
A Placement Heuristic for a Commercial Decision
Support System for Container Vessel Stowage

Alberto Delgado
IT University of Copenhagen

Email:alde@itu.dk

Rune Møller Jensen
IT University of Copenhagen

Email:rmj@itu.dk

Nicolas Guilbert
Lund Institute of Technology

Email:nicolas@ange.dk

Abstract—Decision support systems have become a viable
approach to tackle complex optimization problems. The combina-
tion of experts’ know-how and efficient optimization algorithms
can dramatically improve solution quality and reduce work
time. Some of these systems rely on continuous interaction
with their users and almost all require fast feedback from the
optimization algorithms. We propose a placement heuristic that
serves as the optimization component of a decision support
system to interactively generate container vessel stowage plans,
a complex problem with high economical impact within the
shipping industry. Our experimental evaluation shows that the
placement heuristic is fast enough for interactive optimization
and produces solutions that are competitive with expert users.

I. INTRODUCTION

Nowadays a considerable part of trade goods are seaborne,
with around 90% of all non-bulk cargo carried by container
vessels. These vessels follow specific routes loading and
unloading containers at different ports. A stowage plan assigns
containers to load in a port to vessel slots. Good stowage
plans save port fees, optimize use of vessel capacity, and
reduce bunker consumption through a better distribution of
cargo weight and shorter port stays, i.e., lower sailing speeds.
Stowage Planners (SPs) produce these plans manually with
the help of graphical tools (e.g., [1], [2]), but high-quality
stowage plans are hard to generate with the limited support
they provide. Plans for deep-sea vessels with capacities up
to 15.000 Twenty-foot Equivalent Units (TEUs) are made
just hours before the vessel calls the port, and it is difficult
to do so satisfying stacking rules, stress limits, and stability
requirements, while optimizing the use of resources (e.g., port
cranes and vessel capacity). Additionally, the impact of the
stowage plan for the current port in downstream ports needs
to be considered as well. Liner shipping companies are in their
infancy on using optimization-based decision support tools for
this task. Moreover, most of the research on stowage planning
during the past twenty years has focused on algorithms to
automatically generate stowage plans (e.g., [3], [4], [5], [6]),
limiting the role of expert users to result validation. Though
some of these approaches generate good quality stowage plans,
difficulties arise using them in practice. Stowage planning
is full of corner cases disregarded in the models solved by
automatic approaches. SPs need to be able to adapt automatic
generated plans to specific situations, or be directly involved in
the generation of the plans for stowage plans to be successfully
used in practice.

Angelstow ([7]) is a decision support tool that assists SPs in
the generation of stowage plans. The idea behind Angelstow
is to provide SPs with a platform to exploit their know-how
on stowage planning. To do so, the process of generating
stowage plans is divided into two phases: master planning,
where high level decisions that define the back-bone of the
stowage plan are made (i.e., defining the discharge port of
the containers to be stowed in sections of the vessel and
setting upper bounds for the weight utilization of bays) and slot
planning, where more specific decisions following those made
in the previous phase take place (i.e., assigning the containers
to specific vessel slots). The master and slot planning phases
mimic the work process that an SP follows when generating
a stowage plan. Angelstow provides an interface that allows
SPs to define master and slot plans. To validate a master
plan, however, an SP must carry out a considerable number of
slot planning decisions, limiting the number of master plans
that can be analyzed in the few hours an SP has available to
stow a vessel. To address this issue, Angelstow provides SPs
with the capability of turning master plans into stowage plans
by automatically doing the slot planning. The generation of
stowage plans then turns into an interactive process where the
SP devises a master plan and Angelstow provides feedback by
slot planning it and generating a stowage plan. If the resulting
stowage plan is not satisfactory or complete, the SP can change
or extend his or her master plan and let Angelstow generates
a new stowage plan. To avoid that this interactive process
becomes cumbersome, fast slot planning is a key factor. A
desired runtime of a slot planning algorithm is around two
seconds in average.

In this paper, we introduce a 2-phase placement heuristic
that generates a stowage plan from a master plan by slot
planning a set of containers to be loaded in a single port. In the
first phase, a Linear Programming (LP) model distributes the
containers to subsections of the vessel. In the second phase,
a greedy algorithm stows the containers of each subsection
into vessel slots. We evaluate our placement heuristic on three
real-life stowage plans. Each stowage plan corresponds to the
stowage conditions of a large vessel of approximately 15.000
TEUs after leaving the last of six consecutive ports. The vessel
is empty in the first port. To carry out our experiments, we use
the same master plan decisions that were taken at each port
by the SPs to make these stowage plans and let our placement
heuristic generate slot plans for all ports.



In this way, we achieve a fair comparison between the slot
plans generated by our placement heuristic and those generated
by the SPs. Our results show that the runtime of the placement
heuristic is reasonable (1.27 seconds in average). Moreover, it
drops in average 0.58% and at most 1.89% of the containers
to load and utilizes stack heights as efficient as the SPs.
Additionally, we introduce two important practical features of
stowage planning with strong impact on reduction in vessel
capacity that, to the best of our knowledge, have not been
considered in previous work. The remainder of the paper is
organized as follows. Section II introduces background and
describes the problem. Section III introduces Angelstow.
Section IV describes related work. Section V presents our
placement heuristic. Finally, Section VI and VII present the
experiments and draw conclusions.

II. BACKGROUND AND PROBLEM STATEMENT

ISO containers transported on container ships are normally
8’ wide, 8’6” high, and either 20 ’, 40 ’, or 45 ’ long. High-
cube containers are 9’6” high and are at least 40 ’ long.
Refrigerated containers (reefers) must be placed near power
plugs. Containers with dangerous goods (IMO containers)
must be placed according to a complex set of separation rules.

The capacity of a container ship is given in TEU. Figure 1
depicts the layout of a container vessel. The cargo space is
divided into sections called bays and each bay is divided into
an on deck and a below deck part by a number of hatch covers,
which are flat, leak-proof structures. Each sub-section of a bay
consists of a row of container stacks divided into slots that can
hold a single 20 ’ ISO container. Figure 2(a) and 2(b) show
the container slots of a bay and a stack, respectively. A pair of
slots in the same stack and tier are called a cell. A cell can hold
a single 40 ’ or 45 ’, or two 20 ’ containers. Cells with only
one slot are called odd slots (e.g., bottom tier, Figure 2(b)).
Stacks have height and weight limits. Two weight limits exists
for each stack, one regarding the outer container supports and
one regarding the inner supports. Limits on the inner supports
are often the smallest, as the vessel structure in the middle of
a stack is weaker. The inner supports are used only when 20
containers are stowed as depicted in Figure 2(b). When 20 and
40 containers are mixed in the same stack, only half of the
20 weight is considered to be supported by the outer supports,
since the other half sits on the inner supports. Below deck, cell
guides secure containers transversely. Containers on deck are
secured by lashing rods and twist locks with limited strength.
Thus, container weights must normally decrease upwards in
stacks on deck. Moreover, lashing rods of 20 ’ stacks must
be accessible and stack heights must be under the vessel’s
minimum line of sight. 45 ’ containers can normally only be
stowed over the lashing bridge on deck.

A container ship must sail at even keel and have sufficient
transverse stability. Figure 3 shows a cross section of a ship.
For small inclination angles, the volume of the emerged and
immersed water wedges (shaded areas) and thus the distance
GZ are approximately proportional with the angle such that
the buoyancy force intersects the center line in a fixed position

9

4

7

10

8

4

4

7

9

7 5

3

Hatch cover Bay

Line of sight

Lashing bridge Waterline Station

Fig. 1. The arrangement of bays in a small container vessel. The vertical
arrows show an example of the resulting forces acting on the ship sections
between calculation points (stations). Single crane work hours for adjacent
bays are shown at the top.

1 2 3 4 5 6

1 2 3 4 5 6

3

2

1

4

3

2

1

Tiers
Below

Deck

Tiers

On

Deck

Stern Stacks Below Deck

Stacks On Deck Bow

7

7 8

4 3 4

22 1

Stack
Fore Aft

Inner

supportssupport

Outer

40’ Reefer

20’20’ Reefer

40’ High−Cube

20’ Reefer

Outer

support

(a) (b)

Fig. 2. (a) A vessel bay seen from behind. (b) A side view of a stack of
containers. As depicted, power plugs are normally situated at bottom slots.

G

M

Z

Buoyancy
force

θheight
Metacentric

force
Gravity

Fig. 3. Transverse stability.

called the metacenter, M [8]. For an inclination angle θ, the
ship’s uprighting force is proportional to GZ = GM sin θ.
GM is called the metacentric height and the center of gravity
G must be on the center line and result in sufficient GM for
the ship to be stable. Maximum and minimum draft restrictions
apply due to port depths, working height of cranes, and
the propeller. The trim is the difference between the fore
and aft draft and must be kept within a given span. For a
station position p, the shear force is the sum of the resulting
vertical forces on vessel sections (see Figure 1) acting aft
of p, and the bending moment is the sum of these forces
times the horizontal distance to them from p. Both of these
stresses must be within limits. The vessel also has transverse
bending moment (torsion) limits. Given the displacement and
longitudinal center of gravity of a vessel, metacenter, draft,
trim, and the buoyancy of each section of the vessel can
be derived from hydrostatic tables. Ballast tanks distributed
along the vessel are used to modify displacement and center
of gravity by pumping water in or out of the tanks.

Container ships in liner shipping companies transport con-
tainers between ports on a fixed cyclic route. It is the liner
shippers and not the port terminals that are in charge of pro-
ducing stowage plans. A stowage plan assigns the containers



to load in a terminal to slots on the vessel and it is often sent
to the terminal shortly before calling it.

In this paper, we focus on the generation of slot plans
based on master plans defined by SPs. Master plans embed
in their constraints the know-how of SPs on how to deal
with complicated combinatorial objectives. In particular they
must minimize overstowage. Overstowage happens when a
container is stowed below a container destined for a later port.
In master plans this may happen if the containers stowed on a
hatch-cover are destined for later ports than the containers
stowed under the hatch-cover. Such hatch-overtowage may
cause many extra crane moves. A master plan must also
distribute the crane moves evenly over the length of the vessel
to minimize the makespan of the quay cranes. In addition, it
must ensure seaworthiness of the vessel with respect to shear
force and bending moments limits, as well as line-of-sight,
trim, draft, and GM requirements.

A feasible slot plan must fulfill all constraints specified in its
corresponding master plan together with the following rules:
• Stowed containers must form stacks (containers stand on

top of each other. They cannot hang in the air).
• 20 ’ containers can not be stowed on top of 40 ’ contain-

ers.
• 20 ’ and 40 ’ stack weight capacities are satisfied.
• Stack height capacities are satisfied.
• No overstowage is accepted.
• Reefer containers must be stowed in reefer slots.
• 20 ’ and 40 ’ slot capacity constraints are satisfied.
• The full capacity of a cell must be utilized. It is not

possible to stow a single 20 ’ container in cells with
capacity for two.

In addition, we follow the set of rules of thumb listed below
to generate high quality slot plans:
• Containers are distributed evenly among stacks on deck.
• The number of used stacks is minimized in storage areas

below deck.
• Wasted volume capacity is minimized.
• It is preferred to stow containers below deck, if possible.
• Heavy containers cannot be stowed on top of light

containers on deck.

III. ANGELSTOW

Angelstow provides an interface that allows SPs to define
master and slot plans (although the latter can be generated
automatically as well). In a master plan, an SP defines the
discharge port of the containers to stow in a sub-section of a
vessel bay called a compartment. Only a single discharge port
is allowed for each compartment. This is seldom a limitation
in practice since most vessels have sufficient compartments to
allow only stowing containers of one discharge port. Moreover,
due to the robustness of this approach with respect to avoiding
overstowage in downstream ports, it is considered a good
stowage practice to do so.

Automatic slot planning can be activated at any time, but
only the compartments that the SP has defined a discharge port

for will be slot planned. The SP can also set upper bounds on
the total weight of containers stowed in the compartments. In
this way, a partial master plan can be slot planned without the
SP losing control of the overall weight distribution over the
vessel. This is essential for achieving the draft, trim, GM, and
stress force objectives of the master plan.

Recall that a slot plan is an assignment of the containers
to load to specific vessel slots. A considerable number of slot
plans must be carried out by an SP in order to determine
whether it is possible to generate a stowage plan out of a
master plan. SPs generate plans under high time pressure and
uncertainty, since they receive the load list of containers a few
hours before the vessel calls port, and last minute changes
to the load list are allowed. Due to these conditions, the
number of master plans that can be analyzed is very limited. To
address this issue, Angelstow provides SPs with the capability
of turning master plans into stowage plans by automatically
doing the slot planning. The generation of a stowage plan then
becomes the interactive process described next. An SP devises
a master plan and, if needed, some slot planning decisions are
made to complement it. Next, Angelstow performs the slot
planning based on the master plan and slot planning decisions
specified by the SP. Once Angelstow finishes, the SP can
modify the stowage plan at will by performing slot planning
decisions on it. In case it is not possible to adapt the stowage
plan to what the SP considers a reasonable solution, the master
plan can be changed and the process starts over again. To
avoid this interactive process to become cumbersome, fast slot
planning is a key factor, which is an issue addressed by the
placement heuristic presented in Section V. We estimate that a
time limit of two seconds for generating slot plans is necessary
to efficiently support interactive optimization in Anglestow.

A multi-port view of stowage planning is important to
reduce the negative impact of a stowage plan in downstream
ports. A bad stowage plan can considerably reduce the vessel
capacity for containers to load in upcoming ports. Angelstow
provides a multi-port view (see Figure 5) where SPs can see
the effects in downstream ports of the master plan they devise
for the current one. Additionally, even though SPs focus their
work on the current port, information available in load lists
for downstream ports (i.e., forecasts) can be used to devise
master plans for the downstream ports as well.

When the SP wants to check the feasibility of the master
plans formulated for each of the ports a vessel calls, Angelstow
generates slot plans for each port independently using the
placement heuristic introduced in section V. Figure 4 depicts
the process that Angelstow follows to generate slot plans
for all the ports the vessel calls. At each port, the slot
planning component (placement heuristic) uses as input 1)
the master plan defined by the SP in Anglestow , 2) any slot
planning decisions made by the SP (e.g., requiring that certain
containers are stowed in certain slots), and 3) a load list of
containers for the port. The containers stowed by Anglestow
in the previous ports have fixed positions and are represented
as an extra set of slot planning decisions extending the ones
made by the SP. Thus, the slot plan made for the current



port becomes the release containers (onboard containers) of
the next downstream port. A more sophisticated approach to
multi-port slot planning would be to represent the problem in
a single optimization model. This has not been done since 1)
the impact is limited because most of the important decisions
with respect to multi-port planning are at the master planning
level, and 2) this may deteriorate the runtime performance.

...

Port 1 Port nPort 2

Vessel Data

Loadlists Automatic

Slot

Master
Plan

Fixed

Automatic

Slot

Master
Plan

Fixed
Slots

Automatic

Slot

Master
Plan

Fixed

Planning

Slots

PlanningPlanning

Slots

Port 1

Plan

Slot

Fig. 4. Multi-port slot planning.

Fig. 5. Front view of Angelstow. To the left, a summary of the load list of
containers and a view of the current state of the ballast tanks. In the center,
the multi-port view of Angelstow. Each row represents a port that the vessel
calls. To the right, the stresses graphs and weight distribution along the vessel
bays.

IV. LITERATURE REVIEW

With the stowing of container vessels being a key process
in the liner shipping industry, the problem of how to optimize
this task has caught the attention of several researchers since
the 1970s. Academic work can be divided into two main
categories: single-phase and multi-phase approaches. Single-
phase approaches have a plain representation of the stowage
planning problem (e.g., stow containers into vessel slots).
A common denominator among these approaches is to sac-
rifice model accuracy to achieve scalability. Early work in
this category (e.g., [9], [10]) introduced heuristic approaches
that solved simplifications of the stowage planning problem.
These approaches sequentially refine solutions by applying
placement heuristics, local search, and solving IP models.
Later on, [11] introduced an IP model of the first accurate
but intractable formulation of the stowage planning problem.
Constraint programming [12], metaheuristics such as genetic
algorithms (e.g.,[13], [14]) and simulated annealing [15], and

more recently IP (e.g, [16], [17], [18]) have been used to solve
still simplified versions of the stowage planning problem.

Multi-phase approaches decompose the problem hierarchi-
cally into two or more layers of abstraction (e.g., first distribute
containers over vessel sub-sections, then stow them into vessel
slots). These approaches are currently the most successful in
terms of model accuracy and scalability. The first work of
this type appeared in the early 1970s, where [19] introduced
a 3-phase heuristic. Twenty years later, a model that includes
several major aspects of the problem in a 2-phase approach
was introduced in [20]. This approach solves the stowage
planning problem for multiple ports. It uses a branch-and-
bound algorithm for solving the first phase, where containers
are distributed over sub-sections of the vessel, and applies
a tabu search for stowing containers into vessel slots in the
second phase. Other approaches that use similar decompo-
sitions include solving multi-port stowage planing with an
iterative improvement approach based on the transportation
simplex method [21], a bin-packing heuristic [22], and solving
a mixed-integer program for the first phase and a constraint
programming and constraint-based local search models for the
second one [6]. 3-phase approaches include combinations of
constructive heuristics, 0/1 IP, and metaheuristics (e.g., [4])
and heuristics combined with LS (e.g., [5]).

Multi-phase approaches developed by the industry include
a multi-stage placement heuristic using a number of lower-
bounds [3] and a combination of sequential LPs for distribut-
ing containers over vessel sections, and a hierarchy of IPs for
stowing them into vessel slots [23].

Several software tools are available in the market for con-
tainer stowage planning decision support (e.g., [1], [2], [24],
[25]). All of them assist SPs with the generation of stowage
plans by providing feedback on their slot planning decisions.
None of them, however, stow containers automatically. To the
best of our knowledge, our placement heuristic is the first
attempt to use optimization techniques for interactive genera-
tion of stowage plans. Moreover, our approach addresses two
new practical features of stowage planning with strong impact
on the reduction of the vessel capacity that have not been
considered in previous work: high-cube containers and odd
slots.

V. HEURISTIC APPROACH TO SLOT PLANNING

In this section we introduce our 2-phase heuristic decom-
position to generate slot plans. In the first phase, containers
are grouped together by their features and distributed over
the compartments by a Linear Programming (LP) model. A
compartment consists of a subset of stacks not necessarily
adjacent to each other, but within the same bay. Compartments
are either above or under a hatch-cover. Figure 2(a) shows four
compartments within a bay. In the second phase of the heuris-
tic, a greedy algorithm finds specific slots for all containers
following the distribution dictated by the first phase. Currently,
we limit our scope to consider containers that are 20 ’ and 40 ’
long and model reefer and high-cube characteristics.



A. LP Model

Here we present the LP model implemented in the first
phase of our slot planning heuristic. The set of compartments
of the vessel is defined as L. Containers from the load list
I are grouped together according to their features into a
set of types T . A type τ ∈ T is a 5-tuple (l, h, r, w, p),
where l ∈ L = {20 , 40} is the length of containers in feet,
h ∈ H = {HC ,DC} is the height of the container (high-cube
or dry cargo), r ∈ R = {RF ,NR} is the reefer properties of
the container (reefer or non-reefer cargo), w ∈W is the weight
class of the container defined by the weight of the container
rounded to nearest integer ton, and p ∈ P is the discharge port
of the container, with P being the set of possible discharge
ports from the load list of containers. Let T α be the subset of
types with a particular attribute value (e.g., T NR is the subset
of all non-reefer container types), and T ¬α the subset of types
without a particular attribute (e.g., T ¬d is the subset of types
with discharge port different than d).

The decision variables xτl ∈ R+ represent the number of
containers of type τ ∈ T stowed in compartment l ∈ L. In this
formulation we have dropped the integrality constraint over the
decision variables. Given the number of containers that can be
stowed in a compartment (up to a couple of hundred), and the
small number of valid types per compartment seen in practice,
the loss of precision in our solution by doing this is low and
can be easily dealt with in the second phase of our placement
heuristic. As seen in [6], the gain in computation speed by
doing this is substantial.

Auxiliary variables are introduced for each compartment l ∈
L. yHC

l ∈ R+ represents the number of high-cube containers
stowed in l above the high-cube killing limit, and yO ∈ R+ the
number of misused odd slots. We propose the LP model below
for solving the problem of distributing types of containers to
compartments in the first phase of our placement heuristic:

maximize∑
τ∈T

∑
l∈L

Cτl x
τ
l − C

HC
∑
l∈L

yHC
l − COyO (1)

subject to∑
τ∈T ¬dl

xτt = 0 l ∈ L (2)

∑
l∈L

xτl ≤ I
τ τ ∈ T (3)

∑
l∈Lb

∑
τ∈T

wτxτl ≤W
u
b ∀b ∈ B (4)

∑
τ∈T

V τxτl ≤ S
V
l ∀l ∈ L (5)

∑
τ∈T 20

xτl +
∑

τ∈T 40

2xτl ≤ S
S
l ∀l ∈ L (6)

∑
τ∈T 20

xτl ≤ S
20
l ∀l ∈ L (7)

∑
τ∈T 40

V τxτl ≤ S
40
l ∀l ∈ LNO (8)

∑
τ∈T 20∩T NR

ANR
l xτl ≥ c

ONR
l ∀l ∈ LO (9)

cONR
l ≤ ANR

l SONR
l ∀l ∈ LO (10)

∑
τ∈T 20

ARl x
τ
l ≥ c

OR
l ∀l ∈ LO (11)

cOR
l ≤ ARl S

OR
l ∀l ∈ LO (12)∑

τ∈T 20

xτl ≥
cONR
l

ANR
l

+
cOR
l

ARl
∀l ∈ LO (13)

∑
τ∈T 40

V τxτl ≤ S
40NO
l + cONR

l + cOR
l ∀l ∈ LO (14)

∑
τ∈T 20

wτxτl ≤W
20
l ∀l ∈ L (15)

∑
τ∈T 20

1

2
wτxτl +

∑
τ∈T 40

wτxτl ≤W
40
l ∀l ∈ L40 (16)

∑
τ∈T R

xτl ≤ S
RS
l ∀l ∈ LR (17)

∑
τ∈T R∩T 20

1

2
xτl +

∑
τ∈T R∩T 40

xτl ≤ S
RC
l ∀l ∈ LR (18)

∑
τ ′∈T (wτ

′≤wτ∧teuτ′=teuτ )

xτ
′
l ≤ S

τ
l ∀l ∈ L, τ ∈ T (19)

∑
τ∈T 20

xτl + yOl ≥ S
O
l ∀l ∈ LO (20)

∑
d∈D

∑
l∈Ld

yOl −O
d ≤ yO (21)

∑
τ∈T HC

xτl − y
HC
l ≤ SHC

l ∀l ∈ L (22)

The objective (1) maximizes the quality of the stowage plan.
There is a weight Cτl defined for each decision variable xτl
that reflects preferences with respect to types of containers
and compartments. Reefer containers are more profitable,
therefore, we prefer to load reefer over non-reefer containers.
Compartments below deck are preferred over compartments on
deck due to accessibility, and heavy containers are preferred
to be stowed below deck to increase stability of the vessel.
Recall that high-cube containers utilize more volume capacity
than dry cargo containers. Given the slot and volume capacity
of compartment l, we define the high-cube killing limit of
l, SHC

l , as the number of high-cube containers that can be
stowed in l such that its slot capacity can still be completely
utilized. When the number of high-cube containers stowed in
compartment l goes beyond SHC

l , the slot capacity of l is
reduced (kill cells) in order to provide the volume capacity
necessary to stow the extra high-cube containers. We penalize
the number of high-cube containers stowed in compartment l
that are above SHC

l (auxiliary variable yHC
l ) with cost CHC .

The number of misused odd slots in the vessel, represented
by variable yO, is penalized by cost CO. Odd slots are at the
bottom cells of a stack, and it is necessary to fill them up with
20 ’ containers in order to access the full capacity of the stack.
Our model penalizes odd slots that are not being used when
there are 20 ’ containers available in the load list to do so.

Constraint (2) restricts the containers to stow in compart-
ment l by only allowing containers of types with discharge port
dl, the discharge port for l defined by the SP during master
planning. Constraint (3) ensures that we do not stow more
containers of type τ in the vessel than those available from
the load list Iτ . Let B be the set of bays in the vessel, Lb



the set of compartments in bay b, wτ the weight of the weight
class of a container of type τ , and WU

b the upper bound of the
weight capacity for bay b that may have been defined by the
SP during master planning. Constraint (4) restricts the weight
of a bay according to the user preferences.

Containers consume volume capacity from compartments
depending on their type. For instance, 20 ’ containers need a
single slot, while 40 ’ containers need two. Since high-cube
containers are all 40 ’ they consume slightly more than two
slots. Constant V τ represents the volume consumed by type
τ . Constraint (5) restricts the volume of containers stowed
in l ∈ L to be within its volume capacity limit SVl . The
volume capacity of compartment l is calculated by adding up
the volume capacity of all stacks in l. Since stack volume
capacity is continuous, the volume capacity of l could be
erroneously increased by the fractional capacity of the stacks.
This allows extra containers in l that will not be possible to
stow since containers can not be split into pieces. To overcome
this issue, we constrain the containers assigned to compartment
l to be within the slot capacity of the compartment, SSl , with
constraint (6).

Due to physical limitations in the vessel, there are slots
that can hold only containers of a specific length. We limit
the number of 20 ’ containers stowed in compartment l to
be within the 20 ’ capacity of the compartment, S20

l , with
constraint (7). Similarly, we constrain the 40 ’ volume capacity
of compartments without odd slots, LNO , with constraint (8).

When present, odd slots are mainly found at the bottom
cells of a stack. For the 40 ’ volume capacity of a stack with
odd slots to become available, the odd slots must be filled
in with 20 ’ containers. Thus, in compartments with odd slots,
40 ’ volume capacity is increased proportionally to the utilized
odd slots.

Constraint (9) sets the auxiliary variable cONR
l to be the

extra 40 ’ volume capacity gained by stowing 20 ’ non-reefer
containers in the odd slots of compartment l. Notice that
we must distinguish between reefer and non-reefer containers
since a reefer container only can be placed in reefer odd slots.
The set of compartments with odd slots is defined by LO. The
average volume gained by stowing a single 20 ’ non-reefer
container in an odd slot is defined by ANR

l , and it is equal
to the average volume of the stacks above the odd slots. This
gain is limited by the number of non-reefer odd slots in l,
SONR
l , by constraint (10). In a similar fashion, constraints

(11) and (12) set the auxiliary variable cOR
l to be the extra

40 ’ volume capacity gained by stowing 20 ’ containers in l
(reefer and non-reefer) in an odd reefer slot. To avoid counting
volume gains produced by the 20 ’ non-reefer containers twice,
constraint (13) forces the number of 20 ’ containers to be at
least as many as the containers used to calculate the volume
gains when stowing 20 ’ in odd slots. Finally, constraint (14)
limits the number of 40 ’ containers in odd compartments to
be within the 40 ’ volume capacity. The 40 ’ volume capacity
of compartment l ∈ LO is defined as the volume capacity of
the compartment stacks with no odd slots, S40NO

l , plus the
increment in 40 ’ volume capacity given by stowing 20 ’ non-

reefer containers, cONR
l , and the increment by stowing 20 ’

reefer containers, cOR
l , in the odd slots of l.

Recall that the outer support points of a stack hold all
the weight of 40 ’ containers and half of the weight of 20 ’
containers, while the inner support points hold the other half
of the weight of 20 ’ containers. We can then define the weight
limit of 20 ’ containers in a compartment as W 20

l , which is
equal to twice the weight capacity of inner support points.
Similarly, we can define W 40

l to be the weight limit of 40 ’
containers taking into account that this capacity is also reduced
with half the weight of 20 ’ containers. The corresponding
constraints are constraints (15) and (16), respectively. For the
reefer capacity, constraints (17) and (18) limit the number
of reefer containers that can be stowed in a compartment.
Constraint (17) limits the number of reefer containers with
respect to the number of reefer slots, SRS

l , in compartment l.
There are cases, however, where both slots in a cell are reefer
slots. In this situation, if a 40 ’ container is placed in this kind
of cell, two reefer slots are used instead of only one. Constraint
(18) addresses this issue by constraining the number of reefer
containers with respect to the number of reefer cells in the
compartment, SRC

l .

In a pre-processing stage, we compute an upper bound, Sτl ,
on the number of containers of type τ that can be stowed in
compartment l. This upper bound is defined as the maximum
number of containers of type τ that can be stowed in l when
relaxing all constraints but those enforcing weight and TEU
capacity. Thus, the number of containers of types with the
same length as τ (i.e., demanding the same TEU capacity)
and with greater or equal weight must be smaller or equal to
Sτl . Constraint (19) enforces this.

Having SOl defined as the number of odd slots in compart-
ment l, constraint (20) bounds the auxiliary variable yOl , which
is the number of odd slots not used in l. Let Ld be the set of
compartments where the SP decided to stow only containers
of types with discharge port d, and Od the number of odd
slots in Ld that we know in advance can not be used due to
lack of 20 ’ containers. Constraint (21) bounds the auxiliary
variable yO which is the number of odd slots not used in the
vessel due to misplacement of 20 ’ containers.

As mentioned before, when the number of high-cube con-
tainers in a compartment l surpasses SHC

l , the high-cube
killing limit, it is necessary to reduce the slot capacity of the
compartment in order to stow the extra high-cube containers.
The relation between the number of killed cells and the extra
number of high-cube containers that can be allocated in l is not
linear, i.e., several high-cube containers can be stowed in l by
killing a single cell. Any linearization attempt on measuring
the slot capacity reduction due to killed cells in l can be
reduced to measure the number of high-cube containers above
SHC
l stowed in l. Constraint (22) bounds auxiliary variable
yHC
l to the number of high-cube containers in compartment l

above SHC
l .



B. Greedy Algorithm

We introduce a greedy algorithm that stows containers in
specific slots in such a way that the set of stacking constraints
and rules of thumb described in Section II are satisfied and
optimized, respectively. Our greedy algorithm (Algorithm 1)
works as follows: Given a set of containers C and a set of
stacks S, for each container c ∈ C, the algorithm finds the
best stack s ∈ S where c can be stowed. Containers are stowed
bottom-up in stacks, therefore, when looking for a feasible
stack for c, the greedy algorithm only checks the lowest empty
cell of each stack. Once the best stack has been found, c is
stowed in the lowest empty cell of the stack. In case it is
not possible to find a feasible stack to stow c, the container
is added to the list of unstowed containers, uc. Once all c ∈
C have been stowed, or attempted to be stowed, the list of
unstowed containers is returned.

It is important to notice that if the stowing of container
c in the lowest empty cell of stack s fulfills all constraints
described in Section II , such stow will not make infeasible
any of the previous stows of containers in cells of stack s.
A stack si is preferred over another stack sj for stowing
container c, if by stowing container c at the lowest empty
cell of stack si, more of the rules of thumb described in
Section II are satisfied than by stowing c at the lowest empty
cell of stack sj . Containers are selected from C following
a specific order to avoid breaking stacking constraints. To
avoid having 20 ’ containers on top of 40 ’, 20 ’ containers are
selected first. Among containers with the same length, reefer
containers are selected before non-reefers since reefer plugs
are usually placed at the bottom of the stacks. At last, when
containers have the same length and reefer capabilities, heavier
containers are selected first. Stowing containers bottom-up in
stacks eliminates the possibility of having containers hanging
in the air.

Algorithm 1 GreedySelection(C, S)
uc← ∅ // Set of unstowed containers from C
repeat

Select container c from C
bs← NULL // Best stack for container c
for si ∈ S do

if it is possible to stow c in si then
update bs to si if si is better than bs

end if
end for
if there is no feasible stack for c then

uc← uc ∪ {c}
else

Stow container c in stack bs
end if
C ← C − {c}

until C 6= ∅
return uc

We use the greedy algorithm introduced above to slot plan

the vessel, following the distribution dictated by the first phase
solution. First, we distribute the containers from load list I
among the compartments following the solution from the first
phase. Let qτl be the number of containers of type τ assigned to
compartment l during the first phase of the placement heuristic.
For each compartment l ∈ L and type τ ∈ T , we select from
the load list qτl containers of type τ to stow in compartment
l. Since qτl could be a continuous value, unit containers are
stowed in the compartments with the largest fractional part.
Once containers are distributed to compartments, we stow
independently each l ∈ L with the greedy algorithm.

Finally, we use a second run of the greedy algorithm to stow
some of the dropped containers. Let ucl be the set of containers
assigned to compartment l that the greedy algorithm could not
stow, U = {ci|l ∈ L, ci ∈ ul} be the set of all containers the
greedy algorithm was unable to stow, and SV be the set of
stacks of the vessel. We change to a vessel perspective and use
the greedy algorithm to stow the set of containers U in stacks
from SV . The containers that are not stowed at this point are
reported as unstowed containers to the SP.

VI. EXPERIMENTS

In order to evaluate the placement heuristic introduced in
this paper, we use three real-life stowage plans made by SPs
on a vessel with approximately 15.000 TEU capacity. Table I
specifies the features of the three stowage plans. ID represents
the identifier of the instance, while SWP shows the identifier of
the stowage plan, and P the port number in the schedule. O20 ’
and O40 ’ are the number of 20 ’ and 40 ’ containers already
onboard the vessel when it calls the port, respectively. L20 ’
and L40 ’ represent the number of 20 ’ and 40 ’ containers to
load when the vessel calls the port, respectively, and U the
TEU utilization of the vessel when leaving the port.

Each stowage plan is a stowage condition of the vessel
after visiting the last of six consecutive ports. The vessel is
assumed to arrive empty to the first port. We extract the master
planning decisions made at each port in order to achieve these
stowage conditions. This will not include all master planning
decisions, as we do not have information about containers
sent internally between the ports. However, SPs have slot
planned the master planning decisions that we can extract
from the stowage plans, making them suitable for comparing
the performance of our placement heuristic against the SPs’
work. In the few compartments where containers with different
discharge ports are mixed, something our placement heuristic
does not allow, we assign the discharge port of the majority
of containers to the compartment.

As depicted in Figure 4, slot plans are generated indepen-
dently for each port in a schedule. Given that our goal is to
evaluate the performance of the placement heuristic introduced
in Section V, we generate a data set of 18 instances, one for
each of the six ports in the three real-life stowage plans, and
analyse them independently. All the experiments were run on a
Ubuntu 10.4 system, with Intel Core 2 Duo, 2.7 GB of RAM,
and CPLEX 12.1.



TABLE I
Instance Overview

ID SWP P O20 ’ O40 ’ L20 ’ L40 ’ U
1 1 0 0 182 939 2026
2 2 182 939 219 750 3779
3 3 401 1689 563 1439 7220
4 1 4 964 3128 175 412 8219
5 5 1192 3540 228 685 9817
6 6 1420 4225 625 747 11936
7 1 0 0 101 531 1163
8 2 101 531 141 731 2766
9 3 242 1262 403 1416 6001
10 2 4 645 2678 407 614 7636
11 5 1052 3292 199 827 9489
12 6 1251 4119 827 1141 12598
13 1 0 0 102 864 1830
14 2 102 864 242 684 3440
15 3 344 1548 473 1276 6465
16 3 4 817 2824 116 304 7189
17 5 933 3128 144 613 8529
18 6 1077 3741 652 894 10969

TABLE II
Experimental Results.

ID SWP P D 20 ’ D 40 ’ LP(s) H(s) KS KH
1 1 2 0 0.30 0.06 8 8
2 2 3 1 0.74 0.05 9 10
3 3 1 0 1.86 0.09 6 5
4 1 4 1 0 1.01 0.03 8 5
5 5 4 12 1.34 0.04 12 14
6 6 26 0 2.21 0.06 7 15
7 1 1 0 0.14 0.03 9 9
8 2 3 2 0.57 0.04 18 14
9 3 3 0 1.47 0.08 9 16
10 2 4 3 0 1.23 0.05 1 6
11 5 3 1 1.23 0.04 9 14
12 6 29 0 2.97 0.08 7 9
13 1 0 0 0.23 0.05 19 23
14 2 4 0 0.75 0.06 11 17
15 3 3 0 1.66 0.10 6 16
16 3 4 2 0 0.58 0.03 8 3
17 5 5 0 1.08 0.04 13 13
18 6 18 0 2.57 0.07 40 20

Table II presents the results of our experiment. ID represents
the identifier of the instances, SWP the identifier of the
stowage plan and P the port number on the schedule. D20 ’ and
D40 ’ present the number of 20 ’ and 40 ’ containers dropped
by the placement heuristic, while LP(s) and H(s) are the time
in seconds used by the LP model and the greedy heuristic. At
last, KS and KH are the number of cells killed in the slot plans
generated by the SPs and the placement heuristic, respectively.

We measure three key factors: First, the response time of
our placement heuristic, since one of our goals is to keep the
generation of slot plans within two seconds in average. Second,
the number of containers that could not be stowed. Third, the
number of cells killed in a slot plan, which is one of the most
common reasons for sub-utilizing the volume capacity of a
container vessel.

Our placement heuristic managed to generate slot plans for
each instance in 1.27 seconds in average, a number well within
our desired time for the interactive generation of slot plans
(two seconds, in average). The longest time was 3.05 seconds
(instance 12), while the fastest one was 0.17 seconds (instance
7). There are two important things to notice about the run
times presented in Table II. First, it is easy to see that the

placement heuristic spends most of the time solving the LP
model. Second, we can observe that there is a direct relation
between the number of containers to stow and the time used
by the heuristic to generate the slot plans. For each stowage
plan, the ports with the greatest number of containers to stow,
ports 3 and 6, are also the ports where the slot planning takes
the longest. It is important to notice as well that the number of
onboard containers do not seem to have a strong influence on
runtime, since, otherwise, we would see runtimes increasing
from port 1 to 6 in all stowage plans.

The maximum amount of dropped containers is 1.89% of
the containers in the load list (instance 6), and 0.58% in
average, a considerable low fraction. A discrepancy between
the number of 20 ’ and 40 ’ containers being dropped can be
easily spotted. In 4 out of 18 instances 40 ’ containers were
dropped, and with respect to the total dropped containers for
all instances, only 16 out of 129 are 40 ’ long. There are two
main reasons for this discrepancy. The first reason is that since
there are no odd slots in our test vessel, the number of 20 ’
containers distributed to a compartment by the LP must be
even. Given that cell capacity must be completely utilized,
no cell with an odd number of 20 ’ containers assigned to
it is allowed. Thus, our greedy algorithm will drop at least
one 20 ’ container when an odd number of 20 ’ containers
has been assigned to a compartment by the LP. When we use
our greedy heuristic to attempt stowing all dropped containers,
most of the stacks are already full or partially utilized with 40 ’
containers on top, making it impossible to stow 20 ’ containers.
The second reason relates to the fact that reefer plugs are
usually available only at bottom tiers of the compartments of
the vessel. In our set of stowage plans, a considerable number
of reefer containers, most of them 20 ’ long, are loaded in port
number six. Since more that 50% of the capacity of the vessel
is already utilized at this point, we have already used most
of the reefer slots at the bottom tiers of the vessel, even by
stowing non reefer containers. Additionally, most of the few
remaining free reefer slots are in stacks partially filled with
40 ’ containers.

The number of killed cells in our set of instances average
11.1 per instance for the slot plans made by SPs, and 12.1
for those made by our placement heuristic. In 10 out of 18
instances SPs managed to kill less cells than our heuristic,
while our heuristic killed less cells in 5 instances. Both, SPs
and our heuristic, killed the same number of cells in the
remaining three instances. SPs killed 20 cells more than our
placement heuristic in the worst case (instance 18), while the
placement heuristic killed 10 more cells than the SPs (instance
16). Even though the results of this experiment favours the
SPs, it is important to notice that SPs have an accumulated
expert knowledge of years generating stowage plans, and we
are getting close to match that knowledge (difference on
the averaged killed cells is only one) with a heuristic that
stows 1968 containers in a vessel partially full (63%) in three
seconds.

It is important to notice when comparing the number of
killed cells by the SPs and our placement heuristic that



we have two simplifications in the generation of slot plans
compared to SPs: we treat 45 ’ containers as 40 ’ and we
do not consider lashing constraints in on deck compartments.
We still believe, however, that it is relevant to show how our
heuristic performs compared to SPs in terms of number of
cells killed, since the impact of considering 45 ’ containers
and lashing constraints will be minimal. Cells are only killed
in compartments below deck due to the physical limitations
imposed by hatch covers. Let us consider what will happen
if we allow our placement heuristic to handle 45 ’ containers.
First, all 45 ’ containers will be stowed on deck since on deck
compartments are the only ones with 45 ’ capacity. This could
affect the number of killed cells compared to the ones from the
current slot plans if a 45 ’ dry cargo container moved on deck
is replaced by a 40 ’ high-cube container. This is, however,
very unlikely since most, if not all, 45 ’ containers are high-
cube containers. Any container our heuristic uses to replace
the 45 ’ containers going on deck will be of the same height
or smaller and will not increase the number of killed cells.

Roughly speaking, lashing constraints can be seen as con-
straints that restrict the weight distribution of containers
stowed in on deck compartments. When the GM increases,
these constraints force the number of light containers stowed
on deck to be increased. Thus, in cases where all heavy
containers are high-cube, we are forced to stow them below
deck and an increment in the number of killed cells would
be expected. This increment, however, will not be dramatic.
As part of the cost values in the objective function of our LP
model, we reward stowing heavy containers in compartments
below deck, thus, we are generating stowage plans that already
stow as many light containers on deck as possible.

VII. CONCLUSION

This paper introduced a placement heuristic that serves as
the optimization component of a decision support system to
interactively generate container stowage plans. Our heuristic
uses the know-how of SPs represented in a master plan to stow
containers from a load list into vessel slots. Our experiments
showed that with a 1.27s of runtime average, our placement
heuristic can be used for interactive optimization. Additionally,
the slot plans produced are competitive with expert users. For a
container vessel of approximately 15000 TEUs, our placement
heuristic managed to only drop at most 1.89% of the load list
and 0.58% in average, and only killed 1 cell more in average
than the expert user.

As future work we plan to make our slot plans more accurate
by handling 45 ’ containers and including lashing constraints.
We are also interested in studying the impact of reducing the
granularity of the weight classes in the LP model’s runtime
and in the percentage of containers dropped by the greedy
heuristic.

Acknowledgments: We would like to thank the Angelstow
team at Ange Optimization for their extensive support of this

work. This research is sponsored in part by the Danish Agency
for Science, Technology, and Innovation.

REFERENCES

[1] Navis, “PowerStow,” www.navis.com, 2011.
[2] Interschalt, “Seacos,” www.interschalt.de, 2011.
[3] M. Gumus, P. Kaminsky, E. Tiemroth, and M. Ayik, “A multi-stage

decomposition heuristic for the container stowage problem,” in Proceed-
ings of the 2008 MSOM Conference, 2008.

[4] D. Ambrosino, D. Anghinolfi, M. Paolucci, and A. Sciomachen, “An
experimental comparison of different heuristics for the master bay plan
problem,” in Proceedings of the 9th Int. Symposium on Experimental
Algorithms, 2010, pp. 314–325.

[5] M. Yoke, H. Low, X. Xiao, F. Liu, S. Y. Huang, W. J. Hsu, and Z. Li,
“An automated stowage planning system for large containerships,” in In
Proceedings of the 4th Virtual Int. Conference on Intelligent Production
Machines and Systems, 2009.

[6] D. Pacino, A. Delgado, R. M. Jensen, and T. Bebbington, “Fast gener-
ation of near-optimal plans for eco-efficient stowage of large container
vessels,” in Proceedings of the Second International Conference on
Computational Logistics (ICCL’11). Springer, 2011, pp. 286–301.

[7] Ange Optimization, “Angelstow,” http://ange.dk/main/angelstow, 2012.
[8] E. C. Tupper, Introdution to Naval Architecture. Elsevier, 2009.
[9] D. Scott and D. Chen, “A loading model for a container ship,” Matson

Navigation Company, Los Angeles, Tech. Rep., 1978.
[10] A. H. Aslidis, “Optimal container loading,” Master’s thesis, Mas-

sachusetts Institute of Technology, 1984.
[11] R. Botter and M. A. Brinati, “Stowage container planning: A model for

getting an optimal solution,” in Proceedings of the 7th Int. Conf. on
Computer Applications in the Automation of Shipyard Operation and
Ship Design, 1992, pp. 217–229.

[12] D. Ambrosino and A. Sciomachen, “A constraint satisfaction approach
for master bay plans,” Maritime Engineering and Ports, vol. 36, pp.
175–184, 1998.

[13] Y. Davidor and M. Avihail, “A method for determining a vessel stowage
plan, Patent Publication WO9735266,” 1996.

[14] O. Dubrovsky and G. L. M. Penn, “A genetic algorithm with a com-
pact solution encoding for the container ship stowage problem,” J. of
Heuristics, vol. 8, pp. 585–599, 2002.

[15] M. Flor, “Heuristic algorithms for solving the container ship stowage
problem,” Master’s thesis, Technion, Haifa, Isreal, 1998.

[16] D. Ambrosino and A. Sciomachen, “Impact of yard organization on the
master bay planning problem,” Maritime Economics and Logistics, no. 5,
pp. 285–300, 2003.

[17] P. Giemesch and A. Jellinghaus, “Optimization models for the contain-
ership stowage problem,” in Proceedings of the Int. Conference of the
German Operations Research Society, 2003.

[18] F. Li, C. Tian, R. Cao, and W. Ding, “An integer programming for
container stowage problem,” in Proceedings of the Int. Conference on
Computational Science, Part I. Springer, 2008, pp. 853–862, LNCS
5101.

[19] W. C. Webster and P. Van Dyke, “Container loading. a container
allocation model: I - introduction background, II - strategy, conclusions,”
in Proceedings of Computer-Aided Ship Design Engineering Summer
Conference. University of Michigan, 1970.

[20] I. D. Wilson and R. P., “Principles of combinatorial optimization applied
to container-ship stowage planning,” Journal of Heuristics, no. 5, pp.
403–418, 1999.

[21] J. Kang and Y. Kim, “Stowage planning in maritime container trans-
portation,” Journal of the Operations Research Society, vol. 53, no. 4,
pp. 415–426, 2002.

[22] W.-Y. Zhang, Y. Lin, and Z.-S. Ji, “Model and algorithm for container
ship stowage planning based on bin-packing problem,” Journal of
Marine Science and Application, vol. 4, no. 3, 2005.

[23] N. Guilbert and B. Paquin, “Container vessel stowage planning, Patent
Publication US2010/0145501,” 2010.

[24] Mller+Blanck, “Capstan3,” www.capstan3.com, 2011.
[25] Autoship Systems Corporation, “Autoship,” www.autoship.com, 2011.


