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Abstract—Low cost containerized shipping requires high-
quality stowage plans. Scalable stowage planning optimization
algorithms have been developed recently. All of these algo-
rithms, however, produce monolithic solutions that are hard for
stowage coordinators to modify, which is necessary in practice
due to the application of approximate optimization models.
This paper introduces an approach for modifying a stowage
plan interactively without breaking its constraints. We focus
on re-arranging the containers in a single bay section and use
a symbolic configuration technique based on binary decision
diagrams to provide fast, complete, and backtrack-free decision
support. Our computational results show that the approach
can solve real-sized instances when breaking symmetries among
similar containers.

Index Terms—container stowage planning, backtrack-free
configuration, binary decision diagrams.

I. INTRODUCTION

Low-cost containerized shipping is essential for the global
economy, but relies on stowage plans that store many prof-
itable containers and reduce sailing speed and port fees by
minimizing port stays. It is a combinatorial optimization
problem with several NP-hard components (e.g., [1], [2],
[3]) to generate such plans. Traditionally these problems
have been done manually using graphical tools with no
optimization capabilities (e.g. [4], [5]), but due to the rapidly
growing size of vessels, there has been an increasing interest
in developing stowage planning optimization algorithms to
support automated stowage planning (e.g., [6], [7], [2]).
All of these algorithms output a single plan that is hard
for stowage coordinators (SCs) to alter without making it
infeasible or undesirable. Our experience with one of the first
deployed auto-stowage tools [8] is that this is a significant
limitation in practice, as it is often necessary for SCs to
make some changes to a produced plan. One reason for
this is that it is difficult to make an accurate stochastic
model of future cargo and represent highly non-linear phys-
ical constraints such as lashing forces. Moreover, there can
be special circumstances caused by break-bulk, equipment
failure, or agreements with customers that the optimization
model cannot represent. Even if the optimization models
eventually are sufficiently accurate and expressive, a typical
stowage planning problem is highly symmetric with many
equally good solutions that SCs should be able to choose
freely among; for instance to achieve a preferred trade-off
between multiple objectives of the problem.

In this paper, we take the first steps beyond graphical
support for user-driven modifications of stowage plans and
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apply a symbolic configuration technique [9], [10] based
on Binary Decision Diagrams (BDDs, [11]). In this initial
study, we focus on the bay sections below each hatch-
cover of the vessel, where containers can be re-arranged
without breaking overall stability, stress moment, and crane
activity requirements. From the stacking rules, a configurator
represented by a BDD is compiled offline that when applied
online can make fast inferences about all valid container
assignments simultaneously. It is therefore possible to give
SCs interactive decision support with complete feedback
about how to re-arrange containers and still maintain a valid
assignment. The support is backtrack-free in the sense that
even for a partial assignment, SCs will only be allowed to
do assignments and re-arrangements that can be extended
to a valid complete assignment. In this way, the configurator
keeps track of all the constraints of the problem such that the
SCs can concentrate on re-arranging the containers according
to their preferences.

To make the investigation practically manageable, we limit
the scope to an NP-hard representative problem of stowing
containers in these bay sections that take all major stacking
rules into account. The main contributions of our work are:
1) a formal model of the rules for stowing containers below
deck that is suitable for configurator compilation, 2) a type-
based grouping of containers that enables the configurator
to scale to real-sized instances, and 3) a configuration tool
with a Graphical User Interface (GUI) using color codings
to guide the stowage planning process.

Our computational results show that the BDD-based con-
figuration technique can scale to bay sections of large
deep sea vessels when breaking symmetries using type-
based grouping of containers. With this approach, the offline
compilation time of a configurator is close to independent
of the number of containers in the bay. It only depends on
the number of container types. Since a good stowage plan
clusters similar containers in bays, the number of different
container types in each bay is limited and makes it possible
to quickly compile a configurator. The online response time
of the configurator only depends on the size of the generated
BDDs. It is a few milliseconds even for the largest BDDs
compiled in our experiments and is not noticed by users.
These results and the fact that even more powerful SAT-based
configurators have been developed recently [12] indicate that
it is possible to go beyond single bay sections and support
moving containers between bays which is necessary in or-
der to modify complete stowage plans, but requires taking
stability and other high-level constraints and objectives into
account. This is the focus of our future work.

The remainder of the paper is organized as follows. In
Section II and III, we give a brief introduction to ISO
containers and container vessels and state our representative
model of stowing containers below deck. After presenting



related work in Section IV, Section V provides the neces-
sary background on BDD-based configuration using a small
stowage problem as an example and define a configurator
for assigning containers to slots of bay sections below deck.
In Section VI, we describe the GUI of the configurator and
present our computational results. Finally, we conclude in
Section VII and discuss directions for future work.

II. BACKGROUND

A standard ISO container (DC) is 20 or 40 feet long
and 8.6 feet high. 20’ containers cannot be stacked on top
of 40’ containers due to the lack structural support in the
middle of the 40’ container. The major container types are:
1) high-cube containers (HC) that are one foot higher than
standard, 2) reefer containers (RF,WC) with a refrigeration
unit that must be connected to on-board power, 3) IMO
containers (IMO) containing hazardous material and must be
separated according to a complex set of rules, 4) pallet-wide
containers that are a little wider to fit a pallet and may only be
placed side-by-side in certain patterns, and 5) out-of-gauge
(OOG) containers that have cargo extending out of them.
All containers have a destination port and a vessel normally
has a route spanning across several ports. A problem that
might arise out of this is overstowage where a container is
stowed over a another container in the same stack with earlier
discharge port and must be removed to reach the overstowed
container.

A container vessel normally has a 1.000-14.000 Twenty-
Foot Equivalent Unit (TEU) capacity. A vessel is made up
of a number of bays, which are collections of stacks of
containers. Each stack has a height and weight limit that
depends on the position of the stack. Each bay is divided into
an on and below deck area separated by one or more hatch-
lid covers. Each container stack is composed of vertically
arranged groups of cells. Each cell is 40 feet long, 8 feet
wide and 8.6 feet high and can hold one 40’ container or
two 20’ containers. When holding two 20’ containers, they
are said to be placed in the aft and fore TEU slot. If instead
a 40’ container is placed in the cell, it is said to be placed
in a Forty-Foot Equivalent Unit (FEU) slot. A location is
a bay section below deck comprised of the slots under a
hatch-lid cover. A bay has two to four of these depending
on the number of hatch covers and for a typical large deep
sea vessel, they have between 2 and 65 cells. Figure 1 shows
a typical physical arrangement of containers in a location.

The position of a container is given by its bay, stack, and
tier number. The tier number defines its vertical position in

Fig. 1. A typical arrangement of containers in a location.
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Fig. 2. Layout and numbering of bays of a container vessel.

its stack. It is normal to use even numbers for FEU stacks
and odd numbers for TEU stacks. The bays and cells of a
container vessel are shown in Figure 2.

III. PROBLEM STATEMENT

The representative problem we focus on is to stow or
re-arrange a set of containers in a single location. Moving
containers between locations is outside the scope of this
paper but is a topic for future work. It requires that we also
take stability and stress moment limits into account as well as
potential increase in the port stay due to uneven distribution
of container moves over bays. The subset of constraints that
we model is described below.

1) One container must be placed in one slot, and in one
slot only. Slots can only hold one container.

2) 40’ containers cannot be placed in a TEU slot and 20’
containers cannot be placed in a FEU slot.

3) The FEU slot of a cell occupies the same space as the
TEU slots, so there can be no container in the TEU
slots if a container is placed in the FEU slot and vice
versa.

4) A 20’ container cannot stand on top of a 40’ container.
5) A container must have support from below.
6) When placing 20’ containers, the containers must be

placed ‘evenly’, i.e. the number of containers in one
TEU stack cannot exceed the number of containers in
the other TEU stack with more than one.

7) For each stack, the sum of the weight of the containers
must be within the weight limit of the stack.

8) Overstowage will not be allowed at all, so one con-
tainer cannot be placed on top of a container having a
lower (earlier) discharge port.

9) Reefer containers cannot be placed in non-reefer slots.
Notice that we do not consider the height of containers since
height constraints are similar to weight constraints. We also
do not model OOG, IMO and pallet-wide containers since
the stacking rules associated with them are similar to the
overstowage rule and the no 20’ above 40’ rule. Also notice
that we model an objective of having no overstows indirectly
as a constraint. Alternatively a limited number of overstows
could be allowed. It is easy to show by a reduction from bin
packing that determining feasibility of this problem is NP-
complete [3]. Finding solutions without overstowage is also
NP-complete by a reduction from coloring of circle graphs
if stacks are uncapacitated [1].

IV. RELATED WORK

There is to our knowledge no previous work on applying
inference algorithms to support feasible user-driven modifi-
cations of a stowage plan. The most advanced systems for
supporting plan modifications are commercial GUIs (e.g.,
[4], [5]), but these systems only inform SCs whether a



performed modification has lead to an invalid plan rather
than pre-computing the set of feasible modifications that
the SC can choose from. All previous academic work has
focused on optimization algorithms for generating a single
stowage plan. Multi-phase approaches decompose the prob-
lem hierarchically. 2-phase [13], [14], [15], [2] and 3-phase
approaches [6], [7] are currently the most successful in terms
of model accuracy and scalability. Single-phase approaches
represent the stowage planning problem (or parts of it) in
a single optimization model. Approaches applied include IP
[16], [17], [18], [19], CP [20], [21], GA [22], [23]), SA [24],
placement heuristics [25], 3D-packing [26]), simulation [27]
, and case-based methods [28].

V. SOLUTION APPROACH

A configuration problem C is formally defined as a triple
C = (X,D,F ), where X is a set of variables x1, x2, . . . , xn,
D is the Cartesian product of their finite domains D1×D2×
· · · × Dn, and F = f1, f2, . . . , fm is a set of propositional
formulas specifying conditions that the variable assignments
must satisfy.

A solution to a configuration problem is an assignment of
the variables xi = vi, where vi ∈ Di for 1 ≤ i ≤ n that
satisfies all the formulas in F . An interactive configurator
is a decision support tool that efficiently guides users to
a desirable assignment. The configurator takes the set of
variables X , their finite domains D and a set of rules F
as input. The configurator initially has an empty set of
assignments. In each iteration, the invalid values of the
domains of unassigned variables are removed such that each
value in the domain of a variable is part of at least one valid
assignment. The user then selects a preferred value of any
unassigned variable. The algorithm terminates when all the
variables are assigned. Pseudo code of the configurator is
shown in Algorithm 1. As in our case where the user may
only want to make a few changes to a given assignment, it is
easy to change the algorithm to start with a partial assignment
instead of an empty assignment. The algorithm is complete
since the user can choose freely between any of the valid
assignments, and it is backtrack-free since the user cannot
choose a variable assignment for which no valid complete
assignment exists, and is therefore never forced to go back
and choose differently.

R← Compile(C)1

while |R| > 1 do2

choose (xi = v) ∈ Valid-Assignments(R)3

R← R|xi=v4

end5
Algorithm 1: Configurator.

BDD-based configuration [9] uses a BDD to represent R
in order to compute valid assignments efficiently. In practice,
the configurator algorithm is then a two phase approach. The
first phase is an offline phase where the BDD is compiled and
the second phase uses this BDD for fast complete inference.
The advantage is that the worst case inference time in the
online phase only grows polynomially with the size of the
BDD and is often negligible.

A BDD is a rooted directed acyclic graph that is a compact
representation of the decision tree of a Boolean function. It

has one or two terminal nodes, 0 and 1, and a set of internal
nodes associated with the variables of the function. Each
internal node has a high and a low edge. For a particular
assignment of the variables, the value of the function is
determined by traversing the BDD from the root node to
a terminal node by recursively following the high edge, if
the associated variable is true, and the low edge, if the
associated variable is false. The value of the function is
true , if the reached terminal node is 1 and otherwise false .
Figure 3 shows an example. Every path in the graph respects
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x
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1

Fig. 3. A BDD of the function f(x1, x2) = x1∨x2 using order x1 ≺ x2.
High and low edges are drawn with solid and dashed lines, respectively.

a linear ordering of the variables and to get small BDDs, it is
important that variables that depend on each other are close
in the ordering. Modern BDD packages represent sets of
BDDs compactly as a single multi-rooted BDD. All Boolean
functions can be carried out in polynomial time. Thus,
BDDs are well suited for building fast inference systems
for propositional logic. For a comprehensive introduction to
BDDs, we refer the reader to [11], [29], [30].

We now illustrate BDD-based configuration on the small
example shown in Figure 4. The problem is to place three
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Fig. 4. A bay stowage example with 4 slots (left) and 3 containers (right).

standard 40’ containers in a FEU bay with two stacks each
with two slots. We assume that one of the containers is
a reefer container and two of the slots are reefer slots
(both indicated by “R” in the figure). We also assume that
containers and slots are numbered as shown in the figure and
that slots assigned to 0 (⊥) do not hold any container.

We use four variables x1, x2, x3, and x4 each with domain
{0, 1, 2, 3}. An assignment xi = vi denotes that the slot
with number i hold the container with number vi. The set of
propositional formulas shown below defines the set of valid
assignments.

x2 = 1 ∨ x4 = 1 (1)

(x3 6= 0⇒ x1 6= 0) ∧ (x4 6= 0⇒ x2 6= 0) (2)

x1 6= x2 ∧ x1 6= x3 ∧ x1 6= x4 (3)

x2 6= x3 ∧ x2 6= x4 ∧ x3 6= x4 (4)

Constraint (1) ensures that the reefer container is placed in a
reefer slot, constraint (2) ensures that no container hangs
in the air. Finally, constraint (3) and (4) ensure that one
container at most can be assigned to one slot.

The Boolean representation of this problem uses a binary
encoding of the finite domains of the variables. Since each
variable has a domain of size four, we need two Boolean
variables to represent each variable. Let x1i and x0i denote



the two Boolean variables of xi. In a binary encoding of
the domain of xi, x1i and x0i represents the value of bit 1
and 0 of xi, respectively. Thus, the propositional expression
x1i ∧¬x0i represents the constraint xi = 2 and so on. We can
now translate constraint (1 - 4) to propositional formulas.

In the offline phase of the BDD-based configurator (line
1 of Algorithm 1), a single BDD is built equal to the
conjunction of the propositional formulas. The resulting
BDD of our example is shown in Figure 5 (left). For
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Fig. 5. Left: BDD R of the conjunction of the constraints (1-4). Right:
Reduced BDD R ∧ (x2 = 1).

clarity, we do not draw edges leading to terminal 0. Each
of the six distinct paths leading to terminal 1 corresponds
to one of the six possible arrangements of the containers
shown in Figure 6. Each iteration of the online phase of the
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Fig. 6. The six valid container configurations of the example shown in
Figure 4. The four shaded configurations are represented by the BDD shown
in Figure 5 (right) with x2 = 1.

BDD-based configurator (line 2-5) starts with a computation
of the valid assignments of the remaining configurations
represented by the BDD R. Since the variables are ordered
in layers from top to bottom in R, it is possible to compute
their valid assignments by probing it in just O(

∑n
i=1 |Di|Vi),

where Vi is the number of BDD nodes in the layer of variable
xi and |Di| is the size of the original domain of xi [31].
Unless the BDD representing a configuration problem grows
very large, the time needed to compute valid assignments is a
few milliseconds and hardly noticed by the user. The result
of the valid assignments computation is a reduced domain
for each variable. If there is only a single value left for a
variable there is no further decisions to make for it and it is
assigned automatically by the system. The user then chooses
one of the possible values from the reduced domains and R is
restricted to this choice by R← R∧ (xi = vi). Assume that
the user chooses x2 = 1 in the first iteration. The reduced
BDD R is shown in Figure 5 (right).

Due to the speed of the valid assignments computation,
BDD-based configuration enables the user to navigate fast
in the configuration space without having to worry about the
feasibility of the partial configuration. This allows SCs to
focus on achieving their preferred stowage when re-arranging
containers in a location.

In order to define a configurator for re-arranging containers
in a location as described in Section III, we choose slots
as decision variables X with containers as domains D and
introduce the following:
• A set of stacks S = {1, . . . , s},
• A set of tiers Tσ = {tσ, . . . , t} of stack σ ∈ S,
• A set of slots (the variables) X = {cFTσ,τ , cATσ,τ , cFσ,τ |σ ∈
S, τ ∈ Tσ} where FT stands for Fore TEU, AT stands
for Aft TEU and F stands for FEU. For example; cFT2,4
is the fore TEU slot in stack 2 and tier 4.

• A set of containers (the domains) {D1, D2, . . . , Dn},
where Di = {0, 1, . . . , c} and c is the number of
containers. The value 0 means that no container is
placed in the slot.

• A set of constraints F defined below.
Some constraints can be modeled by reducing the domains

of the slot variables. These include that TEU slots cannot
contain 40’ containers, and FEU slots cannot contain 20’
containers. Also, that reefer containers cannot be placed in
non-reefer slots. To simplify the presentation, we assume that
the Boolean values true and false can also represent the
numericals 1 and 0.

If there is a container in the fore TEU or aft TEU slot,
no containers can be placed in the FEU slot, (since they are
occupying the same space). The constraint of the rule works
both ways∧

σ∈S

∧
τ∈Tσ

cFσ,τ = 0 ∨ (cFTσ,τ = 0 ∧ cATσ,τ = 0). (5)

A 20’ container cannot stand on top of a 40’ container∧
σ∈S

∧
τ∈Tσ\{t}

cFσ,τ 6= 0⇒ (cFTσ,τ+1 = 0 ∧ cATσ,τ+1 = 0).

(6)
When placing 20’ containers, the containers must be placed
‘evenly’∧

σ∈S

∧
τ∈Tσ\{t}

(cFTσ,τ = 0⇒ cATσ,τ+1 = 0) ∧
(cATσ,τ = 0⇒ cFTσ,τ+1 = 0).

(7)

Also, containers must have support from below

∧
σ∈S

∧
τ∈Tσ\{t}

(cFTσ,τ = 0⇒ cFTσ,τ+1 = 0) ∧
(cATσ,τ = 0⇒ cATσ,τ+1 = 0) ∧(
cFσ,τ = 0 ∧ (cFTσ,τ = 0 ∨ cATσ,τ = 0)⇒

cFσ,τ+1 = 0
)
.

(8)
The expressions (6), (7), and (8) can be rewritten as

∧
σ∈S

∧
τ∈Tσ\{t}

(
(cFTσ,τ = 0 ∨ cATσ,τ = 0)⇒

(cFTσ,τ+1 = 0 ∧ cATσ,τ+1 = 0)
)
∧(

cFσ,τ = 0 ∧ (cFTσ,τ = 0 ∨ cATσ,τ = 0)⇒

cFσ,τ+1 = 0
)
,

(9)



or in plain words: If either of the TEU slots are empty, both
of the TEU slots above must be empty (this takes care of
the ‘no containers hanging in the air’ and ‘evenly stacking’
constraints, and given (5), also the ‘no 20’ on top of 40’
constraint). If the FEU slot is also empty, the FEU slot above
must be empty (contrary it would hang in the air).

One container must be placed in one slot, and in one slot
only∧
χ∈C

(∑
σ∈S

∑
τ∈Tσ

(cFTσ,τ = χ)+(cATσ,τ = χ)+(cFσ,τ = χ)
)
= 1,

(10)
where C = {1, 2, . . . , c} is the set of containers. For the
weight constraints, let w(χ) denote the weight of container
χ with w(0) = 0. Further, let wlimσ

be the weight limit of
stack σ. We then require∧
σ∈S

( ∑
τ∈Tσ

w(cFTσ,τ )+w(c
AT

σ,τ )+w(c
F

σ,τ )

)
≤ wlimσ

. (11)

For the overstow constraint, let d(χ) denote the discharge
port of container χ, where the discharge port 1 is the first
downstream port to visit, discharge port 2 is the second etc..
We have d(0) = 0. The requirement is that the discharge
port of the containers in each stack are ordered asscendingly
from top to bottom∧
σ∈S

∧
τ∈Tσ\{t}

min{d(cFTσ,τ ), d(cATσ,τ ), d(cFσ,τ )} ≥
max{d(cFTσ,τ+1), d(c

AT
σ,τ+1), d(c

F
σ,τ+1)}.

(12)

VI. COMPUTATIONAL RESULTS

The configurator was implemented using the BDD-based
configuration engine CLab [10]. Upon start-up, the program
makes the configuration file for CLab, and CLab compiles
it and returns the corresponding BDD of the configuration
problem. Then a GUI, based on the Qt UI framework [32]
emerges, as shown in Figure 7. The cells are divided into
FTEU, ATEU and FEU slots. Long container buttons at the
bottom of the screen represent 40’ containers, short buttons
represent 20’ containers. The color shade of containers is
determined by their discharge port or weight. Slots and
containers with an ‘R’ are reefer slots and containers, re-
spectively.

When the user clicks on a slot or a container, the color of
the container or slot becomes red if the placement is illegal,
or green otherwise, as shown in Figure 8. When the user
clicks on a slot, the program returns the slot’s domain (the
legal containers). When the user clicks on a container, the
program returns the variables (slots) having the container in
its domain. By clicking on a green (legal) container or slot,
the container is placed in the slot, and the color turns into
grey (the shade is still determined by the discharge port or
weight of the container). This can be undone by clicking
on the grey slot or container or the ‘undo’ button. Notice
that when using groups (explained in the next section), a
container (group) does not get a grey color until all the
containers in the group have been placed.

Slots that due to the constraints cannot have any containers
placed in them, are colored white. If the reason for this is
that there is (or has to be) a container in the overlapping
FEU slot (if the slot is an FTEU or ATEU slot) or in the

overlapping FTEU or ATEU slot (if the slot is an FEU slot),
this is marked with a black dot.

After each restriction of the BDD, the program searches
for container placements that are obliged to happen. If found,
these are automatically carried out. This will for example
happen when the 20’ container selected in Figure 8 is placed
in cFT2,2. The result is shown in Figure 9. Notice that a partial

Fig. 7. Screenshot of GUI after start-up (12 containers, 18 cells). The
darker blue / shaded, the heavier container.

Selected container

Fig. 8. A 25 ton 20’ non-reefer container with discharge port 3 selected.
GUI shows valid (green / light shaded) and invalid (red / dark shaded) slots.

4 automatic placementsPlacement of selected container

Fig. 9. A 25 ton 20’ non-reefer container with discharge port 3 placed in
reefer slot cFT2,2. GUI has made 4 automatic placements.

plan does not have to satisfy all constraints (e.g., that the
containers form physical stacks). The requirement is that a
partial plan can be extended to a complete plan that does
satisfy them.

a) Symmetry breaking: Often there are containers that
share the same characteristics and can exchange position in a
stowage plan without breaking any rules. Given such groups
of similar containers, we want to change the domain of slot
variables to group indices. The value of a slot variable then
denotes which group the container it holds belongs to rather



than exactly which container it is. This breaks symmetry,
since the model now ignores the ordering of the containers
within each group.

Most of the characteristics of a container are discrete and
finite, with only a small number of possible values. But
the weight of a container is a continuous value. So, strictly
speaking, two otherwise similar containers with a weight of
25.676 and 25.677 tons are not similar and can not be put
in the same group. In order to be able to group containers at
all, we have to relax the problem.

The relaxation we consider is to allow grouping of con-
tainers with ‘almost equal’ weight. The containers in a group
will get their weight w(χ) changed to the weight of the group
the containers belong to, defined as wg(χ). This value must
be at least equal to the weight of the heaviest container in
the group, to avoid underestimating the weight of a stack.
We define ‘weight loss’; i.e. the total weight overestimation
to be

∑
χ∈C wg(χ)− w(χ).

The easiest way to group the containers is to have pre-
defined weight intervals. But it is obvious that this solution
is not an optimal one. Consider a pre-defined grouping with
a interval of 2 tons. A set of 4 containers having weights
of 23.999, 24.001, 25.999 and 26.001 tons could lead to a
solution that is far from optimal. Another approach is to
find a solution with minimum weight loss given a limit on
the number container groups. This problem can be solved
using dynamic programming. For a detailed description of
the algorithm, we refer the reader to [33].

b) Scalability: The purpose of the stowage configurator
is to support re-assignment of containers in individual loca-
tions in the last phase of the stowage planning process where
the SC is either checking low-level stacking rules of his or
her own plan or is correcting a stowage plan generated offline
by an optimization algorithm. In each case, the plan will
typically be correct wrt. high-level constraints and objectives
such as vessel stability, lid-overstowage, and minimization of
crane makespan. For that reason any low-level issues should
be solved without moving containers between locations since
this may break the achieved high-level solution.

A configurator should be built for each location. This
can either be done online by the SC high-lighting a storage
area that a configurator is then built over or offline as a
part of running an optimization algorithm. For this to be
practical it is necessary that an initial BDD can be built in
reasonable time (< 20 seconds) and that the resulting BDD
is small enough for the valid assignment computation time
to be experienced as instantaneous (< 10 million nodes).
To investigate this, we carried out performance tests on a
machine with the level of computing power that can be
assumed to be available for SCs (HP 6715b laptop having a
AMD Turion X2 2 Ghz processor and 3 GB RAM).

We first consider our initial model without symmetry
breaking where each container is represented independently.
The size of the initial BDD as a function of the number of
cells and containers is shown in Figure 10. The build time in
these experiments varies between 1.5 and 105 seconds and is
strongly correlated with the size of the generated BDD. The
initial BDD and the computation time grows moderately with
the number of cells but fast with the number of containers.

Our initial model does not scale sufficiently. The size of
a location in the order of 2 to 65 cells, but already at 18

Fig. 10. Size of initial BDD as a function of the number of cells and
containers.

cells and containers is the size of the BDD larger than two
million nodes and takes more than 100 seconds to generate.

By grouping the containers, we only approximate con-
tainer weights. All other attributes are still accurate. More-
over, the approximation is conservative such that valid con-
figurations still satisfy the weight constraints. In our second
experiment, we vary the number of containers and container
groups. We consider two locations both with 6 stacks. The
first has 36 cells and 16 reefers slots. The second has 60 cells
and 15 reefers slots. We place a mix of 20’, 40’ and reefer
containers with typical weights and three different discharge
ports. Compared to real instances, these are actually hard. It
is very rare to mix 20’ and 40’ containers with different
reefer features and more than two discharge ports in a
single location. The reason is that we do not expect SCs
to need configuration support unless the stowage problem is
combinatorially challenging. Table I shows the size and build
time of the initial BDD as a function of number of containers
to stow (rows) and number of container groups (columns).

TABLE I
BDD BUILD TIME AND SIZE AS A FUNCTION OF NUMBER OF CONTAINER
GROUPS AND CONTAINERS TO STOW. THE FIRST COL. (NUM. CONT.) IS

THE NUMBER OF CONTAINERS TO STOW. FOR EACH NUMBER OF
CONTAINER GROUPS (5-10), COL. T IS THE BUILD TIME IN SECONDS

(TIMEOUT 3 MIN.) AND S IS THE SIZE IN MILLIONS OF NODES. THE TOP
AND BOTTOM TABLE SHOW RESULTS FOR THE 36 AND 60 CELL

LOCATION, RESPECTIVELY.

Number of Container Groups
Num. 5 6 7 8 9 10
Cont. T S T S T S T S T S T S

10 1.8 .03 2.1 .05 2.2 .06 2.3 .08 2.3 .10 2.9 .18
15 1.8 .08 2.1 .17 2.3 .31 2.9 .57 3.6 .95 4.6 1.60
20 1.8 .10 2.2 .24 2.3 .45 3.0 .95 3.7 1.79 5.0 3.60
25 1.8 .09 2.2 .21 2.4 .42 3.0 .92 3.7 1.81 5.2 3.80
30 1.8 .05 2.2 .13 2.3 .25 2.9 .56 3.6 1.12 4.9 2.42
35 1.8 .02 2.1 .05 2.2 .10 2.8 .22 3.3 .46 4.4 1.01

10 2.6 .05 2.6 .05 2.8 .06 3.0 .08 3.1 .10 4.8 .20
20 2.7 .34 2.7 .34 7.0 1.37 15.9 3.50 20.8 4.56 46.5 8.45
30 2.8 .49 2.8 .49 12.6 3.76 49.1 10.73 timeout timeout
40 2.7 .40 2.7 .40 10.9 3.80 54.0 10.81 10.4 2.51 timeout
50 2.7 .20 2.7 .20 7.1 2.06 25.3 5.86 7.6 1.26 56.4 11.33
60 2.6 .04 2.6 .04 5.3 .42 9.4 .12 5.3 0.25 14.5 2.40

As depicted, grouping has a dramatic impact on the
BDD size and computation time. As expected the BDD size
and computation time grows with the number of container
groups. But interestingly, they hardly depend on the total
number of containers in the groups.



A high-level objective of stowage planning is to cluster
similar containers in bays. For that reason, containers with
identical attributes often will contain the same goods and
therefore approximately have the same weight. This means
that even a minimal sized weight grouping often will have a
total weight overestimation that is negligible in practice.

For the 36 cell location, reasonably sized BDDs can be
computed in less than 10 seconds for up to 10 groups. For
the 60 cell location, the computation time becomes too long
when using more than 7 groups, but interestingly only if
stowing about half of the 60 containers. Since 10 groups is a
lot even for locations with 60 cells, the experimental results
of the grouping model shows that it can scale to the size of
problems considered by SCs.

VII. CONCLUSION

In this, paper we have introduced an approach for in-
teractive decision support for stowing containers in bay
sections below deck. The approach uses a fast and complete
inference method where a BDD representing the complete
configuration space of the containers is built offline and used
online to guide an SC to a desired feasible stowage plan.

Our computational results show that the approach scales
to real-sized instances when breaking symmetries among
similar containers. Our GUI further demonstrates that it is
possible to integrate the configurator in a visual tool that is
easy to use for SCs.

Future work includes applying recent powerful SAT-based
configuration approaches [12] and model all container types.
We also want to extend to modifying complete stowage
plans where moves between locations are possible. It is
also interesting to investigate to what extend configuration
techniques can be applied to guide SCs in solution pools
generated by standard optimization tools.
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