorithms only differ in the definition of the precomponent. Let
PreImg(C) denote the set of SAs, where the action applied in the state may lead into the
set of states C

PreImg(C) ≡ {〈s, a〉 : Next(s, a) ∩ C 6= ∅}.

The weak and strong precomponent are then defined by

PreCompw(C) ≡ PreImg(C) \ C × Act ,

PreComps(C) ≡ (PreImg(C) \ PreImg(C)) \ C × Act .

The strong cyclic precomponent PreCompsc(C) can be computed by iteratively extend-
ing a set of candidate SAs and pruning it until a fixed point is reached. Let Weak,
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StrongCyclic, and Strong denote the NDP algorithm using PreCompw, PreCompsc ,
and PreComps, respectively. It can be shown that Weak, StrongCyclic, and Strong

are correct Jensen (2003a). The algorithms return “no solution exists” iff no solution exists,
otherwise they return a valid solution.

Due to the breadth-first search carried out by NDP, weak plans returned by Weak

have minimum length best-case execution paths and strong plans returned by Strong

have minimum length worst-case execution paths (Cimatti et al., 2003). Formally, for a
non-deterministic planning domain D and a plan π of D let

Exec(s, π) ≡ {q : q is a path of M(π) and q0 = s}

denote the set of execution paths of π starting at s. Let the length of a path q = q0q1 · · ·
with respect to a set of states C be defined by

|q|C ≡

{

i : if qi ∈ C and qj 6∈ C for 0 ≤ j < i
∞ : otherwise.

Let Min(s, C, π) and Max(s, C, π) denote the minimum and maximum length of an execu-
tion path from s to C of a plan π

Min(s, C, π) ≡ min
q∈Exec(s,π)

|q|C ,

Max(s, C, π) ≡ max
q∈Exec(s,π)

|q|C .

Similarly, let Π denote the set of all plans of D and let WDist(s, C) (weak distance) and
SDist(s, C) (strong distance) denote the minimum of Min(s, C, π) and Max(s, C, π) for
any plan π ∈ Π of D

WDist(s, C) ≡ min
π∈Π

Min(s, C, π),

SDist(s, C) ≡ min
π∈Π

Max(s, C, π).

For a weak plan πw = Weak(s0, G) and strong plan πs = Strong(s0, G), we then have

Min(s0, G, πw) = WDist(s0, G),

Max(s0, G, πs) = SDist(s0, G).

2.2 Guided Planning Algorithms

Pure heuristic non-deterministic planning algorithms can be realized by partitioning the
set of state-action pairs of the precomponent according to a heuristic measure. A guided
version of NDP called GNDP is shown in Figure 3. Similar to NDP, this algorithm can
be efficiently implemented with BDDs using a technique called non-deterministic state-set
branching (Jensen et al., 2003). The main difference between NDP and GNDP is that
GNDP keeps partitioned precomponent and the set of states covered by the plan in the
maps Pc and C. The purpose of C is to partition the states with respect to the value of a
heuristic function that for a state s estimates the minimum length of a path from s0 to s. 1

1. Initially the map entry, C[hgoal ] is assigned to the goal states. To simplify the presentation, we assume
that all goal states have identical h-value. A generalization of the algorithm is trivial.
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function GNDP(s0, G, hg)
1 P ← ∅; C ← emptyMap; C[hg] ← G
2 while s0 /∈ C
3 Pc ← GPreComp(C)
4 if |Pc| = 0 then return “no solution exists”
5 P ← P ∪ Pc

6 for k = 1 to |Pc|
7 C[hk] ← C[hk] ∪ States(Pc[hk])
8 return P

Figure 3: A generic guided algorithm for synthesizing non-deterministic plans.

The unbolded name of a map (e.g., Pc in Line 5) denotes the elements in the map. Thus,
for a map m = {e1 7→ v1, . . . en 7→ vn}, we have m = {v1, . . . , vn}. For weak and strong
plans, the guided precomponent simply consists of the subset of SAs in the blind precom-
ponent with lowest heuristic measure. Let GuidedWeak, GuidedStrongCyclic, and
GuidedStrong denote GNDP using the guided weak, strong cyclic, and strong precom-
ponent, respectively. These algorithms are correct, but GuidedWeak and GuidedStrong

may not return optimal weak and strong plans due to the pure heuristic search. We refer
the reader to (Jensen, 2003a) for details.

3. N-Fault Tolerant Planning Problems

A fault tolerant planning domain is a non-deterministic planning domain, where actions
have primary and secondary effects. The primary effect is deterministic. However, since an
action often can fail in many different ways, we allow the secondary effect to lead to one of
several possible next states. Thus, secondary effects are non-deterministic.

Primary and secondary effects can either be represented explicitly in a planning domain
via two separate effect descriptions or implicitly via a embedding in a non-deterministic plan-
ning domain extended with a fault counter. We call the explicit representation a fault toler-
ant planning domain while the implicit representation is called the induced non-deterministic
planning domain. The explicit representation is suitable for planning algorithms that dis-
tinguish semantically between primary and secondary effects. This is particularly important
for constructing guided planning algorithms that decouple the guidance of the planning for
primary and secondary effects. The implicit representation, on the other hand, is useful
for defining properties of fault tolerant plans and generating fault tolerant plans via the
Strong algorithm.

Definition 1 (Fault Tolerant Planning Domain) A fault tolerant planning domain is
a tuple DF = 〈S,Act ,→, ;〉 where S is a finite set of states, Act is a finite set of actions,
→⊆ S×Act×S is a deterministic transition relation of primary effects, and ;⊆ S×Act×S
is a non-deterministic transition relation of secondary effects. Instead of (s, a, s′) ∈→ and
(s, a, s′) ∈;, we write s

a
→ s′ and s

a
; s′, respectively.
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For a fault tolerant planning domain, the set of next states of an action a applied in
state s is the union of next states reached by primary and secondary effects

NextF (s, a) ≡ {s′ : s
a
→ s′ or s

a
; s′}.

As for non-deterministic domains, an action a is called applicable in state s iff NextF (s, a) 6=
∅. The set of applicable actions in a state s is given by

AppF (s) ≡ {a : NextF (s, a) 6= ∅}.

A fault tolerant planning problem is given by an initial state, a set of goal states to reach, and
an upper bound n on the number faults the plan must be able to handle during execution.

Definition 2 (N-Fault Tolerant Planning Problem) An n-fault tolerant planning prob-
lem is a tuple PF = 〈DF , s0, G, n〉 where DF is a fault tolerant planning domain, s0 ∈ S is
an initial state, G ⊆ S is a set of goal states, and n : N is an upper bound on the number
of faults the plan must be able to recover from.

An n-fault tolerant plan is a set of plans F 0, . . . , Fn, where F i is applied when i faults
have occurred.2

Definition 3 (N-Fault Tolerant Plan) An n-fault tolerant plan for the problem PF =
〈DF , s0, G, n〉 is a tuple πF = 〈F 0, . . . , Fn〉, where F i is a a set of state action pairs of DF .

A valid n-fault tolerant plan guarantees that a goal state is reached in a finite number of
steps from the initial state if no more than n faults occur during execution. An optimal n-
fault tolerant plan is a valid fault tolerant plan with minimum worst case execution length.
These properties can be defined formally in terms of the induced non-deterministic planning
domain. The induced non-deterministic planning domain adds a fault counter f to the state
description and models secondary effects only when f ≤ n. In this way an optimal fault
tolerant plan is a strong plan generated by the Strong algorithm.

Definition 4 (Induced Non-Deterministic Planning Domain) Let DF = 〈S,Act ,→
, ;〉 be a fault tolerant planning problem. The non-deterministic planning domain induced
from DF is given by DI

n = 〈SI ,ActI ,→I〉, where

• SI = S × {0, . . . , n},

• ActI = Act,

• 〈s, f〉
a
→

I
〈s′, f ′〉 iff

– s
a
→ s′ and f ′ = f , or

– s
a
; s′, f < n, and f ′ = f + 1.

Definition 5 (Induced Non-Deterministic Planning Problem) Let PF = 〈DF , s0, G, n〉
be an n-fault tolerant planning problem. The non-deterministic planning problem induced
from PF is given by PI = 〈DI

n, sI
0, G

I〉, where

2. These sub-plans can be compactly stored in a shared representation based on a multi-rooted BDD.
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• sI0 = 〈s0, 0〉,

• GI = G × {0, . . . , n}.

Definition 6 (Induced Non-Deterministic Plan) Let πF = 〈F 0, . . . , Fn〉 be a fault
tolerant plan. The non-deterministic plan induced from πF is given by πI = ∪n

i=0{〈〈s, i〉, a〉 :
〈s, a〉 ∈ Fi}.

Valid and optimal n-fault tolerant plans can now be formally defined in terms of their
induced non-deterministic plans.

Definition 7 (Valid N-Fault Tolerant Plan) An n-fault tolerant plan πF is valid iff
M(πI), sI0 |= AFGI .

Definition 8 (Optimal N-Fault Tolerant Plan) A valid n-fault tolerant plan πF is op-
timal iff Max(sI0 , GI , πI) = SDist(sI0 , GI)

4. N-Fault Tolerant Planning Algorithms

Let n-FTPS denote the Strong algorithm applied to the non-deterministic planning prob-
lem induced from an n-fault tolerant planning problem. It follows directly from the defi-
nition of strong plans that n-FTPS is correct, i.e., that it returns a valid n-fault tolerant
plan if such a plan it exists and otherwise returns failure. Moreover, due to the optimal-
ity of Strong, n-FTPS returns optimal n-fault tolerant plans. Since the performance of
blind non-deterministic planning is limited, we also consider solving n-fault tolerant plan-
ning problems with the guided version of strong planning defined in previous section. Let
n-GFTPS denote the GuidedStrong algorithm applied to the non-deterministic plan-
ning problem induced from an n-fault tolerant planning problem. Due to the pure heuristic
search approach, n-GFTPS may return suboptimal solutions.

An error state is a state resulting from a secondary effect of an action. We call an
error state local, if there exists a short path in the state space between the error state and
the resulting state of the primary effect of the action. We may expect n-GFTPS to be
efficient when error states are local because they then will be covered by the search beam
of n-GFTPS . In practice, however, secondary effects may be permanent malfunctions that
due to their impact on the domain cause a transition to a non-local state. Indeed, in
theory, the location of error states may be completely uncorrelated with the location of
states of primary effect. To address this problem, we develop a specialized algorithm where
the planning for primary and secondary effects is decoupled. We focus our investigation
to 1-fault tolerant planning and introduce two algorithms: 1-FTP using blind search and
1-GFTP using guided search.

4.1 The 1-FTP algorithm

The 1-FTP algorithm is shown in Figure 4. The function PreImgf computes the preimage
of secondary effects. 1-FTP returns the 1-fault tolerant plan 〈F 0, F 1〉, where F 0 is robust
to one fault while F 1 is a recovery plan.
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function 1-FTP(s0, G)
1 F 0 ← ∅; C0 ← G
2 F 1 ← ∅; C1 ← G
3 while s0 /∈ C0

4 f0
c ← PreImg(C0) \ C0 × Act

5 f0 ← f0
c \ PreImgf (C1)

6 while f0 = ∅
7 f1 ← PreImg(C1) \ C1 × Act
8 if f1 = ∅ then return “no solution exists”
9 F 1 ← F 1 ∪ f1

10 C1 ← C1 ∪ States(f1)

11 f0 ← f0
c \ PreImgf (C1)

12 F 0 ← F 0 ∪ f0

13 C0 ← C0 ∪ States(f0)
14 return 〈F 0, F 1〉

Figure 4: The 1-FTP algorithm.

1-FTP performs a backward search from the goal states that alternate between blindly
expanding F 0 and F 1 such that failure states of F 0 always can be recovered by F 1. Initially
F 0 and F 1 are assigned to empty plans (l.1-2). The variables C0 and C1 are states covered
by the current plans in F 0 and F 1. They are initialized to the goal states since these states
are covered by empty plans. In each iteration of the outer loop (l.3-13), F 0 is expanded
with SAs in f0 (l.12-13). First, a candidate f0

c is computed. It is the preimage of the states
in F 0 pruned for SAs of states already covered by F 0 (l.4). The variable f0 is assigned
to f0

c restricted to SAs for which all error states are covered by the current recovery plan
(l.5). If f0 is empty the recovery plan is expanded in the inner loop until f0 is nonempty
(l.6-11). If the recovery plan at some point has reached a fixed point and f0 is still empty,
the algorithm terminates with failure, since in this case, no recovery plan exists (l.8).

Theorem 1 (Correctness of 1-FTP) The 1-FTP planning algorithm is correct. The
algorithm returns “no solution exists” iff no 1-fault tolerant plan exists, otherwise it returns
a valid 1-fault tolerant plan.

Proof. This follows from the soundness, completeness, and termination theorems of 1-FTP

proved in Appendix A. 2

Example 3 An example of the non-deterministic plans F 0 and F 1 returned by 1-FTP is
shown in Figure 5 3

1-FTP expands both F 0 and F 1 blindly. An inherent strategy of the algorithm, though,
is not to expand F 1 more than necessary to recover the faults of F 0. This is not the case
for n-FTPS that does not distinguish states with different number of faults. The aggressive
strategy of 1-FTP, however, makes it suboptimal as the example in Figure 6 shows. In
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Figure 5: An example of a 1-fault tolerant plan 〈F 0, F 1〉 returned by 1-FTP. Primary and
secondary effects of actions are drawn with solid and dashed lines, respectively.
In this example, we assume that F 0 forms a sequence of actions from the initial
state to a goal state, while F 1 recovers all the possible faults of actions in F 0.

the first two iterations of the outer loop, 〈p2, b〉 and 〈p1, b〉 are added to F 0 and nothing
is added to F 1. In the third iteration of the outer loop, F 1 is extended with 〈p2, b〉 and
〈q2, a〉 and F 0 is extended with 〈q2, a〉. In the last two iterations of the outer loop, 〈q1, a〉
and 〈s0, a〉 are added to F 0. The resulting plan is

F 0 = {〈s0, a〉, 〈q1, a〉, 〈q2, a〉, 〈p1, b〉, 〈p2, b〉}

F 1 = {〈p2, b〉, 〈q2, a〉}.

The worst case length of this 1-fault tolerant plan is 4. However, a 1-fault tolerant plan

F 0 = {〈s0, b〉, 〈p1, b〉, 〈p2, b〉}

F 1 = {〈q1, a〉, 〈q2, a〉}

with worst case length of 3 exists.

a

a
b

b b

a g

q2

p2

a

p1 b

q1

s0

Figure 6: A problem with a single goal state g showing that 1-FTP may return suboptimal
solutions. Dashed lines indicate secondary effects. Notice that action a and b only
have secondary effects in q2 and s0, respectively. In all other states, the actions
are assumed always to succeed.
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4.2 The 1-GFTP Algorithm

Despite the different search strategies applied by 1-FTP and 1-FTPS , they both perform
blind search. A more interesting algorithm is a guided version of 1-FTP called 1-GFTP

that similar to GNDP is based on non-deterministic state-set branching. The over all
design goal of 1-GFTP is to guide the expansion of F 0 toward the initial state and guide
the expansion of F 1 toward the failure states of F 0. However, this can be accomplished in
many different ways. Below we evaluate three different strategies. For each algorithm, F 0

is guided in a pure heuristic manner toward the initial state using the approach employed
by n-GFTPS while the guiding approach used for F 1 varies.

The first strategy is to assume that failure states are local and guide F 1 toward the initial
state as well. The resulting algorithm is similar to 1-GFTPS and has poor performance.
The problem is that the pure heuristic approach causes F 1 only to cover a narrow beam of
states in the state space. Error states not within close distance to the primary effects tend
not to be covered by F 1. The strategy can be improved by widening the beam by taking
the search depth into account. However, this does not provide a satisfactory solution for
non-local states.

The second strategy is ideal in the sense that it dynamically guides the expansion of F 1

toward error states of the precomponents of F 0. This can be done by using a specialized
BDD operation that splits the precomponent of F 1 according to the Hamming distance to
the error states. The complexity of this operation, however, is exponential in the size of the
BDD representing the error states and the size of the BDD representing the precomponent
of F 0. Due to the dynamic programming used by the BDD package, the average complexity
may be much lower. However, this algorithm is often intractable in practice.

The third strategy is the one chosen for 1-GFTP. It expands F 1 blindly but then prunes
SAs from the precomponent of F 1 not used to recover error states of F 0. Thus, it uses an
indirect approach to guide the expansion of F 1. We expect this strategy to work well even
if the absolute position of error states is non-local. However, the strategy assumes that the
relative position of error states is local in the sense that the SAs in F 1 in expansion i of F 0

are relevant for recovering error states in expansion i + 1 of F 0. In addition, we still have
an essential problem to solve: to expand F 0 or F 1. There are two extremes.

1. Expand F 1 until first recovery of f0: compute a complete partitioned backward pre-
component of F 0, expand F 1 until some partition in f0 has recovered error states and
add the partition with least h-value to F 0.

2. Expand F 1 until best recovery of f0: compute a complete partitioned backward pre-
component of F 0, expand F 1 until the partition of f0 with lowest h-value has recovered
error states and add this partition to F 0. If none of these error states can be recovered
then consider the partition with second lowest h-value and so on.

It turns out that neither of these extremes work well in practice. The first is too conservative.
It may add a partition with a high h-value even though a partition with a low h-value can
be recovered given just a few more expansions of F 1. The second strategy is too greedy.
It ignores the complexity of expanding F 1 in order to recover error states of the partition
of f0 with lowest h-value. Instead, we consider a mixed strategy: spend half of the last
expansion time on recovering error states of the partition of f0 with lowest h-value and,
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in case this is impossible, spend one fourth of the last expansion time on recovering error
states of the partition of f0 with second lowest h-value, and so on.

The 1-GFTP algorithm is shown in Figure 7. The keys in maps are sorted ascendingly.

function 1-GFTP(s0, G)
1 F 0 ← ∅; C0[hg] ← G
2 F 1 ← ∅; C1 ← G
3 t ← ε
4 while s0 /∈ C0

5 ts ← tCPU

6 PC ← PreCompFTP(C0)
7 f0 ← ∅; f 0

c ← ∅
8 f1

c ← emptyMap
9 i ← 0
10 while f0 = ∅ ∧ i < |PC|
11 i ← i + 1; t ← t/2
12 f0

c ← f0
c ∪ PC[i]

13 〈f1
c , f0〉 ← ExpandTimed(f0

c , f1
c , C1, t)

14 if f0 = ∅ then
15 〈f1

c , f0〉 ← ExpandTimed(f0
c , f1

c , C1,∞)
16 t ← tCPU − ts
17 if f0 = ∅ then return “no solution exists”
18 f1 ← PruneUnused(f1

c , f0)
19 F 1 ← F 1 ∪ f1; C1 ← C1 ∪ States(f1)
20 F 0 ← F 0 ∪ f0

21 for i = 1 to |PC|
22 C0[hi] ← C0[hi] ∪ States(f0 ∩ PC[hi])
23 return 〈F 0, F 1〉

Figure 7: The 1-GFTP algorithm.

The instantiation of F 0 and F 1 of 1-GFTP is similar to 1-FTP except that the states in C0

are partitioned with respect to their associated h-value. Initially the map entry, C0[hgoal ]
is assigned to the goal states which are assumed to have identical h-value. 3 The variable
t stores the duration of the previous expansion. Initially, it is given a small value ε. In
each iteration of the main loop (l.4-22), the precomponents f0 and f1 are computed and
added to F 0 and F 1. First, the start time ts is logged by reading the current time tCPU

(l.5). Then a map PC holding a complete partitioned precomponent candidate of F 0 is
computed by PreCompFTP 4 (l.6). For each entry in C0, PreCompFTP inserts the
sub-precomponent in PC of each partition of a partitioning of the transition relation of
primary effects. We assume that this partitioning has m subrelations →1, . . . ,→m where
the transitions in sub-relation by →j are associated with a change δhj of the h-value (in
forward direction). The inner loop (l.10-13) of 1-GFTP expands the two candidates f0

c

3. As for GNDP, a generalization of the algorithm is trivial.
4. Recall that the unbolded name of a map (e.g., C

0 in l.4) denotes the elements in the map.
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and f1
c for f0 and f1. In each iteration, a partition of the partitioned precomponent PC

is added to f0
c (l.12).5 The function ExpandTimed expands f1

c . In iteration i, the time
out bound of the expansion is t/2i. The states recovS is the union of the states in f1

c and
F 1. Hence, PreImgf (recovS ) is the set of SAs with error states outside of recovS which
are subtracted from the SAs in f0

c (l.5 and l.11). ExpandTimed returns early if

1. a precomponent f0 in the candidate f0
c is found where all error states are recovered,

or

2. f1
c has reached a fixed point.

The sub-precomponent added to f1
c in iteration i of ExpandTimed is stored in the map

entry f1
c [i] in order to later prune SAs not used for recovery.

function PreCompFTP(C0)
1 PC ← emptyMap
2 for i = 1 to |C0|
3 for j = 1 to m
4 SA ← PreImgj(C

0[hi]) \ C0 × Act
5 PC[hi − δhj ] ← PC[hi − δhj ] ∪ SA
6 return PC

Eventually f0
c may contain all the SAs in PC without any of these being recoverable. In

this case 1-GFTP expands f1
c (l.15) untimed.

function ExpandTimed(f0
c , f1

c , C1, t)
1 ts ← tCPU

2 Oldf 1
c ← ⊥

3 i ← |f1
c |

4 recovS ← States(f1
c ) ∪ C1

5 f0 ← f0
c \ PreImgf (recovS )

6 while f0 = ∅ ∧ Oldf 1
c 6= f1

c ∧ tCPU − ts < t
7 Oldf 1

c ← f1
c

8 i ← i + 1
9 f1

c [i] ← PreImg(recovS ) \ recovS × Act
10 recovS ← States(f1

c ) ∪ C1

11 f0 ← f0
c \ PreImgf (recovS )

12 return 〈f1
c , f0〉

If f1
c has reached a fixed point but no recoverable precomponent f0 exists, no 1-fault tolerant

plan exists and 1-GFTP returns with failure (l.17). Otherwise, f1
c is pruned for SAs of states

not used to recover the SAs in f0 (l.18). This pruning is computed by PruneUnused that
traverses backward through the sub-precomponents of f1

c and marks states that either are
error states of SAs in f0, or states needed to recover error states.

5. Recall that PC is traversed ascendingly such that the partition with lowest h-value is added first.
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function PruneUnused(f1
c , f0)

1 err ← SAimgf (f0)
2 img ← ∅;
3 for i = |f1

c | to 1
4 f1

c [i] ← f1
c [i] ∩

(

(err ∪ img) × Act
)

5 img ← SAimg(f1
c [i])

6 return f1
c

The function SAimg(π) and SAimgf (π) computes the image states of a set of SAs π for
primary and secondary effects respectively.

SAimg(π) ≡ {s′ : ∃〈s, a〉 ∈ π . s
a
→ s′} (1)

SAimgf (π) ≡ {s′ : ∃〈s, a〉 ∈ π . s
a
; s′} (2)

The updating of F 0 and F 1 of 1-GFTP (l.19-22) is similar to 1-FTP, except that C0 is
updated by iterating over PC and picking SAs in f0. Notice that in this iteration hi refers
to the keys of PC.

Theorem 2 (Correctness of 1-GFTP) The 1-GFTP planning algorithm is correct. The
algorithm returns “no solution exists” iff no 1-fault tolerant plan exists, otherwise it returns
a valid 1-fault tolerant plan.

Proof. This follows from the soundness, completeness, and termination theorems of 1-
GFTP proved in Appendix A. 2

The specialized algorithms can be generalized to n faults by adding more recovery plans
Fn, Fn−1, . . . , F 0. For n-GFTP all of these recovery plans would be indirectly guided by
the expansion of Fn. The algorithm is illustrated in Figure 8.

5. Experimental Evaluation

The experimental evaluation has two major objectives: to get a better intuition about
the nature of fault tolerant plans and to compare the performance of the developed algo-
rithms. 1-FTP, 1-GFTP, 1-FTPS , and 1-GFTPS have been implemented in the BDD-
based BIFROST 0.7 search engine (Jensen, 2003b). The domains are defined in an extended
version of the Non-deterministic Agent Domain Language (NADL) (Jensen & Veloso, 2000)
called NADL+.

All experiments have been executed on a Redhat Linux 7.1 PC with kernel 2.4.16, 500
MHz Pentium III CPU, 512 KB L2 cache and 512 MB RAM. Since the number of allocated
BDD nodes in the unique table (n) and the number of allocated BDD nodes in the operator
caches (c) of the BuDDy6 BDD package (Lind-Nielsen, 1999) may cause an exponential
performance difference of BIFROST, we state the settings of these parameters for each
experiment. In general, the sizes of the operator caches and the unique table are adjusted

6. Comparison experiments with the CUDD package (Somenzi, 1996) has not shown a significant perfor-
mance difference (Jensen, 2002).
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Figure 8: An example of Fn, . . . , F 0 produced by a specialized n-fault tolerant planning
algorithm. Primary and secondary effects of actions are drawn with solid and
dashed lines, respectively.

to fit the memory requirements of the most demanding algorithm in an experiment. Thus,
performance differences between algorithms are not due to relative differences in cache
misses or page faults.

5.1 Unguided Search

We first focus on unguided search and study four fault tolerant planning domains. Two of
these, DS1 and PSR, are models of real-world domains.

DS1

DS1 is based on an SMV encoding (Pecheur & Simmons, 2000) of the Livingstone model
(Williams & Nayak, 1996) used by the Remote Agent for NASA’s Deep Space One probe.
The Livingstone model describes the electrical system of the spacecraft. It consists of
a system bus and a number of units connected to the bus. These units include a power
distribution subsystem, a Ion Propulsion System (IPS), Propulsion Drive Electronics (PDE),
a Reaction Control System (RCS), Attitude Control System (ACS), Star Tracker Unit
(SRU), and a MICAS camera. We recast the SMV encoding as a fault tolerant planning
problem. Each bus-command is an action. The primary effect of the command is the
changes it causes on the electrical system given that all units work correct. The secondary
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effect of an action is that one of the two faults F2 and F4 considered in the Remote Agent
Experiment happens (Muscettola, Nayak, Pell, & Williams, 1998).

F2 : camera or pasm switch is recoverably stuck on/off.

F4 : an x-z thruster valve is permanently stuck closed.

In addition to these two faults, the Remote Agent Experiment considered two other mal-
functions. We are not modeling these, since no 1-fault tolerant plan exists when taking
all four faults into account. The following simplifications have been made in the NADL+

model of the SMV description

1. we assume that the state of components is known,

2. attitude errors are assumed to be deterministically computable,

3. relative thrust is assumed to be low or nominal if a valve is stuck otherwise nominal,

4. redundant state variables in the SMV model have been removed. 7

The NADL+ encoding of the domain has 84 Boolean state variables. We consider generating
a 1-fault tolerant plan from an initial state where the IPS is in standby mode, the MICAS
camera is “off”, and the pasm switch is “on”. The goal is to reach a state where the IPS
is in thrusting mode, the MICAS camera is “on”, and the pasm switch is “off”. The BDD
package parameters are n = 1M and c = 100K. The threshold for merging partitions of a
transition relation partitioning is 5000. The total size of the transition relation is 104881
and is computed in 0.42 seconds. The size of the solution is 535 and the total CPU time is
1.15 seconds.

The experiment shows that a BDD encoding is very efficient for the kind of constraints
modeled by DS1. Despite a fairly large and dense model, a transition relation is fast to
compute. In addition, a 1-fault tolerant plan for a non-trivial problem in this domain is
small and can be generated in less than a second. The experiment demonstrates that BDD-
based fault tolerant planning is mature to be applied on significant real-world problems.

Regarding the nature of fault tolerant plans, the DS1 experiment shows that even 1-
fault tolerant plans require significant redundancy of the controlled system. No 1-fault
tolerant plan exists for the problem if all of the original four failures are taken into account.
This result is encouraging since it shows that fault tolerant plans are substantially stricter
than weak plans and the existence of fault tolerant plans is connected with the redundancy
characteristics of the modeled system in a natural way.

PSR

The Power Supply Restoration domain (PSR) is a network of electric lines connected via
switching devices (SDs), and fed via circuit-breakers (CBs). Switching devices and circuit
breakers can either be open or closed. A circuit-breaker supplies power, when it is closed,
and a switching device stops the power propagation if it is open. Consumers may be located

7. An automatic approach for removing redundant state variables doing has been developed in (Yang,
Simmons, Bryant, & O’Hallaron, 1999).
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on any line and are supplied only when the line is supplied. We assume that each closed
circuit-breaker forms a feeder. A feeder is a tree consisting of closed switching devices
and lines reachable downstream from the circuit breaker. The leafs are open switching
devices and dead end lines. The “simple” PSR domain investigated in (Bertoli, Cimatti,
Slanley, & Thiébaux, 2002) is shown in Figure 9. In the depicted configuration, it only
has a single feeder rooted in CB2. In the original definition of PSR domains, each unit in

CB3

CB2

CB1

l7

l5 l6 l4

l1 l2 l3

SD7

SD4 SD2

SD6 SD5 SD1

SD3

Figure 9: The “simple” PSR domain studied in (Bertoli et al., 2002). A filled box denote
that the associated circuit-breaker or switching device is closed. Supplied and
unsupplied lines are drawn solid and dashed, respectively.

the system may fail. Lines may short circuit, and switches may get stuck in one of their
two positions. In addition, states are assumed only to be partially observable. We consider
a simplified version of the domain where states are fully observable and lines do not fail.
The actions of the simplified domain is to open and close switching devises and circuit
breakers. The primary effect of actions is that they open and close their associated units.
The secondary effect is that the units break permanently and get stuck in their current
position. A specialized linear version of the domain shown in Figure 10 with n ranging
from 5 to 35.

l1

CB0

CB1

CBn−1

SD0

SD1

SDn−1

l0

l2

l2(n−1)

Figure 10: The linear PSR networks used for experiments.

We compare the performance of 1-FTP and 1-FTPS . In the initial state, all switches
are open and the goal is to feed all lines. 1-FTP and 1-FTPS solve the simple network in
6.8 and 11.25 seconds, respectively (0.98 seconds is used on memory allocation, n = 1M and
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c = 700K). The results of the linear network are shown in Figure 11. The BDD package
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Figure 11: Results of the PSR problems.

parameters are n = 15M and c = 500K and 3.38 seconds are used on memory allocation.
1-FTP performs significantly better than 1-FTPS on this problem. Interestingly, the per-
formance difference is not reflected by the plan sizes. However, this may be an artifact
caused by the fact that the plan size for 1-FTP is a sum of the size of two BDDs, while
the plan size for 1-FTPS is the size of a single BDD. Similarly to the DS1 domain, 1-fault
tolerance imposes a strong constraint on the PSR domain. For most configurations, where
a few units already have failed, no 1-fault tolerant plan exists.

Power Plant

The power plant domain is shown in Figure 12 and originates in (Jensen & Veloso, 2000).
The task is to execute the control actions in order to bring the plant from some bad state,
where the plant is unsafe or not working properly, to some good state, where the plant
satisfies its safety and activity requirements. A single reactor R is surrounded by four
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Figure 12: The power plant domain. An open valve is drawn solid and allows water or
steam to flow through it. In the depicted state, a failure of heat exchanger 1 is
assumed just to have happened.

heat exchangers H1, H2, H3 and H4. The heat exchangers produce high pressure steam
to the four electricity generating turbines T1, T2, T3 and T4. The heat exchangers can
fail and leak radioactive substances from the internal water loop to the external steam
loop. If this happens, the blocking valve (a1, a2, a3 or a4) of the heat exchanger must be
closed. However, these valves can fail too, in which case the valves m2, m3 or m1 are used.
Similarly, if turbines fail, they must be shut down by closing one of the valves b1, b2, b3 or
b4, or m4, m5 and m1. The energy production p of the plant can either be 0,1,2,3 or 4 units
of energy per time unit. The production must be adjusted to fit the demand f , if possible.
A heat exchanger can only transfer enough energy to a single turbine, and a single turbine
can only produce one unit of energy per time unit. The initial state is shown in Figure 12.
A failure of heat exchanger 1 is a assumed to have just happened.

We compare the performance of 1-FTP and 1-FTPS in two versions of the domain.
The first considers controlling a single power plant. The second considers controlling two
power plants simultaneously. The results are shown in Figure 13. In both experiments,
the parameters of the BDD package are n = 15M and c = 500K. The time spent on
memory allocation is 3.4 seconds. 1-FTP has a slightly better performance than 1-FTPS .
However, both algorithms suffer from a large growth rate of the BDDs representing the
frontier of the backward search. Again, 1-fault tolerant plans turns out to be surprisingly
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1-FTP 1-FTPS

size ttotal |sol | ttotal |sol |

40 6.1 65K 8.7 62K
80 157.8 1.2M 189.4 1.5M

Figure 13: Results of the power plant experiment. The total CPU time and plan size is
given by ttotal and |sol |, respectively. The size of the problem is the number of
Boolean state variables.

strict. Even though the system is highly redundant, 1-fault tolerant plans only exist for
simple malfunctions like the one investigated in this experiment.

Beam Walk

...

...s0

G

Figure 14: The Beam Walk domain. Solid edges denote primary effects of the move action,
while dashed edges denote secondary effects.

The Beam Walk domain was introduced in (Cimatti, Roveri, & Traverso, 1998) and
consists of a robot walking on a beam. The primary effect of the move action is that the
robot moves one step forward on the beam. The secondary effect is that it falls down from
the beam. The domain is shown in Figure 14. The Beam Walk domain represents a worst
case scenario for 1-FTP and 1-FTPS since a fault in the last step to reach the goal causes
a transition to the state furthest away from the goal. Both algorithms must iterate over
all states before a solution is found. The results are shown in Figure 15. As expected,
both algorithms have a limited performance in this domain. Again, however, we observe a
slightly better performance of 1-FTP.

5.2 Guided Search

The main purpose of the experiments in this section is to study the difference between 1-
GFTP and 1-GFTPS . In particular, we are interested in investigating how sensitive these
algorithms are to non-local error states and to what extent we may expect this to be a
problem in practice. We study 3 domains, of which SIDMAR descends from a real-world
study.

22



Fault Tolerant Planning

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

C
P

U
 T

im
e 

(s
ec

)

Number of Boolean State Variables

1-FTP
1-FTPs

Figure 15: Results of the BeamWalk experiments.

LV

The LV domain is an artificial domain and has been designed to demonstrate the different
properties of 1-GFTP and 1-GFTPS . It is an m×m grid world with initial state (0, m−1)
and goal state (bm/2c, bm/2c). The actions are Up, Down, Left, and Right. Above the y = x
line, actions may fail causing the x and y position to be swapped. Thus, error states are
mirrored in the y = x line. A 9 × 9 instance of the problem is shown in Figure 16. The
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G

Figure 16: The 9 × 9 instance of the LV domain.

essential property is that error states are non-local, but that two states close to each other
also have error states close to each other. This is the assumption made by 1-GFTP, but
not 1-GFTPS that requires error states to be local. The heuristic value of a state is the
Manhattan distance to the initial state. The BDD package parameters are n = 5M and
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c = 500K. Memory allocation takes 1.4 seconds. The results are shown in Figure 17. As
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Figure 17: Results of the LV experiments.

depicted, the performance of 1-GFTPS degrades very fast with m due to the misguidance
of the heuristic for the recovery part of the plan. Its total CPU time is more than 500
seconds after the first three experiments. 1-GFTPS is fairly unaffected by the error states.
To explain this, consider how the backward search proceeds from the goal state. The guided
precomponents of F 0 will cause this plan to beam out toward the initial state. Due to the
relative locality of error states, the pruning of F 1 will cause F 1 to beam out in the opposite
direction. Thus, both F 0 and F 1 remain small during the search.

Non-Deterministic 8-Puzzle

The 8-Puzzle consists of a 3 × 3 board with 8 numbered tiles and a blank space. A tile
adjacent to the blank space can slide into the space. The goal is to reach a configuration,
where the tiles are ordered ascendingly left to right, top to bottom. We consider a non-
deterministic version of the 8-Puzzle, where the secondary effects are self loops as shown
in Figure 18. Thus, error states are the most local possible. We use the usual sum of
Manhattan distances of tiles as a heuristic for the distance to the initial state.

The experiment compares the performance of 1-FTP, 1-GFTP, 1-FTPS , and 1-GFTPS .
The BDD package parameters are n = 1M and c = 100K. Memory allocation takes 0.29
seconds. The number of Boolean state variables is 35 in all experiments. The results are
shown in Figure 19. The results of the 8-Puzzle experiment further demonstrate the differ-
ence between 1-GFTP and 1-GFTPS . Again, 1-FTP performs substantially better than
1-FTPS . The guided algorithms 1-GFTP and 1-GFTPS have much better performance
than the unguided algorithms. Due to local error states, however, there is no substantial
performance difference between these two algorithms. As depicted, 1-FTP is slightly faster
than 1-GFTPS in the experiment with a minimum deterministic solution length of 14. For
such small problems, we may expect to see this since 1-FTP only expands the recovery plan
when needed while 1-GFTPS expands the recovery part of its plan in each iteration.
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Figure 18: Primary (solid) and secondary (dashed) effects of the non-deterministic 8-Puzzle
domain.

SIDMAR

The final experiments are on the SIDMAR domain. The purpose of these experiments is to
study the robustness of 1-GFTP and 1-GFTPS to the kind of errors found in real-world
domains. The SIDMAR domain is an abstract model of a real-world steel producing plant
in Ghent, Belgium used as an ESPRIT case study (Fehnker, 1999). The layout of the steel
plant is shown in Figure 20. The goal is to cast steel of different qualities. Pig iron is poured
portion-wise in ladles by the two converter vessels. The ladles can move autonomously on
the two east-west tracks. However, two ladles can not pass each other and there can at
most be one ladle between machines. Ladles are moved in the north-south direction by the
two overhead cranes. The pig iron must be treated differently to obtain steel of different
qualities. There are three different treatments: 1) machine 1 and 4, 2) machine 2 and 5,
and 3) machine 3. Before empty ladles are moved to the storage place, the steel is cast by
the continuous casting machine. A ladle can only leave the casting machine, if there already
is a filled ladle at the holding place. We assume that actions of machine 1,2,4, and 5 and
move actions on the track may fail. The secondary effect of move actions is that nothing
happens for the particular move. Later moves, however, may still succeed. The secondary
effect of machine actions is that no treatment is carried out, and the machine is broken
down permanently.

We consider casting two ladles of steel. The heuristic is the sum of machine treatments
carried out on the ladles. The experiment compares the performance of 1-FTP, 1-GFTP,
1-FTPS , and 1-GFTPS . The BDD package parameters are n = 5M and c = 500K.
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Figure 19: Results of the 8-Puzzle experiments.

Memory allocation takes 1.41 seconds. The number of Boolean state variables is 47 in all
experiments. The results are shown in Figure 21. Missing data points indicates that the
associated algorithm spent more than 500 seconds trying to solve the problem. The only
algorithm with good performance is 1-GFTP. The experiment indicates that real-world
domains may have non-local error states that limits the performance of 1-GFTPs. Also
notice that this is the only domain where 1-FTP does not outperform 1-FTPS . In this
domain, 1-FTP seems to be finding complex plans that fulfills that the recovery plan is
minimum. Thus, the strategy of 1-FTP to keep the recovery plan as small as possible does
not seem to be an advantage in general.

6. Related Work

Disjunctive action effects in conditional and symbolic non-deterministic planning are of-
ten caused by action failures (e.g., Peot & Smith, 1992; Weld, Anderson, & Smith, 1998;
Cimatti et al., 2003). This is also the case for the large body of work in AI on fault di-
agnosis (e.g., Kleer & Williams, 1987; Hammond, 1990; Senjen & De Beler, 1993; Doyle,
1995). However, previous work explicitly representing and reasoning about success and
failure effects of actions is very limited. The Elmer system (McCalla & Ward, 1982) uses

26



Fault Tolerant Planning

Buffer

Storage

Holding

Converter 1

Converter 2

Continuous

Machine 1

Machine 4

Machine 2 Machine 3

Machine 5

Crane 2

Crane 1
cranes

Overhead

place

place

machine
casting

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

Figure 20: Layout of the SIDMAR steel plant.

error transitions from abstract actions to detect and recover from failures. In the Procedu-
ral Reasoning System (PSR, Georgeff & Lansky, 1986), the procedure descriptions defines
the effect of successful and unsuccessful execution of a procedure. Similarly, the Reactive
Model Based Programming Language (RMPL, Williams, Ingham, Chung, & Elliott, 2003)
and its underlying executor Titan can handle faults at runtime. The approach, however,
does not involve computing a fault tolerant plan. The MRG planning language (Giunchiglia,
Spalazzi, & Traverso, 1994) explicitly models failure effects. However, this work does not
include planning algorithms for generating fault tolerant plans. To our knowledge, the
n-fault tolerant planning algorithms introduced in this article are the first automated plan-
ning algorithms for generating fault tolerant plans given a description of the domain that
explicitly represents failure effects of actions.

There has also been a large amount of work on fault diagnosis in Discrete Event System
(DES) control theory. This work has mainly focused on analyzing event sequences in order
to determine if a fault has happened, and if so, which kind of fault (Sampath, Sengupta,
Lafortune, Sinnamohideen, & Teneketzis, 1995, 1996; Sampath, Sengupta, Lafortune, &
Teneketzis, 1998; Su, 2001). However, there has also been a considerable amount of work
on fault models. These models can be characterized as either transition based or state based.
Most work (e.g., Chen & Patton, 1999; Cho & Lim, 1998; Cin, 1997) use the transition based
model and regard faults as unexpected changes in a system that tends to degrade the overall
system performance rather than causing a total breakdown. The term failure suggests a
complete breakdown of a system component or function. The transition based model is also
used in supervisory control (Ramadge & Wonham, 1987) where faults usually are considered
uncontrollable events (Balemi, Hoffmann, Gyugyi, Wong-Toi, & Franklin, 1993; Cho & Lim,
1998). Within this frame, an approach to fault tolerant control has been considered that
is closely related to n-fault tolerant planning. Perraju, Rana, and Sarkar (1997) specify
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Figure 21: Results of the SIDMAR experiments.

fault tolerance for mission critical systems. A masking fault tolerant system can recover
from any fault. A t-fault tolerant system can recover from up to t faults occurring during
its life time. The system is modeled by an automaton with start states, but no goal states.
In addition, no algorithms or theory for automated controller synthesis are provided. The
state based models usually divides the state space into ranges of operation of some system
e.g., “normal operation range”, “admissible error range”, and “non-admissible error range”
(Klein & Wehlan, 1996), or “good” and “bad” states (Özveren & Willsky, 1991). As for
transition based models, however, this work does not focus on developing efficient synthesis
algorithms.

7. Conclusion

In this article, we have introduced n-fault tolerant plans as a new solution class of SNDP.
Fault tolerant plans reside in the gap between weak plans and strong cyclic and strong
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plans. They are more strict than weak plans, but more relaxed than strong cyclic and strong
plans. Optimal n-fault tolerant plans can be generated by the strong planning algorithm
via a reduction to a strong planning problem. Our experimental evaluation shows, however,
that due to non-local error states, it is often beneficial to decouple the planning for primary
and secondary effects of actions.

Fault tolerant planning is a first step toward probabilistic uncertainty models in SNDP.
A promising direction for future work is to move further in this direction and consider
fault tolerant plans that are adjusted to the likelihood of faults or to consider probabilistic
solution classes with other transition semantics than failures.
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Appendix A. Proofs

This appendix contains correctness proofs for 1-FTP and 1-GFTP. For a code segment
containing a loop that assigns to a variable C, we may use subscripts to refer to the different
values assigned to C. Hence, C0 denotes the value of C before the first iteration of the loop,
and Ci for i > 0 denotes the value assigned to C in iteration i of the loop.

We define correctness of 1-FTP and 1-GFTP in terms of the induced non-deterministic
plan. The algorithms work by adding precomponents f1 and f0 to the plans F 1 and F 0,
respectively. The set of states covered by these plans are C1 and C0. To define the changes
in the induced plan, we use the following notation

(fk)I = {〈〈s, k〉, a〉 : 〈s, a〉 ∈ fk},

〈f0, f1〉I = (f0)I ∪ (f1)I ,

πI = 〈F 0, F 1〉I ,

(Ck)I = {〈s, k〉 : s ∈ Ck},

CI = (C0)I ∪ (C1)I .

A.1 1-FTP

Let subscript i denote the iteration number of the outer while loop (l.3-13) and let subscript
j denote the iteration number of the inner while loop (l.6-11) for some arbitrary iteration
of the outer loop.

Lemma 1 C0
i+1 ⊃ C0

i .
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Proof. It follows from l.4, 5, and 11 that States(f0
i+1) ∩ C0

i = ∅ . Further, l.13 gives
C0

i+1 = C0
i ∪ States(f0

i+1). If C0
i+1 is computed then l.6 has been executed which gives

f0
i+1 6= ∅ . This proves the claim. 2

Lemma 2 C1
j+1 ⊃ C1

j .

Proof. It follows from l.7 and l.10 that States(f1
j+1) ∩ C1

j = ∅ and C1
j+1 = C1

j ∪

States(f1
j+1). Further, if C1

j+1 is computed then 1-FTP does not terminate at l.8. Thus

f1
j+1 6= ∅ , which proves the claim. 2

Theorem 3 (Termination) 1-FTP terminates.

Proof. Assume by contradiction that 1-FTP diverges. Hence, at some point either the
outer or inner while loop diverge. However, by Lemma 1 and Lemma 2 this would mean
that the cardinality of C0 or C1 would be unbounded. But this is impossible since the state
space of the planning problem is finite. 2

Lemma 3 If M(πI), CI |= AFGI before executing the inner loop in some iteration of the
outer loop then M(πI

j ), CI
j |= AFGI , where πI

j and CI
j denote the value of πI and CI after

iteration j of the inner loop.

Proof. By induction on j.
Case j = 0. If M(πI), CI |= AFGI before executing the inner loop then trivially M(πI

0 ), CI
0 |=

AFGI since πI
0 = πI and CI

0 = CI .
Case j > 0. The induction hypothesis is M(πI

j−1), C
I
j−1 |= AFGI if M(πI), CI |= AFGI

before executing the inner loop. L.7 gives, f1
j = PreImg(C1

j−1) \ C1
j−1 ×Act . Thus, for all

〈s, a〉 ∈ f1
j , we have Next(s, a) ⊆ C1

j−1 and Next(s, a) ∩ C1
j−1 6= ∅ . By definition of AF ,

this means M((f1
j )I),States((f1

j )I) |= AF (C1
j−1)

I . But then by definition of AF and the

induction hypothesis, we have M(πI
j−1 ∪ (f1

j )I),States((f1
j )I) ∪ CI

j−1 |= AFGI . That is

M(πI
j ), CI

j |= AFGI . 2

Lemma 4 M(πI
i ), CI

i |= AFGI , where πI
i and CI

i denote the value of πI and CI after
iteration i of the outer loop.

Proof. By induction on i.
Case i = 0. It follows from l.1 and l.2 that CI

0 = GI and πI
0 = ∅ . Thus, by definition of

AF , M(πI
0 ), CI

0 |= AFGI .
Case i > 0. The induction hypothesis is M(πI

i−1), C
I
i−1 |= AFGI . Let πI

i′ and CI
i′ denote

the value of πI and CI after executing the inner loop in iteration i of the outer loop. Since
πI = πI

i−1 and CI = CI
i−1 before executing the inner loop, it follows from the induction

hypothesis and Lemma 3 that M(πI
i′), C

I
i′ |= AFGI . Further, it follows from l.4, 5, and 11

that f0
i = R \U , where R = PreImg(C0

i′) \C0
i′×Act and U = PreImgf (C1

i′). From f0
i ⊆ R

it follows that for all 〈s, a〉 ∈ f0
i we have Next(s, a) ⊆ C0

i′ and Next(s, a) ∩ C0
i′ 6= ∅ .

Moreover, since f0
i ∩ U = ∅ , we have ∪ 〈s,a〉∈f0

i
Nextf (s, a) ⊆ C1

i′ . Thus by definition of

AF , M((f0
i )I),States((f0

i )I) |= AFCI
i′ . Combining this with M(πI

i′), C
I
i′ |= AFGI , we get

M(πI
i′ ∪ (f0

i )I), CI
i′ ∪ States((f0

i )I) |= AFGI . That is M(πI
i ), CI

i |= AFGI . 2

Theorem 4 (Soundness) 1-FTP is sound.
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Proof. Assume that 1-FTP(s0, G) terminates successfully in iteration i of the outer while
loop and returns the 1-fault tolerant plan πF = 〈F 0, F 1〉. We want to show that πF is valid
i.e., M(πI), sI0 |= AFGI . It follows from l.3 that s0 ∈ C0

i . Thus, sI0 ∈ CI
i . But then since

πI = πI
i it follows from Lemma 4 that M(πI), sI0 |= AFGI . 2

Theorem 5 (Completeness) 1-FTP is complete.

Proof. Assume by contradiction that there exists a 1-fault tolerant plan πF such that
M(πI), sI0 |= AFGI but that 1-FTP(s0, G) terminates with failure in iteration j of the inner
loop executed in iteration i of the outer loop. It follows from l.4 that f0

ci
= PreImg(C0

i−1) \

C0
i−1 × Act . Further l.5, 6, and 11 give f0

i = f0
ci

\ PreImgf (C1
j ) = ∅ . Thus, for any

〈s, a〉 ∈ f0
ci

, the current recovery plan F 1
j does not cover its error states Nextf (s, a) 6 ⊆

States(F 1
j ) = C1

j . By l.7 and l.8 f1
j = PreImg(C1

j ) \ C1
j × Act = ∅ . Thus, F 1 can

not be extended to cover error states of SAs in f0
ci

. However, this is impossible, since by
l.3 s0 6∈ C0

i−1 and there exists an execution path from s0 to G of a 1-fault tolerant plan
intersecting States(f0

ci
). 2

A.2 1-GFTP

The proofs in this section use subscript i to denote the iteration number of the outer while
loop (l.4-22) of 1-GFTP and subscript j to denote the iteration number of the while loop
(l.6-11) of ExpandTimed. In addition, the proofs will often refer to the unbolded name of
a map which denotes the set of elements stored in the map.

Lemma 5 C0
i+1 ⊃ C0

i .

Proof. From l.21 and l.22 of 1-GFTP, we have C0
i+1 = C0

i ∪ (States(f0
i+1) ∩ PC i+1).

Further, it follows from l.7, 12, 13, and 15 of 1-GFTP, l.5, 11, and 12 of ExpandTimed,
and l.4 and l.5 of PreCompFTP that f0

i+1 ⊆ f0
ci+1

⊆ PCi+1 and States(PCi) ∩ C0
i = ∅ .

Thus, C0
i+1 = C0

i ∪ States(f0
i+1) and f0

i+1 ∩ C0
i = ∅ . But since l.17 of 1-GFTP has been

executed in iteration i of the outer loop, we also have f0
i+1 6= ∅ which proves the claim. 2

Lemma 6 If the while loop of ExpandTimed does not terminate in iteration j + 2 then
f1

cj+1
⊃ f1

cj
.

Proof. It follows from l.8 and l.9 that f1
cj+1

⊇ f1
cj

. But since the while loop continues in

iteration j + 2, we have Oldf 1
cj+1

6= f1
cj+1

. Hence, it follows from l.7 that f1
cj+1

6= f1
cj

. 2

Theorem 6 (Termination) 1-GFTP terminates.

Proof. Assume by contradiction that 1-GFTP diverges. Hence, at some point either one
of the sub-functions or loops of 1-GFTP diverges. Since the inner while loop (l.10-13) is
bounded and the loops in PreCompFTP and PruneUnused are bounded, it must be
either the outer while loop of 1-GFTP (l.4-22) or ExpandTimed that diverge. Assume
ExpandTimed for some call diverges. By Lemma 6, however, this means that the cardi-
nality of f1

c grows unbounded which is impossible since the state space is finite. Assume
instead that the outer loop of 1-GFTP diverges. However, by Lemma 6 this means that
the cardinality of C0 grows unbounded which is impossible since the state space is finite. 2
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Lemma 7 After executing the while loop in ExpandTimed, the following holds

1. for all 〈s, a〉 ∈ f1
c [1], we have Next(s, a) ⊆ C1 and Next(s, a) ∩ C1 6= ∅ ,

2. for all 〈s, a〉 ∈ f1
c [k], where k > 1, we have Next(s, a) ⊆ States(f1

c [k − 1]) and
Next(s, a) ∩ States(f1

c [k − 1]) 6= ∅ .

Proof. 1) Due to l.4 and l.9 of ExpandTimed and the fact that f1
c = ∅ (l.8 of 1-GFTP)

when ExpandTimed assigns a value to f1
c [1], we have f1

c [1] = PreImg(C1) \ C1 which
proves the claim. 2) Let R = ∪k−1

j=1States(f1
c [j]) ∪ C1. It follows from l.4, 9, and 10 of

ExpandTimed that f1
c [k] = PreImg(R) \ R × Act for k > 1. Hence, for all 〈s, a〉 ∈

f1
c [k], we have Next(s, a) ⊆ States(R) and Next(s, a) ∩ States(R) 6= ∅ . Assume by

contradiction that there exists an 〈s, a〉 ∈ f1
c [k] such that Next(s, a) 6⊆ States(f1

c [k − 1])
or Next(s, a) ∩ States(f1

c [k − 1]) = ∅ . But then 〈s, a〉 ∈ ∪k−1
j=1 f

1
c [j] which is impossible

since ∪k−1
j=1 f

1
c [j] ⊆ R × Act and 〈s, a〉 /∈ R × Act . 2

Lemma 8 After executing the for loop in PruneUnused, the following holds

1. for all 〈s, a〉 ∈ f1
c [1], we have Next(s, a) ⊆ C1 and Next(s, a) ∩ C1 6= ∅ ,

2. for all 〈s, a〉 ∈ f1
c [k], where k > 1, we have Next(s, a) ⊆ States(f1

c [k − 1]) and
Next(s, a) ∩ States(f1

c [k − 1]) 6= ∅ .

Proof. Let f1
c [k]′ denote the value of f1

c [k] after executing the while loop of ExpandTimed

and let f1
c [k] denote the value of f1

c [k] after executing the for loop of PruneUnused. 1)
It follows from l.4 of PruneUnused that f1

c [1] ⊆ f1
c [1]′. Thus, the claim follows from

Lemma 7 1). 2) It follows from l.2, 4, and 5 of PruneUnused that f1
c [k − 1] = f1

c [k − 1]′ ∩
(err ∪ (∪〈s,a〉∈f1

c [k]Next(s, a))) × Act and f1
c [k] ⊆ f1

c [k]′. Thus, it follows from Lemma 7
that for all 〈s, a〉 ∈ f1

c [k], we have Next(s, a) ⊆ States(f1
c [k − 1]′) and Next(s, a) ∩

States(f1
c [k − 1]′) 6= ∅ . But since f1

c [k − 1]′ ∩ Next(s, a)×Act ⊆ f1
c [k − 1], we must also

have Next(s, a) ⊆ States(f1
c [k − 1]) and Next(s, a) ∩ States(f1

c [k − 1]) 6= ∅ . 2

Lemma 9 After executing the for loop in PruneUnused, we have
M((f1

ck
)I),States((f1

ck
)I) |= AF (C1)I , where f1

ck
= ∪k

j=1f
1
c [j]

Proof. By induction on k.
Case k = 0. Follows trivially from the definition of AF .
Case k = 1. Follows from Lemma 8 and the definition of AF .
Case k > 1. The induction hypothesis is M((f1

ck−1
)I),States((f1

ck−1
)I) |= AF (C1)I . It

follows from Lemma 8 that for all 〈s, a〉 ∈ f1
c [k], we have Next(s, a) ⊆ States(f1

c [k−1]) and
Next(s, a) ∩ States(f1

c [k− 1]) 6= ∅ after executing the for loop in PruneUnused. Thus,
M((f1

c [k])I),States(f1
c [k])I) |= AFStates((f1

ck−1
)I) which combined with the induction

hypothesis and definition of AF gives M((f1
ck−1

)I ∪ (f1
c [k])I),States((f1

ck−1
)I ∪ (f1

c [k])I) |=

AF (C1)I). That is M((f1
ck

)I),States((f1
ck

)I) |= AF (C1)I). 2

Lemma 10 At l.18 of 1-GFTP, we have M((f0)I),States((f0)I) |= AFCI ∪ States((f1)I).

32



Fault Tolerant Planning

Proof. It follows from l.4 and l.5 of PreCompFTP and l.12 of 1-GFTP that f0
c ⊆ PC ⊆

PreImg(C0). Further, l.4, 5, and 11 of ExpandTimed give f0 = f0
c \ PreImg(States(f1

c )
∪C1). Since f0 ⊆ f0

c , for all 〈s, a〉 ∈ f0, we have Next(s, a) ⊆ C0 and Next(s, a) ∩ C0 6=
∅ . Furthermore, since f0 ∩ PreImg(States(f1

c ) ∪ C1) = ∅ , we have ∪〈s,a〉∈f0Nextf (s, a)
⊆ States(f1

c ) ∪ C1. In PruneUnused, l.1 gives err = ∪〈s,a〉∈f0Nextf (s, a). Thus,
after the for loop of PruneUnused, we still have ∪〈s,a〉∈f0Nextf (s, a) ⊆ States(f1

c ) ∪

C1. Thus, by definition of AF , we have M((f0)I),States((f0)I) |= AF (C0)I ∪ (C1)I ∪
States((f1)I) at l.18 of 1-GFTP. That is M((f0)I),States((f0)I) |= AFCI ∪
States((f1)I). 2

Lemma 11 M(πI
i ), CI

i |= AFGI , where πI
i and CI

i denote the value of πI and CI after
iteration i of the outer loop of 1-GFTP.

Proof. By induction on i.
Case i = 0. It follows from l.1 and l.2 of 1-GFTP that CI

0 = GI and πI
0 = ∅ . Thus, by

definition of AF , we have M(πI
0 ), CI

0 |= AFGI .
Case i > 0. The induction hypothesis is M(πI

i−1), C
I
i−1 |= AFGI . We have f1

i =
f1

c
|f1c |

, where f1
ck

is defined in Lemma 9. Thus, by Lemma 9, M((f1
i )I),States((f1

i )I) |=

AF (C1
i−1)

I . From Lemma 10, we get M((f0
i )I),States((f0

i )I) |= AFCI
i−1 ∪ States((f1

i )I).
Thus by definition of AF M((f0

i )I ∪ (f1
i )I),States((f0

i )I ∪ (f1
i )I) |= AFCI

i−1. Combined
with the induction hypothesis we get M(πI

i−1 ∪ (f0
i )I ∪ (f1

i )I),States(πI
i−1 ∪ (f0

i )I ∪
(f1

i )I) |= AFCI
i−1. That is M(πI

i ),States(πI
i ) |= AFCI

i−1. 2

Theorem 7 (Soundness) 1-GFTP is sound.

Proof. Assume that 1-GFTP(s0, G) terminates successfully in iteration i of the outer loop
and returns the 1-fault tolerant plan πF = 〈F 0, F 1〉. We want to show that πF is valid i.e.,
M(πI), sI0 |= AFGI . It follows from l.4 that s0 ∈ C0

i . Thus, sI0 ∈ CI
i . But then it follows

from Lemma 11 that M(πI), sI0 |= AFGI , since πI = πI
i . 2

Theorem 8 (Completeness) 1-GFTP is complete.

Proof. Assume by contradiction that there exists a 1-fault tolerant plan πF such that
M(πI), sI0 |= AFGI but that 1-GFTP(s0, G) terminates with failure in iteration i of the
outer loop. Since l.17 of 1-GFTP is executed, we know that the second call to Expand-

Timed terminated and returned f0 = ∅ . However, in the second call to ExpandTimed, we
have t = ∞ which means that the while loop of ExpandTimed terminated because Oldf 1

c =
f1

c . At this point, l.12 of 1-GFTP and l.4 of PreCompFTP give f0
c = PreImg(C0) \ C0×

Act , and from l.5 and l.11 of ExpandTimed it follows f0 = f0
c \PreImgf (States(f1

c ) ∪ C1).
Since Oldf 1

c = f1
c there does not exist a recovery plan F 1 that cover more than the states

C1 ∪ States(f1
c ), and it follows from f0 = ∅ and the expression above that this recov-

ery plan does not cover any of the error states of f0
c (i.e., there does not exist 〈s, a〉 ∈ f0

c

such that Nextf (s, a) ⊆ C1 ∪ States(f1
c )). However, this is impossible, since by l.4 of

1-GFTP, we have s0 6∈ C0 and there exists an execution path from s0 to G of a 1-fault
tolerant plan intersecting States(f0). 2
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