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Abstract

Fleet repositioning problems pose a high financial bur-
den on shipping firms, but have received little atten-
tion in the literature, despite their high importance
to the shipping industry. Fleet repositioning problems
are characterized by chains of interacting activities, but
state-of-the-art planning and scheduling techniques do
not offer cost models that are rich enough to repre-
sent essential objectives of these problems. To this
end, we introduce a novel framework called Temporal
Optimization Planning (TOP). TOP uses partial or-
der planning to build optimization models associated
with the different possible activity scenarios and ap-
plies branch-and-bound with tight lower bounds to find
optimal solutions efficiently. We show how key aspects
of fleet repositioning can be modeled using TOP and
demonstrate experimentally that our approach scales
to the size of problems considered by our industrial
collaborators.

Introduction

Liner shipping networks transport containerized cargo
through regularly scheduled shipping routes. Fleet
repositioning problems consist of moving ships between
services in a liner shipping network in order to better
orient the overall network to the world economy and
to ensure the proper maintenance of ships. Thus, fleet
repositioning involves sailing and loading activities sub-
ject to complex handling and timing restrictions. As is
the case for many industrial problems, the objective is
cost minimization (including costs for CO2 emissions
and pollution), and it is important that all cost ele-
ments, including the ones that are only loosely coupled
with activity choices, can be accurately modeled.

Optimization problems that involve chains of activ-
ities with complex interactions, like fleet repositioning
problems, are hard to represent as mathematical pro-
grams. AI-planning and OR-scheduling offer a wide
range of approaches to allocate interacting activities
over time, but it has been observed in both fields (e.g.,
(Karger, Stein, and Wein 1997; Smith, Frank, and
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Jónsson 2000)) that the compound objectives of real-
world problems often are hard to express in terms of
the simple objective criteria like makespan and tardi-
ness minimization considered in these approaches.

In this paper, we introduce a novel general frame-
work called Temporal Optimization Planning (TOP)
and show that it can model key aspects of fleet repo-
sitioning problems. The core idea of TOP is to asso-
ciate durative planning actions with optimization model
components and use planning algorithms to build and
search through complete optimization models that are
associated with the different activity scenarios of the
problem. In contrast to advanced temporal planning
languages (Fox and Long 2006), TOP does not enforce
a strong semantic relation between planning actions and
optimization components. The format of optimization
components can be chosen freely by the model designer
as long as the set of complete plans corresponds to the
set of activity scenarios of the problem.

In this way, TOP allows general optimization models
to be constructed, but at the same time makes it pos-
sible to naturally represent and explore complex inter-
actions between durative activities with the expressive
action models of AI-planning and its powerful search
algorithms. In fact, TOP accommodates any optimiza-
tion model over real-valued variables and thus is a sim-
ple way to reason about interacting durative activities
in such models.

We solve TOP problems by an optimization version
of partial-order planning (Penberthy and Weld 1992)
based on a branch-and-bound and demonstrate the ap-
proach for linear optimization models. We define a gen-
eral lower bound for partial plans in the naturally oc-
curring case where the minimum costs of optimization
components are non-negative. We show that this bound
can be improved by an extension of the hmax heuristic
(Haslum and Geffner 2000) that makes it possible to
estimate the cost of required actions not currently in
the plan.

The TOP framework is validated experimentally on
a set of fleet repositioning problems developed in col-
laboration with a liner shipping company. We provide
a basic model of a fleet repositioning problem that gives
a first step towards solving such problems in TOP. We



include key aspects such as the temporal interaction be-
tween ships and complex cost objectives such as sailing
fuel consumption and the fixed cost of ships over time.
Our experimental evaluation shows that the TOP ap-
proach scales to the size of problems faced by the in-
dustry and that our lower bounds are tight enough to
reduce the total computation time by orders of magni-
tude.

The remainder of the paper is organized as follows.
First we describe fleet repositioning problems, followed
by a formalization of TOP along with a description of
the hcostmax heuristic for estimating lower bounds of par-
tial plans. Then we describe our model of a simple fleet
repositioning problem and we present experimental re-
sults showing the performance of the TOP framework
with several plan selection heuristics. Finally, we draw
conclusions and discuss directions for future work.

Fleet Repositioning

Liner shipping networks consist of multiple services,
which are circular routes that connect a sequence of
ports. Each service consists of one or more ships that
maintain a weekly schedule. That is, each port on a ser-
vice is visited by a ship on the same day each week, and
a service is assigned as many ships as are necessary to
maintain weekly frequency. Ships are periodically repo-
sitioned, in which they are moved from their current
service to some other service. Shipping firms reposition
their ships so that they can undergo regular mainte-
nance, be returned to their owner, or to better match
ships to markets.

Consider the example repositioning problem shown
in Figure 1 in which a new service is being started and
requires ships to sail on it. This example involves the
temporal alignment of several ships. First a ship from
the service on the left must sail to the dashed line ser-
vice, but the ship on the dashed line service may not
leave for its goal service until its replacement ship has
arrived, and cargo has been transshipped. Second, the
two ships sailing to the service on the right must have
a time spacing of exactly one week. Complicating mat-
ters further is that shipping firms want to reposition
their ships as cheaply as possible.

Fleet repositioning problems can be even more com-
plicated than the example given, with several ships re-
placing one another in long chains. Aligning the ships
temporally and finding a minimum cost plan of activ-
ities presents a significant challenge. The possible ac-
tivities that a ship may undertake during repositioning
is given as follows.

• Ships can leave or enter a service only at a port on
days when the port is scheduled to be called.

• Ships must sail between their minimum and maxi-
mum speed, the cost of which is a function of the
ship’s speed and draft,

• Ships can idle at a port, incurring a fixed cost per
hour (in shipping parlance, hotel cost).

Figure 1: An example fleet repositioning problem in-
volving three ships. Two ships are being repositioned
from their initial services (solid, dashed) to a new ser-
vice (bold solid). The ship on the dashed service is be-
ing replaced by a ship from the dashed-dotted service,
which will cease operations. Circles represent ports and
are labeled with the day the service calls the port.

• Cargo can be on/off loaded, resulting in a fee per
container moved.

• Cargo can be directly transhipped between ships, in-
curring a reduced per container fee.

• Ships can move equipment (empty containers) to
where it is needed, reducing the overall cost of repo-
sitioning.

• Ships may satisfy certain demands in the shipping
network for a profit.

A number of constraints pose restrictions on when the
given activities may take place. Ships must be replaced
by another ship in order to leave their service, except
for certain, designated ships. Ships may not load or un-
load cargo in certain ports due to cabotage restrictions,
which are laws that prevent foreign ships from offer-
ing domestic services. If multiple ships are entering the
same service, they must enter one week apart in dis-
tance or time from one another. In addition, multiple
ships must alternate in size such that if there are sev-
eral ships entering a service, no two ships of the same
capacity should follow one another.

Given the high expense of repositioning, the goal of
fleet repositioning problems is to find a scenario of ac-
tivities, which involve continuous decisions regarding
sailing time and cost configurations, associated with a
lowest cost optimization model.

The fleet repositioning problem is difficult to solve
for existing scheduling and planning methods.

Scheduling is concerned with the optimal allocation
of scarce resources to activities over time (Karger, Stein,
and Wein 1997), and scheduling research has focused on
problems that only involve a small, fixed set of choices,
while planning problems like fleet repositioning often in-
volve cascading sets of choices that interact in complex
ways (Smith, Frank, and Jónsson 2000). Another lim-
itation is that mainstream scheduling research has fo-
cused predominately on optimization of selected, simple
objective criteria such as minimizing makespan or min-
imizing tardiness (Smith 2005). More general objective
criteria are required in order to solve fleet repositioning
problems.



Integer Programming (IP) has successfully been ap-
plied to solve classical planning problems using com-
petitive encodings based on the planning graph heuris-
tic (Van Den Briel, Vossen, and Kambhampati 2005).
An earlier version of this approach has also been used
to extend classical planning with possibly continuous
state variables over which linear constraints and objec-
tives can be stated (Kautz and Walser 1999). A limi-
tation of these encodings is, though, that they are un-
able represent continuous time. In general, it is difficult
to represent partial-order planning with IP since the
number of actions in a partial-order plan in principle
is unbounded. A SAT encoding of actions with contin-
uous duration (Shin and Davis 2005), however, shows
that other encodings of continuous time using IP may
be possible, but this encoding currently does not cover
any objective criteria except minimizing the number of
unique time points in the plan.

Consider a sailing action, asail, that has a cost based
on fuel consumption. The action has an objective of
E−α(xe−xb) and the constraint dmin ≤ xe−xb ≤ dmax
∧ xb ≤ xe, where E is a positive constant such that E−
αdmax > 0, α is the cost of fuel per unit time, xe and xb
are the end and begin times of the sailing, and dmin and
dmax are the minimum and maximum duration for the
sailing. Note that as the sailing time increases the cost
of sailing decreases, which corresponds to cost savings
from sailing slowly.

Within AI, there exists domain independent plan-
ners for temporal planning languages and specialized
application planners, however none has the ability to
model asail. With respect to the former, while early
approaches had limited scalability (e.g., (Ghallab and
Laruelle 1994; Penberthy and Weld 1995)), a number
of powerful solvers have recently been developed for
planning languages with durative actions, real-valued
state variables, and linear change of quantities dur-
ing action execution (e.g. (Coles et al. 2009; 2010;
Li and Williams 2008; Shin and Davis 2005)). These
planning languages can model domains where activi-
ties depend on shared resources like electric power dur-
ing execution, which is a typical situation for popular
application domains within robotics and aerospace sys-
tems (e.g., (Frank, Gross, and Kurklu 2004; Muscettola
1993)). However, the fleet repositioning problem in-
volves decoupled actions that intersect only temporally.
Furthermore, most of these domain independent and
application specific planning systems only allow simple
objective criteria like makespan minimization. A no-
table exception is Sapa (Do and Kambhampati 2003),
which can represent multi-criteria objectives covering
any combination of makespan minimization and min-
imization of fixed action and resource costs. On the
other hand, Sapa only handles discrete time and fixed
action durations.

Recently, the 2008 International Planning Compeiti-
tion (Helmert, Do, and Refanidis 2008) featured a
net benefit optimization category with several entries:
hsp∗, MIPS-XXL, and Gamer. These planners are un-

able to reason temporally, and only support fixed action
costs in their objective, preventing them from handling
many aspects of fleet repositioning problems, such as
hotel costs and variable action cost. Linear Program-
ming has been used to strengthen plan length estima-
tion (e.g. (Bylander 1997; Van Den Briel et al. 2007)),
however these approaches do not handle a cost-based
objective or temporal setting, with the ordering relax-
ation in (Van Den Briel et al. 2007) being particularly
troubling for a temporal planner.

Temporal Optimization Planning

In the absence of a suitable method for solving fleet
repositioning problems, we introduce Temporal Opti-
mization Planning (TOP). TOP diverges fundamen-
tally from classical AI-planning approaches by intro-
ducing two sets of variables that decouple the planning
problem from the optimization model. Thus, the opti-
mization model is not tightly bound to the semantics
of actions. Actions are merely used as handles to op-
timization components that are built together to com-
plete optimization models using partial-order planning.
This decoupling makes it possible to formulate any ob-
jective that can be expressed by the applied optimiza-
tion model. Moreover, computationally expensive ac-
tion models including real-valued state variables and
general objective functions are avoided.

In contrast to the current trend in advanced temporal
planning languages, TOP bypasses computationally ex-
pensive dense time models of shared resources like elec-
tric power consumption during activities. These models
are important for the robotic or aerospace applications
that often are targeted in AI-planning (e.g., (Frank,
Gross, and Kurklu 2004; Muscettola 1993)), but TOP
focuses on more physically separated activities where
resources are exclusively controlled.

On the other hand, while this decoupling offers some
new possibilities, it makes TOP less capable of solving
traditional planning problems where a strong coupling
is assumed as well as problems that fit within a classical
scheduling model.

TOP is built off a state variable representation
of propositional STRIPS planning (Fikes and Nilsson
1971). TOP utilizes partial-order planning (Penberthy
and Weld 1992), and extends it in several ways. First,
an optimization model is associated with each action
in the planning domain. This allows for complex ob-
jectives and cost interactions that are common in real
world optimization problems to be easily modeled. Sec-
ond, instead of focusing on simply achieving feasibility,
TOP minimizes a cost function. Finally, begin and end
times can be associated with actions, making them du-
rative. Such actions can have variable durations that
are coupled with a cost function.

Formally, let V = {v1, · · · , vn} denote a set of state
variables with finite domains D(v1), · · · , D(vn). A state
variable assignment ω is a mapping of state variables to
values {vi(1) 7→ di(1), · · · , vi(k) 7→ di(k)} where di(1) ∈



D(vi(1)), · · · , di(k) ∈ D(vi(k)). We also define vars(ω)
as the set of state variables used in ω.

A TOP problem is represented by a tuple

P = 〈V,D,A, I,G, pre, eff ,x, obj, con〉,
where D is the Cartesian product of the domains
D(v1) × · · · × D(vn), A is the set of actions, I is a
total state variable assignment (i.e. vars(I) = V) rep-
resenting the initial state, G is a partial assignment (i.e.
vars(G) ⊆ V) representing the goal states, prea is a par-
tial assignment representing the precondition of action
a, eff a is a partial assignment representing the effect
of action a1, x ∈ Rm is a vector of optimization vari-
ables2 that includes the begin and end time of each
action, xab and xae respectively, for all actions a ∈ A,
obja : Rm → R is a cost term introduced by action a,
and cona : Rm → B is a constraint expression intro-
duced by action a with cona |= xab ≤ xae ∧ xab ≥ 0 ∧
xae ≥ 0.

Let S = {ω|vars(ω) = V} denote the set of all the
possible states. An action a is applicable in s ∈ S if
prea ⊆ s and is assumed to cause an instantaneous
transition to a successor state defined by the total as-
signment

succa,s(v) =
{

eff a(v) if v ∈ vars(eff a),
s(v) otherwise.

We further defineMa = min{obja|cona}, which is the
optimization model component introduced by action a.

A temporal optimization plan is represented by a tu-
ple 〈A,C,O,M〉, where A is the set of actions in the
plan, C is a set of causal links, O is a set of ordering
constraints of the form a ≺ b, where a, b ∈ A, and M is
an optimization model associated with the plan. M is
defined by

min
∑
a∈A

obja(x)

s.t. xai
e ≤ x

aj

b ∀ai ≺ aj ∈ O (1)
cona(x) ∀a ∈ A (2)

The objective of M is to minimize the sum of the
costs introduced by actions. The first constraint ensures
that the start and end time of actions are consistent
with the plan, and second constraint requires that each
action constraint is satisfied. Let cost(π) denote the
cost of an optimal solution to M to a partial plan π.

1In practice, is it often more convenient to represent ac-
tions in a more expressive form, e.g. by letting the precon-
dition be a general expression on states prea : S → B and
represent conditional effects like resource consumption by
letting the effect be a general transition function, depending
on the current state of S, eff a,s : S → S. Such expressive
implicit action representations may also be a computational
advantage. We have chosen a ground explicit representa-
tion of actions because it simplifies the presentation and
more expressive forms can be translated into it.

2In a slight abuse of notation, we sometimes let x denote
a set rather than a vector.

An open condition
µ−→ b is an unfulfilled precondition

µ of action b ∈ A, that is, µ ∈ preb and ∀a ∈ A, a µ−→
b 6∈ C. An unsafe link is a causal link a

µ−→ b that is
threatened by an action c such that i) vars(µ) ∈ eff c,
ii) µ 6∈ eff c, and iii) {a ≺ c ≺ b} ∪O is consistent.

To deal with durative actions in TOP we need
to keep track of another type of flaw called inter-
ference. We adopt an interference model based on
the exclusive right to state variables (Sandewall and
Rönnquist 1986). Thus, two actions a and b interfere if
vars(eff a)∩vars(eff b) 6= ∅ and O implies neither a ≺ b
nor b ≺ a.

An open condition flaw
µ−→ b can be repaired by

linking µ to an action a such that µ ∈ eff a and by
posting an ordering constraint over a and b. Thus,
C ← C∪{a µ−→ b} andO ← O∪{a ≺ b}. In the case that
a 6∈ A, A← A ∪ {a} and O ← O ∪ {a0 ≺ a, a ≺ a∞}.

An unsafe link a
µ−→ b that is threatened by action c

can be repaired by either adding the ordering constraint
c ≺ a (demotion) or b ≺ c (promotion) to O. Similar
to unsafe links, an interference between actions a and b
can be fixed by posting either a ≺ b or b ≺ a to O.

Together, open conditions, unsafe links and inter-
ferences constitute flaws in a plan. Let flaws(π) =
open(π) ∪ unsafe(π) ∪ interfere(π) be the set of flaws in
the plan π, where open(π) is the set of open conditions,
unsafe(π) is the set of unsafe links, and interfere(π) is
the set of interferences. We say that π is a complete
plan if |flaws(π)| = 0, otherwise π is a partial plan. A
plan π∗ is optimal if it is feasible and for all feasible
solutions π, cost(π∗) ≤ cost(π).

Linear Temporal Optimization Planning
To solve fleet repositioning problems, we introduce lin-
ear temporal optimization planning (LTOP). In LTOP,
all of the optimization models associated with planning
actions have a linear cost function and a conjunction of
linear constraints. Thus, obja is of the form cax′, where
ca ∈ Rm and cona is of the form

∧
1≤i≤na

(αai x
′ ≤ βi),

where αai ∈ Rm, βi ∈ R and na is the number of con-
straints associated with action a. Thus, Ma and M are
linear programs (LPs).

Algorithm 1 shows a branch-and-bound algorithm
that finds an optimal plan to an LTOP problem. First,
an initial plan πinit is created by the InitialTOP func-
tion (line 2). We define πinit = 〈{a0, a∞}, ∅, {a0 ≺
a∞},Minit}〉, where a0 is an action representing I with
prea0 = ∅ and eff a0 = I, a∞ is an action representing
G with prea∞ = G and eff a∞ = ∅, and Minit is an opti-
mization model with no objective and two constraints,
cona0 and cona∞ , which are special constraints on the
dummy actions a0 and a∞ such that cona0 = (xa0

b =
xa0
e ∧ x

a0
b ≥ 0) and cona∞ = (xa∞b = xa∞e ∧ xa∞b ≥ 0).

The optimization variables xa0
b , x

a0
e , x

a∞
b and xa∞e rep-

resent the begin and end times of actions a0 and a∞
respectively.

The algorithm then selects a plan from Π (line 6)
and checks to see if it is a complete plan. If the plan is



Figure 2: A partial temporal optimization plan from Figure 1 showing the ship sailing from the dash-dotted service
to the dashed service (v1) and the ship sailing from the dashed service to the bold, solid service. Boxes represent
actions and contain associated optimization models. Arrows between boxes show causal links. The optimization
variables xab and xae represent the begin and end time of action a, and hb,v, he,v are the begin and end hotel time of
vessel v respectively. Each vessel v is associated with a state variable sv with a domain of {i,t,g} which indicate
that v is on its initial service, in transit or at its goal service, respectively.

Algorithm 1 Optimization planning algorithm, based
on (Williamson and Hanks 1996).
1: function TOP(I, G)
2: Π← {InitialTOP(I,G)}
3: πbest ← null
4: u←∞ . Cost of the incumbent (upper bound)
5: while Π 6= ∅ do
6: π ← SelectPlan(Π)
7: Π← Π \ {π}
8: if NumFlaws(π) = 0 ∧ Cost(π) < u then
9: u← cost(π)

10: πbest ← π
11: else if EstimateCost(π) < u then
12: f ← SelectFlaw(π)
13: Π← Π ∪ RepairFlaw(π, f)
14: return πbest

complete, its cost is compared with the current upper
bound (u), and if the cost is lower, the incumbent πbest
is replaced with the current plan π and the upper bound
is updated (lines 9 and 10). When π is a partial plan,
an estimated lower bound of the plan is compared with
the cost of the incumbent solution (line 11). If the esti-
mated cost of the plan is higher, the plan is discarded.
Otherwise, a flaw is selected and repaired (lines 12 and
13). This process is repeated until Π is empty, at which
point the current incumbent is returned, if there is one.

Algorithm 1 is guaranteed to find the optimal solu-
tion (if there is one) as long as EstimateCost does not
overestimate the cost of completing a partial plan. To
prune as much of the branch-and-bound tree as possi-
ble, we need tight lower bounds. If we require that the
cost of each action subject to its constraints is non-
negative, we can prove that cost(π) is such a lower
bound.
Proposition 1. Given any valid partial plan π =
〈A,C,O,M〉 where Ma ≥ 0 ∀a ∈ A, cost(π) ≤ cost(π̄)
for any completion π̄ of π.

Proof. Let π′ be π with a single flaw repaired. The flaw
is either i) an unsafe link, ii) an interference, iii) an

open condition being satisfied by an action in the plan,
or iv) an open condition being satisfied by an action not
in the plan.

In cases i and ii the flaw is repaired by adding an
ordering constraint to π, which further constrains π,
thus cost(π) ≤ cost(π′). Case iii results in a new
causal link and an ordering constraint, and is there-
fore the same as cases i and ii. In case iv, the ac-
tion’s optimization model is added to π, but since the
cost function of the action must be non-negative under
its constraints, cost(π′) cannot be less than cost(π).
By applying this argument inductively on the com-
plete branch-and-bound subtree grown from π, we get
cost(π) ≤ cost(π̄) for any completion π̄ of π.

Heuristic Cost Estimation
Although cost(π) provides a reasonable lower bound for
π, the bound is only computed over actions in the plan.
It can be strengthened by also reasoning over actions
that are not in the plan. We present an extension of the
hmax heuristic (Haslum and Geffner 2000), hcostmax, which
estimates the cost of achieving the open conditions of a
plan π. Let

hcostmax(ω, π) =


0 if ω ⊆ effsπ, else
f(ω, π) if ω = {µ}, else
g(ω, π) if |ω| > 1,

f(ω, π) = min{a∈A\A|µ∈eff a}{Ma + hcostmax(prea, π)},
g(ω, π) = maxµ∈ω{hcostmax({µ}, π)},

where ω is a partial state variable assignment, µ is a
single state variable assignment v 7→ d, and effsπ =⋃
a∈Aeff a. The heuristic takes the max over the esti-

mated cost of achieving the elements in the given as-
signment ω. The cost is zero if the elements are al-
ready in π, otherwise the minimum cost of achieving
each element is computed by finding the cheapest way
of bringing that element into the plan.
Proposition 2. Given any valid partial plan π =
〈A,C,O,M〉 where Ma ≥ 0 ∀a ∈ A, cost(π) +
hcostmax(open(π), π) ≤ cost(π̄) for any completion π̄ of π.



Proof. We have hcostmax(ω, π) =
∑
a∈RMa, where R is

a set of actions not currently in π (R ∩ A = ∅) that
are required to resolve ω and among such sets has the
minimum cost. Thus, any completion π̄ of π as de-
scribed in Proposition 1 must at least increase cost(π)
by hcostmax(ω, π) =

∑
a∈RMa.

Modeling Fleet Repositioning

We describe an LTOP model of fleet repositioning prob-
lems that represents a first step towards modelling and
solving fleet repositioning problems. Our model repre-
sents a subset of fleet repositioning that captures its dif-
ficult elements, while excluding excessive detail. We fo-
cus on several key components of the fleet repositioning
problems that form the basis for more difficult versions
including i) the temporal interaction between ships in a
sequence of replacements, ii) variable ship sailing dura-
tions, iii) sailing costs that vary linearly with the sailing
duration, and iv) ship hotel costs that must span mul-
tiple actions.

Given a set of services, the goal is to carry out a se-
quence of repositionings in which a ship on each service
is moved to the next service in the sequence at minimal
cost. A ship may not be moved from its service until
replaced by another ship, except in the case of the first
service in the sequence.

Ships cease operations on their initial service through
the action out and begin operations on a service
through the in action. During the time in between out
and in, ships are charged their hotel cost, which is rep-
resented in the objective of the in action. The hotel
cost objective is given in the out action for ships that
do not have a target service, and will therefore not use
the in action, such as a ship being returned to its owner
or heading for repairs.

Ships must sail between ports within their minimum
and maximum speed, incurring a cost that varies lin-
early with the speed. In order for a ship to replace
another ship on a service, they must transship their
cargo. Transshipments in our model are instantaneous,
free actions that require both ships to simultaneously
be at a port where it is lawful for the ships to perform
a transshipment. Transshipments are only allowed at
ports in which a ship is lawfully able to transfer cargo,
which we are able to represent by simply not including
transshipment actions between ships at ports where it
would be unlawful.

Implicit in our model are wait actions. Such an action
does not need to be explicitly given, because actions,
even those that are ordered or linked, are not required
to start directly after one another. The objective of this
implicit action is given by the hotel cost computed in
the out and in actions.

Figure 2 shows a fleet repositioning partial plan in
the LTOP framework in which two ships are moved off
of their initial services (out action), and meet at port f
where they transship cargo (transship action). Ship v1
then begins service at port f (in action), freeing v2 to
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Figure 3: A plot of the performance of LTOP with the
planning heuristics hcostmax +LP (solid line), LP (dashed
line) and the number of flaws, Flaws (dotted line).

continue to a different service or undergo maintenance.
Notice how the objective for the hotel cost for v1, rep-
resented by hb,v1 and he,v1 , is computed in the in(v1, f)
action, but the bounds for the hotel cost are updated
throughout the partial plan. This allows the LP to com-
pute a more accurate bound throughout the planning
process. Multiple actions are therefore contributing to
the hotel cost, meaning that the interaction of actions
can have interesting cost consequences.

Even this simple version of the fleet repositioning
problem is not solvable with existing scheduling or plan-
ning approaches like ZENO (Penberthy and Weld 1995)
due to the lack of general optimization criteria or Sapa
(Do and Kambhampati 2003) due to the lack of continu-
ous time. But even if it was, an advantage of TOP from
an OR-perspective is that it is easy to use any optimiza-
tion model within the framework without changing the
representation of activities.

Experimental Evaluation
We created a dataset of sample problems based on dis-
cussions with a liner shipping company. The instances
range in size from 4 to 12 ports with 2 or 3 services over
time frames of 2 to 3 weeks.

Table 1 and Figure 3 display the performance of our
LTOP solver using several plan selection heuristics on
our dataset. Results were computed on dual six-core
2 GHz AMD Opteron 2425 HE processors, and each
execution was allowed a maximum of 4 GB of RAM. In
addition, our LTOP solver uses the linear programming
solver in COIN-OR 1.5.0 (Lougee-Heimer 2003). The
number of actions in the optimal plan varies with the
number of ships being repositioned. Instance CR1’s
optimal plan has five actions, while CR13 has 8 actions.

The hcostmax + LP plan selection heuristic selects the
cheapest plan available using the sum of the real cost



Instance Actions hcostmax + LP LP Flaws
CR1 32 0.07 0.10 0.20
CR2 82 1.20 1.47 1.52
CR3 83 0.95 1.96 1.64
CR4 92 1.21 2.82 138.53
CR5 93 11.32 12.80 5.74
CR6 126 4.96 10.50 358.81
CR7 151 5.36 3.78 9.06
CR8 158 6.27 19.40 376.84
CR9 160 15.25 38.00 1,519.92
CR10 178 7.30 17.44 174.89
CR11 221 9.02 16.46 1,519.92
CR12 237 49.45 156.02 2,339.51
CR13 339 118.20 96.67 382.12

Mean 17.74 29.03 525.28
Geo. Mean 4.94 8.55 61.35
Std. Dev. 32.81 46.03 762.30

Table 1: Results from our LTOP solver on a crafted
dataset for our sample fleet repositioning problem with
several plan selection heuristics. All times are CPU
times given in seconds.

of a plan and the estimated cost of the plan’s comple-
tion, the LP heuristic only uses the real cost of the
plan, and the Flaws heuristic selects the plan with the
lowest number of flaws. The LP + hcostmax heuristic per-
forms the best, taking on average 61% of the time of the
LP heuristic, and only 3.3% of the time of the Flaws
heuristic. The geometric mean of hcostmax +LP is over 12
times as fast as Flaws and almost twice as fast as LP ,
indicating that hcostmax +LP performs well across the en-
tire dataset, and not just on a few instances. Thus, the
superior search guidance provided by the hcostmax heuristic
is worth the extra computation time. The TOP frame-
work is therefore able to scale to solve real world sized
problems with the LP and hcostmax heuristics.

Conclusion
We presented a novel framework called Temporal Op-
timization Planning (TOP) for modeling and solving
fleet repositioning problems with compound objectives
spread throughout interconnected activities. We intro-
duced an extension to the domain independent hmax
heuristic, hcostmax, and showed that by using this heuris-
tic to estimate the costs of actions required to complete
a plan, the TOP framework is capable of scaling to the
size of real fleet repositioning problems.

We gave a model of a fleet repositioning problem that
represents the first step to understanding and solving
problems in the fleet repositioning domain. The model
captured key aspects of fleet repositioning that cannot
be modeled with current methods, such as hotel cost,
variable sailing durations and duration linked costs.

The TOP framework shows promise as a new method
for tackling many industrial cost minimization prob-
lems that are difficult to solve using state-of-the-art
AI or OR methods. We intend to further investigate

TOP on more realistic versions of the fleet reposition-
ing problem and related problems, including problems
that are non-linear and problems that do not have non-
negativity restrictions on the optimization models. In
addition, we will investigate forward-chaining methods
for TOP, similar to those in (Coles et al. 2010). Finally,
we also intend to see if it is possible to implement TOP
within a mixed integer programming framework.
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