
ASET: a Multi-Agent Planning Language with Nondeterministic Durative Tasks
for BDD-Based Fault Tolerant Planning∗

Rune M. Jensenand Manuela M. Veloso
Computer Science Department, Carnegie Mellon University,

Pittsburgh, PA 15213-3891, USA

Abstract

In this paper, we introduce a multi-agent planning language
called ASynchronous Evolving Tasks (ASET). The main con-
tribution of ASET is a novel explicit representation of tempo-
rally extended tasks that may be nondeterministic both with
respect to duration and effects. Moreover, ASET explicitly
models the environment as a set of uncontrollable agents. We
formally define ASET descriptions and their transformation
to a nondeterministic planning domain. Using a Boolean en-
coding, fault tolerant planning problems specified in ASET
can be solved efficiently with state-of-the-art BDD-based
planning systems. Our preliminary experimental results show
that the transformation of ASET domains to nondeterministic
planning domains is computationally efficient even for ASET
descriptions with a high level of temporal detail.

Introduction
The most important obstacle for widespread application of
automated planning is lack of scalability. Since the com-
plexity of planning grows with the representational power
of the planning language, a good strategy for solving a plan-
ning problem efficiently is to use a planning language that
is sufficient for representing the problem at hand but among
such languages has least representational power.

For this reason, the goal for planning language develop-
ers is to expose the representational power of the language
by providing intuitive and explicit ways to state abstract real-
world phenomena. In addition, well designed high-level lan-
guages makes it possible to write short and elegant descrip-
tions of a domain. They further improve the ability of plan-
ning systems to exploit structure in domains.

Today powerful planners exist for the STRIPS planning
language e.g., (Hoffmann & Nebel 2001). But STRIPS as-
sumes a single agent executing instantaneous and determin-
istic actions, while most real domains involve multiple asyn-
chronous agents executing temporally extended stochastic

∗This research is sponsored by BBNT Solutions LLC under its
prime contract number FA8760-04-C-0002 with the U.S. Air Force
and DARPA. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of the sponsoring institutions, the U.S. Government or any
other entity.

actions. There is no simple way of modeling stochastic be-
havior of actions and multi-agent domains in STRIPS. Its
representational power is too low.

A wide range of planning languages have been developed
to address the deficiencies of STRIPS including temporal
languages e.g., (Fox & Long 2003; Bacchus & Ady 2001;
Laborie & Ghallab 1995), nondeterministic languages e.g.,
(Piergiorgioet al. 2002; Giunchiglia, Kartha, & Lifschitz
1997; Jensen & Veloso 2000) and probabilistic languages
e.g., (Younes 2003). None of them, however, have simple
explicit ways of describing domains that combine all the as-
pects of real-world domains mentioned above. In particular,
we are not aware of any planning language with a single
unified construct to define actions that are nondeterministic
both with respect to effect and duration. Temporal planning
languages have deterministic actions and nondeterministic
planning languages do not consider durative actions.

The representational power of some of these languages
e.g., (Younes 2003; Musliner, Durfee, & Shin 1993) and
classical representations like discrete event systems, timed
automata, and Markov Decision Processes (MDPs) is strong
enough to model such domains. But it is often tedious and
error prone to define domains in these formalisms due to the
implicit representation of abstract phenomena. Furthermore,
the representational power may be so high that the planning
problems become unnecessarily hard to solve.

The research reported in this paper investigates how low
we can go in representational power and still be able to
define a language in which stochastic durative actions and
multi-agent domains can be stated in a unified, intuitive,
and explicit way. More specifically, we consider a lan-
guage with the representation power of a nondeterministic
planning domain (i.e., an MDP with no transition probabil-
ities). Our motivation is that stationary policies for non-
deterministic planning problems can be synthesized effi-
ciently (Cimatti et al. 2003; Jensen, Veloso, & Bryant
2003) using techniques developed in formal verification
based on Binary Decision Diagrams (BDDs) (Bryant 1986;
Burch, Clarke, & McMillan 1990).

Continuous time and probabilistic models are attractive,
but come with a high computational fee. It is well-known
that continuous time verification of asynchronous circuitsis
much harder than discrete time verification of synchronized
circuits, and even though efficient symbolic techniques ex-

ist for solving MDPs (Hansen & Zilberstein 2001), it is our
experience that nonprobabilistic versions of these problems
have orders of magnitude lower complexity.

We are interested in high-level planing problems where
the goal is to coordinate low-level activities and manage
shared resources. Such domains are often combinatorial and
discrete in nature. Imagine an automated job shop floor
with robots moving objects between machines and storage
buffers. Commands to machines and robots are high-level,
but fairly accurate models exist of the behavior they trig-
ger. The main problem is to deliver and remove objects from
machines in a temporally coordinated manner and share re-
sources such as space.

Our language is based on an action representation called
Evolving Tasks (ETs). ETs are Directed Acyclic Graphs
(DAGs) of guarded unit time transitions that define the tem-
poral behavior of the task. They can represent temporally
extended activities which are nondeterministic both with re-
spect to duration and effect. We consider multi-agent plan-
ning domains where each agent is defined by the set of
ETs it can execute. The resulting language is called ASyn-
chronous Evolving Tasks (ASET). Like NADL (Jensen &
Veloso 2000), ASET explicitly model the environment as a
set of uncontrollable agents.

The low-level semantics of an ASET domain is aunit
time transition graph. The domain, however, is not con-
trollable at this level since tasks are uninterruptible. Adeci-
sion graphis derived from the unit time transition graph by
adding transitions between all states where some task is idle
and removing all other states from the unit time transition
graph. This can be done efficiently using a technique called
iterative squaring(Burch, Clarke, & McMillan 1990). The
decision graph is a nondeterministic planning domain that
allows us to define solutions to ASET planning problems as
strong, strong cyclic, and weak plans (Cimattiet al. 2003).
These plans can be efficiently generated by state-of-the-art
symbolic nondeterministic planning systems (Cimattiet al.
2003; Jensen, Veloso, & Bryant 2003).

Using this bottom-up approach, it is easy to define low-
level temporal properties of the activities, but plan in a more
abstract space. PDDL2.1 and other temporal languages ex-
tending STRIPS are based on a top-down approach where
many features are used to define the temporal properties of
actions. The result is less general languages with temporal
semantics of actions that can be hard to understand. The unit
time semantics of ETs further solve a general problem of
augmenting first order logic with time for temporal planning
(Bacchus & Ady 2001; Fox & Long 2003). This often leads
to information “holes” caused by concurrent actions hiding
the state of domain knowledge they are currently changing.
This makes it hard to write domains with mutually depen-
dent asynchronous activities.

The main limitation of ASET is the lack of transition
probabilities. Often, however, stochastic behavior is caused
by infrequent system failures. This allows us to avoid full-
blown probabilistic planning and instead consider nondeter-
ministic plans robust to a limited number of system failures
(Jensen, Veloso, & Bryant 2004). Another limitation is that
ASET assumes full observability. But this is a reasonable

assumption for systems that are engineered to be highly con-
trollable.

We have implemented a BDD-based planning system for
ASET. Preliminary experimental results show that a unit
time transition graph can be efficiently transformed into de-
cision graph even when the duration of tasks is in the order
of 500 time units. This level of temporal granularity is more
than sufficient for most applications.

The remainder of the paper is organized as follows. We
first define ASET descriptions and discuss how they relate
to other planning domain representations. We then present
the unit time transition graph of an ASET description and
its Boolean encoding and show how to transform the unit
time transition graph into a decision graph. The following
section briefly reminds about the definition of strong nonde-
terministic plans and shows how to represent a fault tolerant
planning domain in ASET. We then present our experimen-
tal results and finally draw conclusions and discuss plans for
future work.

ASET Descriptions
An ASET description consists of a disjoint set of system and
environmentstate variableswith finite domains, and a de-
scription ofsystemandenvironment agents.

The state variables can bemetric with finite integer do-
mains,Boolean, or enumerationswith finite domains. The
usual arithmetic and relational operations can be carried out
on metric variables. The set of state variable assignments
defines the state space of the world.

An agent’s description is a set oftasks. The agents change
the state of the world by executing tasks. Each agent is al-
ways in a state of activity executing some task. The agents
are asynchronous, they may start and stop tasks at different
time-points. The system agents model the behavior of the
agents controllable by the planner, while the environment
agents model the uncontrollable world. To ensure indepen-
dence of the system and environment agents, they affect a
disjoint set of state variables. Their tasks, however, may de-
pend on the complete state of the world.

A task has two parts: a set ofstate variablesthat the task
modifies and a set ofunit time transitionsthat defines how
the task evolves. Intuitively, the task is responsible for as-
signing new values to the variables it modifies. It further has
exclusive access to the modified variables, no other concur-
rent task can modify these variables as long as it is active.
Each agent is associated with a finite set of execution states.
These states are shared between the tasks of the agent and
define the transition states of the tasks. Each set of execu-
tion states has a specialidle state. Each transition of a task
has unit time duration. The outgoing transitions from the
idle state are taken when a task starts. The incoming tran-
sitions to the idle state are taken when the task stops. The
remaining transitions of a task form a DAG on the execu-
tion states causing all execution paths of the task to be finite.
Each transition isguarded. The guard is an expression on
the complete state. This may include the current task and
execution state of any agent as well as the current value of
any state variable. The transition is only enabled if the guard

expression is satisfied. This allows rich behavior models in-
cluding strong synchronization schemes with tasks of other
agents. The effect of the transition is given as an expression
on the state variables it modifies and its execution state. If
this expression holds for several assignments, one of these
is nondeterministically chosen as the effect of the transition.
In this way, tasks are nondeterministic both with respect to
duration and effect on modified variables. Notice that there
is no need for an explicit precondition. The precondition of
a task is the disjunction of the guards of outgoing transitions
from the idle state.

Time advances in discrete integer time points. In each
unit time step, the currently active tasks perform a unit time
transition. Variables not modified by any task maintain their
value. The resulting unit time transition graph willblock if
no transition is enabled for some task.

As an example consider the simple job shop domain
shown in Figure 1. The domain has four locationsa, b, c,
andd connected with corridorsab, bd , cd , andac. The goal
is to paint the object (O). It can be carried by the robot (R) to
the painting machine (P). The robot spends time navigating
between corridors and may have to backtrack to its source
location. The robot and painting machine are controllable,
but there is also an uncontrollable human operator (H). For
security reasons, the robot is not allowed to load and unload
the object when the human is at the same location.

c d

a b
P

bd

ab

cd

ac

H

OR

Figure 1: The job shop domain.

Figure 2 shows an ASET description of the job shop do-
main. Each task is a DAG where vertices are execution states
and edges are unit time transitions. The idle execution state
is marked by a double circle. Execution states are labeled by
numbers (by convention idle states are labeled by zero, but
these labels have been omitted to enhance readability). The
guard expression or precondition of a unit time transition is
shown above the associated edge. The effect of the transi-
tion is shown below the edge. The ASET description has
two controllable system agents the robot (R) and the paint-
ing machine (P). It also has a single uncontrollable environ-
ment agent which is the human operator (H). The tasks of
the robot aredrive(x, y)1, take, put , andwait . During the
drive task, the robot navigates between the locations via the

1The figure showsdrive(a, b), but there are 7 other drive tasks.

wait

wait

put

posO = posR

posR 6= posH

posO = onR

posR 6= posH

take

painted

Human

21 3

walk(a,b)

paint

Painter

2 31
¬painted
posO = b posR 6= b

painted

posH = b

posO = posRposO = onR

posO = inP

posH = ab

2
posR = b

posR = a

drive(a,b)

1

Robot

posR = ab

posR = a

posH = a

posO = b

posO = b

Figure 2: An ASET description of the job shop domain.

corridors. It may succeed after 2 time units and reach its
destination, or fail after 3 time units in which case, it re-
turns to the source location. The take and put tasks loads
and unloads the object on the robot. They take one time unit
and are conditioned by the human being at another location.
The wait task also takes one time unit. It does not change
any state variables, but only advances time to coordinate the
robots activities with other agents. The tasks of the painter
arepaint andwait . The paint task takes either 3 or 4 time
units and requires that the object is at locationb and is un-
painted. Moreover, the robot must avoid locationb when the
actual painting happens. The wait task of the painter is iden-
tical to the wait task of the robot. The human has walk tasks
similar to the robot’s drive tasks except that the walk tasks
are deterministic and have a duration of 4 time units. Since
there is no wait task, the human must continuously walk be-
tween locations. This guarantees that the robot eventually
can load and unload the object.

Formally, an ASET description is defined as follows.

Definition 1 (ASET Description) An ASET description is
a triple M = 〈V, E, T 〉, where

V is a finite domain ofns system state variablesand
ne environment state variablesV = V s × V e where
V x =

∏nx

i=1 V x
i for x ∈ {s, e},

E is a finiteexecution spaceof ms > 0 system agents
andme ≥ 0 environment agentseach associated with
a set of execution statesE = Es × Ee whereEx =
∏mx

i=1 Ex
i for x ∈ {s, e}. Each set of execution states

includes a special idle stateEx
i ⊇ {idle} for x ∈

{s, e} andi = 1 . . mx, and
T is a finite task spaceof a non-empty set of tasks as-

sociated with each agentT =
∏ms

i=1 T s
i ×

∏me

i=1 T e
i .

Each taskt ∈ T x
k is a pair〈Mx

t , Rx
t 〉, where

Mx
t is a set of indices of state variables modified

by the taskMx
t ⊆ {1, . . . , nx}, and

Rx
t is a set of guarded unit time execution transi-

tions of the task defining how modified vari-
ables are changed while the task is active
Rx

t ⊆ V × E × T ×
∏

i∈Mx
t

V x
i × Ex

k .

Compared with the durative action descriptions of
PDDL2.1, TLplan, and IxTeT (Fox & Long 2003; Bacchus
& Ady 2001; Laborie & Ghallab 1995), the most signifi-
cant difference of ASET descriptions is that tasks are dura-
tive and nondeterministic. None of the above domain de-
scriptions consider nondeterministic actions. Actually,we
are not aware of any planning language with temporally ex-
tended and nondeterministic actions. Another important dif-
ference between ASET and the domain descriptions above
is the use of state variables. This provides metric values, but
so has PDDL2.1. What is probably more important is that
our state variables are defined at every time point like state
variables in physics and control theory (Cassandras & Lafor-
tune 1999). When augmenting first order logic with time and
preserving the precondition and effect notions from classical
planning, domain knowledge may only exist at certain time
points. An important exception from this, however, are the
continuous durative actions of PDDL2.1. For these actions,
update functions are provided to define the change of metric
information. This approach, however, is not as general as
ETs.

Another challenge for durative actions in the classical
precondition-effect format is how to handle conditional ef-
fects. The problem is that conditional effects require infor-
mation to be transfered from the state the action is being ap-
plied in, to the state the action is completed in. These states,
however, may not be adjacent in the planning domain. The
problem can be solved by introducing memory propositions
(Fox & Long 2003) or instantaneous effects of actions (Bac-
chus & Ady 2001). For ETs the problem is solved explicitly,
since conditional effects can be defined for each unit time
transition as shown in the job shop example.

An important issue to address when introducing concur-
rent tasks is synergetic effects between simultaneously ex-
ecuting tasks (Lingard & Richards 1998). A common ex-

ample of destructive synergetic effects is when two or more
tasks require exclusive use of a single resource or when two
tasks have inconsistent effects likepos ′ = 3 andpos ′ = 2.

Like actions in NADL, ASET tasks cannot be performed
concurrently in the following two conditions: 1) they have
inconsistent effects, or 2) they modify an overlapping set of
state variables. The first condition is due to the fact that
state knowledge is expressed in a monotonic logic that can-
not represent inconsistent knowledge. The second condi-
tion addresses the problem of sharing resources. Consider
for example two agents trying to eat the same ice cream.
If only the first condition defined interfering tasks, both
agents could simultaneously eat the ice cream, as the effect
iceCreamEaten of the two tasks would be consistent. With
the second condition added, these tasks are interfering and
cannot be performed concurrently.

We have chosen this definition of task interference due
to our positive experience with it in NADL. There are, how-
ever, several issues to address. First, we need to show how to
encode synergetic activity strong enough to solve Gelfond’s
soup problem (Gelfond, Lifschitz, & Rabinov 1991). The
problem is to lift a soup bowl without spilling the soup. Two
actions, lift left and lift right, can be applied to the bowl.If
either is applied on its own the soup will spill, but if they are
applied simultaneously then the bowl is raised from the ta-
ble and no soup spills. The problem is that we cannot model
the state of the soup bowl in ASET using just one state vari-
able, since two concurrent lift tasks then would be unable
to access that state variable. We can, however, represent
such synergetic activity by letting the state of the bowl be-
ing expressed by several state variables. If we introduce two
Boolean variablesforce left and force right the different
states of the bowl can be represented by

onGround = ¬force left ∧ ¬force right ,

spill = force left XOR force right ,

lift = force left ∧ force right .

Second, we need to address how to handle state variables
that represent shared resources. In (Bacchus & Ady 2001)
an example of a gas station with 6 refueling bays is given.
If this resource is represented by a single state variable in
ASET, we once more face the problem of at most one task
accessing the resource at a time. Again, we can solve the
problem by using several state variables (e.g., a Boolean
variable for each refueling bay).

ASET Unit Time Transition Graphs
In order to transform an ASET description into a nonde-
terministic planning domain, we first compute itsunit time
transition graph. The unit time transition graph is a tran-
sition system that represents the combined effect of active
tasks. As the name suggests, each transition in the unit time
transition graph advances the clock one time unit.

Consider again the job shop domain shown in Figure 2.
Assume that all agents are in an idle execution state in the
situation depicted at the top of the figure. Suppose that the
tasksdrive(a, c) and paint are chosen for the robot and

painter, and that the human happens to choosewalk(d , c).2

Figure 3 shows the reachable states in the unit time transition
graph from this state until some agents are idle again. Each
state is labeled with a vector showing the execution state of
the robot, painter, and human respectively.

R idle
P idle

R idle

R idle
P idle

R idle

(0,0,0) (1,1,1)

(2,2,2)

(0,2,2)

(0,0,3)

(0,3,3)

Figure 3: A subset of the unit time transition graph of the
job shop domain.

For an ASET descriptionM = 〈V, E, T 〉, let NC denote
nonconflicting tasks of system and environment agents. We
have, NC= NCs × NCe, where NCx = {〈t1, . . . , tmx

〉 ∈
T x : Mx

ti
∩ Mx

tj
= ∅ for i 6= j}. We can now define the

unit time transition graph of an ASET description as follows.

Definition 2 (Unit Time Transition Graph) A unit time
transition graph of an ASET descriptionM = 〈V, E, T 〉
is a transition systemT = 〈ST , RT 〉, where

ST is a finite set of statesST = V × E × NC, and
RT is a transition relationRT ⊆ ST × ST .

For

s = 〈vs
1..ns , ve

1..ne , es
1..ms , ee

1..me, ts1..ms , te1..me〉

s′ = 〈v′s1..ns , v′e1..ne , e′s1..ms , e′e1..me, t′s1..ms , t′e1..me〉

We have〈s, s′〉 ∈ RT iff

1. Running tasks transition,

〈s, v′xp(1)..p(nx

t′x
i

), e
′x
i 〉 ∈ Rx

t′x
i

for x ∈ {s, e}, i = 1 . . mx,

whereMx
t = {p(1), . . . , p(nx

t)}.

2. Non-idle tasks continue,

(ex
i 6= idle) ⇒ (t′xi = txi) for x ∈ {s, e} andi = 1 . . mx.

3. Unmodified variables maintain their value, and

v′xi = vx
i for x ∈ {s, e} andi ∈ {1, . . . , mx} \ M,

whereM =
⋃mx

j=1 Mx
t′x
j

.

In order to use symbolic nondeterministic planners to
solve ASET planning problems, we need a Boolean encod-
ing of unit time transition graphs. This is achieved by defin-
ing thecharacteristicfunction of the set of state pairs inRT

of the unit time transition graph. Let~s and~s′ be two vectors

2The result would have been the same for any of its walk tasks.

of Boolean variables representing the current and next state
of a unit time transition graph, where

~s = 〈~vs
1..ns , ~ve

1..ne , ~es
1..ms , ~ee

1..me,~ts1..ms ,~te1..me〉,

~s′ = 〈~v′s1..ns , ~v′e1..ne , ~e′s1..ms , ~e′e1..me,~t′s1..ms ,~t′e1..me〉.

Our goal is to define a Boolean functionRT (~s,~s′) that is
true iff the variables of~s and~s′ are assigned values corre-
sponding to a transition inRT . For an ASET description
M = 〈V, E, T 〉, let ri represent requirementi of Defini-
tion 2

rx
1 =

mx

∧

i=1

∧

t∈T x
i

[

(~t′xi = t) ⇒ Rx
t (~s,~v′xp(1)..p(nx

t), ~e
′x
i)

]

where Mx
t = {p(1), . . . , p(nx

t)} and

Rx
t (~s,~v′xp(1)..p(nx

t
), ~e

′x
i) is the characteristic

function of the set of tuples in Rx
t ,

rx
2 =

mx

∧

i=1

[

(~ex
i 6= idle) ⇒ (~t′xi = ~txi)

]

,

rx
3 =

nx

∧

i=1

[

(
mx

∧

j=1

∧

t∈T x
j

(i)

~t′xj 6= t) ⇒ (~v′xi = ~vx
i)

]

where T x
j (i) = {t ∈ T x

j : i ∈ Mx
t }.

Further, letNCdenote the non-conflicting tasks

NC x =
∧

i ∈ D1

j ∈ D2

∧

t1 ∈ T x
i

t2 ∈ T x
j





Dx
t1
∩ Dx

t2
= ∅ ⇒

¬(~txi = t1 ∧ ~txj = t2)

∧¬(~t′xi = t1 ∧ ~t′xj = t2)



 .

whereD1 = {1, . . . , mx} andD2 = {1, . . . , mx} \ {i}.

We then have

RT (~s,~s′) =
∧

x∈{s,e}

rx
1 ∧ rx

2 ∧ rx
3 ∧NC x.3

ASET Decision Graphs
We now consider how to transform the unit time transition
graph of an ASET description into a nondeterministic plan-
ning domain that we can solve efficiently with a state-of-
the-art BDD-based nondeterministic planning system. The
nondeterministic planning domains used by these systems
are a generalization of classical deterministic planning do-
mains where the effect of an action applied in some state is
modeled by a nondeterministic choice from a set of possible
next states.

3Since the finite domains of ASET variables are embedded in a
binary encoding, there may exist assignments to the Booleanvari-
ables that do not correspond to valid domain values. Conjoining
an expression that removes these assignments from the Boolean
transition relation has been omitted in the definition to simplify the
presentation.

Definition 3 (Nondeterministic Planning Domain) A
nondeterministic planning domain is a tuple〈S, A, R〉
whereS is a finite set of states,A is a finite set of actions,
andR ⊆ S×A×S is a nondeterministic transition relation
of action effects.

A unit time transition graph is transformed into a nonde-
terministic planning domain by removing states where no
planning decision can be made. A planning decision can be
made in states where the task of one or more controllable
agents is idle. We call such statesdecision states. For unit
time transition graph of the job shop domain shown in Fig-
ure 3, all unfilled circles (the end states) are decision states.
Let DT denote thesedecision statesof a unit time transition
graphT = 〈ST , RT 〉. We haveDT = {〈. . . , es

1..ms , . . .〉 ∈
ST : es

i = idle for some1 ≤ i ≤ ms}.
The nondeterministic planning domain of an ASET de-

scription, however, also needs to includeblocking states
where some task is unable to transition. Without includ-
ing these states, we may get an incorrect model that hides
the fact that some decision may lead to a dead end (e.g.,
causing two tasks to “wait” on each other). In the job shop
domain, any state where the robot is at locationb and the
painter is in execution state1 of its paint task is a block-
ing state since the paint task is unable to transition due to
the guardposR 6= b. Let BT denote the blocking states
of a unit time transition graphT = 〈ST , RT 〉. We have
BT = {s ∈ ST : 〈s, s′〉 /∈ RT for all s′ ∈ ST }.

The nondeterministic planing domain associated with an
ASET description is called adecision graph. Each transition
in the decision graph corresponds to a path between decision
states and blocking states in the unit time transition graph.
For a set of statesQ and a transition relationU ⊆ Q ×
Q a path of lengthk from v to w is a sequence of states
q0q1 · · · qk such that(qi, qi+1) ∈ U for i = 0, . . . , k− 1 and
v = s0 andw = sk. We can now define the decision graph
as follows.

Definition 4 (ASET Decision Graph) Given an ASET de-
scriptionM = 〈V, E, T 〉 and a unit time transition graph
T = 〈ST , RT 〉 of M, an ASET decision graph ofM is a
nondeterministic planning domainD = 〈S, A, R〉, where

S is the union of the decision and blocking statesS =
DT ∪ BT ,

A is a finite set of actionsA = 2T s

, and
R is a transition relationR ⊆ S × A × S.

For

s = 〈vs
1..ns , ve

1..ne , es
1..ms , ee

1..me, ts1..ms , te1..me〉

s′ = 〈v′s1..ns , v′e1..ne , e′s1..ms , e′e1..me, t′s1..ms , t′e1..me〉

We have〈s, a, s′〉 ∈ R iff

• there exists a paths0 · · · sk in RT betweens = s0 and
s′ = sk not visiting other states inS (si /∈ S for i =
1, . . . , k − 1), and

• the actiona is the set of system tasks started ins (a =
⋃

es
i
=idle{t

′s
i }).

If 〈s, a, s′〉 is a transition in a decision graph, the current
states is a decision state and the next states′ is the first
decision state or blocking state reached by some path from
s when starting the tasks defined bya in the current states.

It is nontrivial to compute the decision graph, since it is
defined in terms of paths in the unit time transition graph.
For symbolic nondeterministic planning, though, the deci-
sion graph can be efficiently computed usingiterative squar-
ing (Burch, Clarke, & McMillan 1990). Iterative squaring of
a transition relation introduces transitions between all states
connected by a path. The operation is defined recursively.
R0 is the original transition relation.R1 includes all the
transition inR0, but in addition has transitions between all
states inR0 connected by a path of length 2.R2 includes
all transitions inR1, but in addition has transitions between
all states inR1 connected by a path of length 2. SinceR1

includesR0 this means thatR2 includes all the transitions
in R0, but in addition has transitions between all states in
R0 connected by a path of length 2,3, or 4. Thus, for each
squaring of the transition relation the length of the paths for
which transitions are added doubles.

Consider squaring the unit time transition graph of the job
shop domain shown in Figure 3. Figure 4 shows the transi-
tions inR2.

1

10

0

0

0

2

1

1
2

0

Figure 4: Squaring the unit time transition graph shown in
Figure 3. Transitions inRj for j ≤ i are labeledi.

We use a special version of the algorithm that ensures that
all intermediate states on paths for which transitions are in-
troduced are neither decision states nor blocking states.
Let

B(~s) = ¬
[

∃~s′ . RT (~s,~s′)
]

, and

D(~s) =
ms

∨

i=1

~es
i = idle

denote the characteristic functions for the set of blocking
states and decision states of a unit time transition graph with
Boolean encodingRT (~s,~s′). Further, letRi(~s,~s′) be de-
fined recursively by

R0
T (~s,~s′) = RT (~s,~s′),

Ri
T (~s,~s′) = Ri−1

T (~s,~s′) ∨
(

∃~s′ . Ri−1
T (~s,~s′) ∧

¬(D(~s′) ∨ B(~s′)) ∧ Ri−1
T (~s′, ~s′′)

)

[~s′′/~s′],

for i > 0.

The operatore[~s′′/~s′] renames double primed variables to
single primed variables in the expressione. R0

T is the tran-
sition relation of the unit time transition graph.R1

T includes
the transitions ofR0, but adds a transition〈s, s′′〉 for every
pathss′s′′ wheres′ neither is a blocking state or decision
state. SimilarlyR2 adds transitions that may bypass up to 3
such states, andR3 adds transitions that may bypass 7 etc..
In this way, we can define a Boolean encoding of the deci-
sion graph as

R(~s,~s′) = R
dlog de
T (~s,~s′) ∧ (D(~s) ∨ B(~s)) ∧

(D(~s′) ∨ B(~s′))

whered is the maximal duration of any task.
Figure 5 shows the decision graph of the unit time transi-

tion graph of the job shop domain shown in Figure 3.

R idle
P idle

R idle

R idle
P idle

R idle

(0,0,0)

(0,2,2)

(0,0,3)

(0,3,3)

Figure 5: The decision graph of the unit time transition
graph of the job shop domain shown in Figure 3.

Iterative squaring is known to be computationally com-
plex. In our case, though, we only need to iterate to “com-
press” paths of lengthd, which often will be much less than
the diameter of the transition graph. In addition, iterative
squaring has been shown to be fairly efficient for digital sys-
tems dominated by clock counting (Gabodiet al. 1997). We
may expect ASET domains where tasks have long duration
to be structurally similar to this kind of circuits.

Solving ASET Planning Problems
The transformation of an ASET description to a nondeter-
ministic planning domain and the Boolean encoding of the
decision graph, allows us to use efficient symbolic non-
deterministic planning algorithms (Cimattiet al. 2003;
Jensen & Veloso 2000) including heuristic symbolic search
algorithms (Jensen, Veloso, & Bryant 2003) to solve ASET
planning problems. In the remainder of this section, we ap-
ply the machinery developed for nondeterministic symbolic
planning to define ASET planning problems and solutions.

Definition 5 (Nondeterministic Planning Problem) A
nondeterministic planning problem is a tuple〈D, s0, G〉
whereD is a nondeterministic planning domain,s0 is an
initial state, andG ⊆ S is a set of goal states.

For a nondeterministic planning domainD = 〈S, A, R〉,
the set of possible next states of an actiona applied in states
is given by NEXT(s, a) ≡ {s′ : 〈s, a, s′〉 ∈ R}. An action
a is calledapplicablein states iff N EXT(s, a) 6= ∅. The

set of applicable actions in a states is given by APP(s) ≡
{a : NEXT(s, a) 6= ∅}. A nondeterministic plan is a set of
state-action pairs(SAs).

Definition 6 (Nondeterministic Plan) Let D be a nonde-
terministic planning domain. A nondeterministic plan for
D is set of state-action pairs{〈s, a〉 : a ∈ APP(s)}.

The set of SAs define a function from states to sets of ac-
tions relevant to apply in order to reach a goal state. States
are assumed to be fully observable. An execution of a non-
deterministic plan is an alternation between observing the
current state and choosing an action to apply from the set
of actions associated with the state. Notice that the defini-
tion of a nondeterministic plan does not give any guarantees
about goal achievement. The reason is that, in contrast to
deterministic plans, it is natural to define a range of solu-
tions classes. We are particularly interested in strong plans
that guarantee goal achievement in a finite number of steps.
Following (Cimattiet al. 2003), we define strong plans for-
mally by as a CTL formula that must hold on a Kripke struc-
ture representing the execution behavior of the plan.

A set of statescoveredby a planπ is STATES(π) ≡ {s :
∃a . 〈s, a〉 ∈ π}. The set of actions in a planπ associated
with a states is ACT(π, s) ≡ {a : 〈s, a〉 ∈ π}. Theclosure
of a planπ is the set of possible end states CLOSURE(π) ≡
{s′ 6∈ STATES(π) : ∃〈s, a〉 ∈ π . s′ ∈ NEXT(s, a) }.

Definition 7 (Execution Model) An execution model with
respect to a nondeterministic planπ for the domainD =
〈S, A, R〉 is a Kripke structureM(π) = 〈Q, U〉 where

• Q = CLOSURE(π) ∪ STATES(π) ∪ G,
• 〈s, s′〉 ∈ U iff s 6∈ G, ∃a . 〈s, a〉 ∈ π and〈s, a, s′〉 ∈ R,

or s = s′ ands ∈ CLOSURE(π) ∪ G.

Notice that all execution paths are infinite which is re-
quired in order to define solutions in CTL. If a state is
reached that is not covered by the plan (e.g., a goal state
or a dead end), the postfix of the execution path from this
state is an infinite repetition of it. Given a Kripke structure
defining the execution of a plan, strong plans are defined by
the CTL formula below.

Definition 8 (Strong Plans) Given a nondeterministic
planning problemP = 〈D, s0, G〉 and a planπ for D, π is
a strong plan iffM(π), s0 |= AFG.

The expressionM(π), s0 |= AFG is true if all execution
paths lead to a goal state in a finite number of steps.

Fault Tolerance
A weakness of strong plans is that they can be very conser-
vative. In real-world domains most actions may fail. If fault
behavior is modeled via nondeterminism, a strong plan only
exists if the worst case behavior of the plan, where all actions
fail, still leads to a goal state. This is seldom the case. We
would like to be able to state a weaker kind of plans that do
not have to cover the most unlikely execution paths. As men-
tioned in the introduction, going all the way to probabilistic
planning is not a solution due to the high computational cost.
But we can rephrase a plan with high probability of success

as a plan with high tolerance for failures encountered dur-
ing execution. Such plans can be defined fully within the
framework of nondeterministic planning. Plans that guaran-
tee goal achievement if no more thann actions fail during
execution are calledn-fault tolerant plans (Jensen, Veloso,
& Bryant 2004). Fault tolerant plans can be computed via
strong plans by adding fault counters to the domain.4 This
is also possible for ASET domains.

We define a failure of a task as a unit time transition lead-
ing to the idle state. In order to generaten-fault tolerant
plans, we add a special fault counter state variablefi for
each controllable agenti. For each task of agenti that can
fail, we extend the guard and effect of each unit time transi-
tion denoting failure with the expressionn >

∑ms

i=1 fi and
f ′

i = fi + 1, respectively. For the remaining transitions of
the task, we maintain the value offi by extending the ef-
fect with f ′

i = fi. Finally, the initial state is extended with
fi = 0 for i = 1 . . .ms and the goal states are extended with
n ≥

∑ms

i=1 fi. In this way failures can only happen in the
fault extended problem if less thann failures have occurred
so far. This is precisely the assumption ofn-fault tolerant
plans and ensures that a strong plan of the fault extended
problem is a validn-fault tolerant plan.

Experimental Evaluation
We have implemented a planning system in C++/STL us-
ing the BuDDy BDD package (Lind-Nielsen 1999). Given a
textual ASET description, it computes two BDDs represent-
ing the transition relation of the unit time transition graph
and its associated decision graph.

The experiment reported in this section investigates how
fast the computational complexity of synthesizing the deci-
sion graph grows with the temporal granularity of the unit
time decision graph. We consider a parameterized version
of the job shop domain where each task is extended with
extra unit time transitions such that the overall structureof
the task is maintained. For instance, unit time transitions
are added on both the left and right side of the early termi-
nation of the painter’s paint task and the robot’s drive task.
Since the number of possible ways that tasks can be tempo-
rally aligned grows fast with their duration, computing the
decision graph could potentially be hard.

We conducted the experiments on a 3GHz Pentium 4 with
1024KB L2 cache and 2GB RAM5 running Linux kernel
2.4.25. Figure 6 shows the computation time of the unit
time transition graph and the decision graph. As depicted,
the CPU time for computing the unit time transition graph
is very low for all versions of the domain. Despite the
much longer time needed to compute the decision graph,
the asymptotic complexity of this operation is low. Notice
the jumps in computation time when the iterative squaring
involves computing a new intermediate transition relation.

4While this approach is conceptually easy to understand, much
better performance can be achieved in real-world domains bydis-
tinguishing semantically between failure effects and successful ef-
fects and use specialized planning algorithms (Jensen, Veloso, &
Bryant 2004).

5The experiments, however, were limited to 500MB RAM.

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350 400 450 500

C
P

U
 T

im
e

(s
ec

)

Maximum Task Duration

UTG
DG

Figure 6: CPU time for synthesizing the unit time transition
graph (UTG) and the decision graph (DG) as a function of
maximum task duration.

Fortunately the distance between these jumps grows expo-
nentially with the maximum task duration.

Figure 7 shows how the BDD size of the unit time transi-
tion graph and the decision graph grows as a function of the
maximum task duration. As depicted, the BDD size of the

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300 350 400 450 500

B
D

D
 S

iz
e

(n
um

be
r

of
 B

D
D

 n
od

es
)

Maximum Task Duration

UTG
DG

Figure 7: BDD size of the unit time transition graph (UTG)
and the decision graph (DG) as a function of maximum task
duration.

decision graph grows approximately linearly with the com-
putation time of the decision graph. It may be surprising that
the BDD of the decision graph is larger than the BDD of the
unit time transition graph. Since BDDs represent transitions
implicitly, there is no simple relation between the size of a
BDD and the number of transitions it represent. That the
BDD representing the decision graph is large merely indi-
cates that the subspace of transitions in the decision graph
is less structured than that of the unit time decision graph.
The question is to what extend this will impair BDD based
planning based on the decision graph. Future experiments
will address this issue.

Conclusion
In this paper, we have introduced a new multi-agent plan-
ning language called ASET. The main contribution of ASET
is Evolving Tasks (ETs). ETs are, as far as we know, the
first action description that in an explicit and intuitive way
can represent temporally extended activities which are non-
deterministic both with respect to duration and effect. ETs
are represented as directed acyclic graphs that in a natural
way solves the problem of representing conditional effects
and intermediate effects of durative actions.

We have formally defined ASET descriptions and shown
how they can be transformed into nondeterministic planning
domains. Using a Boolean encoding of these domains, effi-
cient symbolic nondeterministic planning algorithms can be
used to solve ASET planning problems.

ASET shows that it is possible to model essential aspects
of time and stochastic behavior in a language with a rep-
resentational power as low as a nondeterministic finite au-
tomata. This is encouraging since the main challenge of
automated planning is to scale to the size of real-world do-
mains, and since dense time and probabilistic models come
with a high computational fee.

Preliminary results show that the decision graph of ASET
domains can be generated efficiently even for domains with
a high level of temporal detail. Future work includes fur-
ther experiments investigating BDD-based planning based
on ASET decision graphs and developing more efficient
ways of generating and representing decision graphs (e.g.,
by using transition relation partitioning (Burch, Clarke,&
Long 1991)).

References
Bacchus, F., and Ady, M. 2001. Planning with resources
and concurrency: A forward chaining approach. InInter-
national Joint Conference on Artificial Intelligence (IJCAI-
01), 417–424.

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation.IEEE Transactions on Computers
8:677–691.

Burch, J.; Clarke, E.; and Long, D. 1991. Symbolic model
checking with partitioned transition relations. InInterna-
tional Conference on Very Large Scale Integration, 49–58.
North-Holland.

Burch, J. R.; Clarke, E. M.; and McMillan, K. 1990. Sym-
bolic model checking:1020 states and beyond. InPro-
ceedings of the 5th Annual IEEE Symposium on Logic in
Computer Science, 428–439.

Cassandras, C. G., and Lafortune, S. 1999.Introduction to
Discrete Event Systems. Kluwer Academic Publishers.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, Strong, and Strong Cyclic Planning via Symbolic
Model Checking.Artificial Intelligence147(1-2). Elsevier
Science publishers.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research (JAIR)20:61–124.

Gabodi, G.; Camurati, P.; Lavagno, L.; and Quer, S. 1997.
Disjunctive partitioning and partial iterative squaring.In
Proceedings of the 34th Design Automation Conference
DAC-97.
Gelfond, M.; Lifschitz, V.; and Rabinov, A. 1991. What
are the limitations of the situation calculus. InEssays in
Honor of Woody Bledsoe. Kluwer Academic. 167–179.
Giunchiglia, E.; Kartha, G. N.; and Lifschitz, Y. 1997.
Representing action: Indeterminacy and ramifications.Ar-
tificial Intelligence95:409–438.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops.Artificial
Intelligence129:35–62.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research (JAIR)14:253–302.
Jensen, R. M., and Veloso, M. M. 2000. OBDD-
based universal planning for synchronized agents in non-
deterministic domains.Journal of Artificial Intelligence
Research13:189–226.
Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2003.
Guided symbolic universal planning. InProceedings of the
13th International Conference on Automated Planning and
Scheduling ICAPS-03, 123–132.
Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2004.
Fault tolerant planning: Toward probabilistic uncertainty
models in symbolic non-deterministic planning. InPro-
ceedings of the 14th International Conference on Auto-
mated Planning and Scheduling ICAPS-04.
Laborie, P., and Ghallab, M. 1995. Planning with sharable
resource constraints. InProceedings of (IJCAI-95), 1643–
1649.
Lind-Nielsen, J. 1999. BuDDy - A Binary Decision Di-
agram Package. Technical Report IT-TR: 1999-028, In-
stitute of Information Technology, Technical University of
Denmark.http://cs.it.dtu.dk/buddy.
Lingard, A. R., and Richards, E. B. 1998. Planning parallel
actions.Artificial Intelligence99:261–324.
Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: A cooperative intelligent real time control archi-
tecture. IEEE Transactions on Systems, Man, and Cyber-
netics23(6):1561–1574.
Piergiorgio, B.; Bonet, B.; Cimatti, A.; Giunchiglia, E.;
Golden, K.; Rintanen, J.; and Smith., D. E. 2002. The
NuPDDL home page.http://sra.itc.it/tools
/mbp/#nupddl.
Younes, H. L. S. 2003. Extending PDDL to model stochas-
tic decision processes. InProceedings of the 13th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-03) Workshop on PDDL, 95–103.

