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Abstract. Seaworthy container vessel stowage plans generated under
realistic assumptions are a key factor for stowage decision support sys-
tems in the shipping industry. We propose a linear model with ballast
tanks for generating master plans, the first phase of a 2-phase stowage op-
timization approach, that includes the main stability and stress moments
calculations. Our approach linearizes the center of gravity calculation and
hydrostatic data tables of the vessel in order to formulate stability and
stress moments constraints that can handle variable displacement. The
accuracy level of these linearizations is evaluated when the displacement
of the vessel is allowed to change within a small band.

1 Introduction

The past two decades have seen a continuous increase in containerized shipping.
Liner shipping companies meet these demands offering a higher frequency of ser-
vice and deploying larger vessels. As a consequence, the generation of stowage
plans (assignments of containers to vessel slots) has become more complex and
hard to handle manually, raising the interest of the industry toward computer-
ized aids. Stowage plans are hard to produce in practice. First, they are made
under time pressure by human stowage coordinators just hours before the vessel
calls the port. Second, deep-sea vessels are large and often require thousands of
container moves in a port. Third, complex interactions between low-level stack-
ing rules and high-level stress limits and stability requirements make it difficult
to minimize the makespan of cranes and, at the same time, avoid that contain-
ers block each other (overstowage). In a previous work, [7], we have developed
a stowage planning optimization approach that, similar to the most successful
current approaches (e.g, [9, 5, 1]), decomposes the problem hierarchically as de-
picted in Figure 1. First the multi-port master planning phase decides how many
containers of each type to stow in a set of storage areas. Based on this distribu-
tion, a complete stowage plan is generated in the Slot Planning phase by stowing
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Fig. 1: Hierarchical decomposition of stowage planning into master and slot planning.



individual containers. The approach can generate representative stowage plans
for up to 10.000 Twenty-foot Equivalent Units (TEU) vessels within 10 minutes
(on a 2.0 GHz AMD Opteron), as required for practical usage by the industry.

All of the models present in the literature, however, are based on the assump-
tion that the displacement of the ship (the total weight of the loaded vessel) is
constant. Hydrostatic calculations, such as buoyancy, stability, trim and draft
restrictions are based on non-linear functions of the ship’s center of gravity and
vessel displacement. Those can, however, easily be linearized and translated to
bounds on the position of the center of gravity when considering a constant dis-
placement. In reality ballast tanks are used by stowage coordinators to better
handle the stability of the vessel and allow stowage configurations that are oth-
erwise infeasible. Ignoring ballast water can become a great source of error, as it
can constitute up to 25% of the ship’s displacement. Including tanks in the math-
ematical models, however, brings forth a number of non-linear constraints due
to the, now variable, vessel displacement. When variable displacement is taken
into account, the above mentioned hydrostatic calculations become a function
of two variables, center of gravity position and displacement. The previously
trivial linearization has now become complex and difficult to handle efficiently.
The intuition behind this complexity is simple. When the displacement is con-
stant it is possible to pre-calculate the amount of water the vessel will displace.
With variable displacement the amount of displaced water changes and causes
the buoyancy forces to change non-linearly due to the curved shape of the vessel
hull.

In this paper we introduce a linear model for the master planning phase
that considers ballast tanks and deals with variable displacement. This model is
concerned only with the seawhortiness of the vessel, but can easily be extended
to optimize handling of the vessel at port. According to our industrial partner,
it is possible for stowage coordinators to make an educated guess on the amount
of ballast water that a vessel might need within 15% from the actual amount.
We use this assumption to define a displacement range within which we are
able to formulate a linearization of the stability constraints within an acceptable
error. We analyse the accuracy of our model experimentally on 10 real instances
provided by our industrial partner. Our analysis suggests that within 5% of
the current displacement of the vessel, our calculations are accurate enough for
the master plans to be seaworthy. The analysis also indicates a direct relation
between the size of the variation in the displacement of the vessel and the error
on the center of gravity and the linearizations depending on it.

The remainder of the paper is organized as follows. Section 2 describes the
problem. Section 3 introduces related work. Section 4 presents our model. Section
5 and 6 present the analysis and conclusions.

2 Background and Problem Statement

ISO containers transported on container ships are normally 8’ wide, 8’6” high,
and either 20’, 40’, or 45’ long. High cube containers are 9’6” high and pallet



wide containers are slightly wider and can only be placed side-by-side in certain
patterns. Refrigerated containers (reefers) must be placed near power plugs.
Containers with dangerous goods (IMO containers) must be placed according
to a complex set of separation rules. The capacity of a container ship is given in
TEU. As shown in Figure 2, the cargo space of a vessel is divided into sections
called bays, and each bay is divided into an on deck and a below deck part by a
number of hatch-covers, which are flat, leak-proof structures. Each sub-section of
a bay consists of a row of container stacks divided into slots that can hold a 20’
ISO container. Figure 3 (a) and (b) show the container slots of a bay and stack,
respectively. Stacks have max height limit and different weight limits. Two weight
limits exists for each stack, one regarding the outer container supports and one
regarding the inner supports. Limits on the inner supports are often the smallest
as the vessel structure in the middle of a stack is weaker. The inner supports
are used only when 20 containers are stowed as depicted in Figure 3 (b). When
20 and 40 containers are mixed in the same stack, only half of the 20 weight is
considered to be supported by the outer supports, since the other half sits on the
inner supports. Below deck, cell guides secure containers transversely. Containers
on deck are secured by lashing rods and twist locks with limited strength. Thus,
container weights must normally decrease upwards in stacks on deck. Moreover,
lashing rods of 20’ stacks must be accessible and stack heights must be under
the vessel’s minimum line of sight. 45’ containers can normally only be stowed
over the lashing bridge on deck.
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Fig. 2: Arrangement of container vessel bays. The vertical arrows show an example of
the resulting forces acting on the ship sections between calculation points (stations).
Single crane work hours for adjacent bays are shown at the top.

A container ship must sail at even keel and have sufficient transverse stability.
Figure 3(c) shows a cross section of a ship. For small inclination angles, the
volume of the emerged and immersed water wedges (shaded areas) and thus
the distance GZ are approximately proportional with the angle such that the
buoyancy force intersects the center line in a fixed position called the metacenter,
M [8]. For an inclination angle θ, the ship’s uprighting force is proportional to
GZ = GM sin θ. GM is called the metacentric height and the center of gravity G
must be on the center line and result in sufficient GM for the ship to be stable.
Maximum and minimum draft restrictions apply due to port depths, working
height of cranes, and the propeller. The trim is the difference between the aft
and fore draft and must be kept within a given span. For a station position p,
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Fig. 3: (a) A bay seen from behind. (b) A side view of a stack of containers. Power
plugs are normally situated at bottom slots. (c) Transverse stability.

the shear force is the sum of the resulting vertical forces on vessel sections (see
Figure 2) acting aft of p, and the bending moment is the sum of these forces
times the horizontal distance to them from p. Both of these stresses must be
within limits. The vessel also has transverse bending moment (torsion) limits.
Given the displacement and longitudinal center of gravity (lcg) of a vessel, the
metacenter, draft, trim, and the buoyancy of each section of the vessel can be
derived from hydrostatic tables. Ballast tanks distributed along the vessel are
used to modify displacement and center of gravity by pumping water in or out
of the tanks, changing metacenter, draft, trim, and buoyancy of each section.

A container ship transports containers between ports on a fixed cyclic route.
A stowage plan assigns the containers to load in a terminal to slots on the
vessel and it is often sent to the terminal shortly before calling it. It is the liner
shippers, and not the port terminals, that are in charge of producing stowage
plans. It is impractical to study large optimization models that include all details
of stowage planning. On the other hand, all major aspects of the problem must be
modeled for the results to be valuable. For container types this includes 20’, 40’,
and reefer containers. In addition, since stability, trim, draft and stress moment
limits should not fully be ignored, some weight classes of containers must be
introduced. It is also important to take into consideration the containers already
onboard the vessel when arriving at the current port.

3 Literature Review

Even though several of the publications on stowage planning available in the
past years address stability and stress moments, very few present Linear/Integer
programming models that incorporate them as constraints or objectives. Addi-
tionally, none of them consider variable displacement due to ballast tanks. The
most complete formulation of stability and stress moments as part of a Integer
Programming (IP) model is introduced in [4]. Though their model is not solved
in practice, due to its complexity, it constrains GM, transversal stability (heel



angle), trim, shear forces, and bending moments. Linearizations depending on
the displacement of the vessel, made variable due to the inclusion of the load-
ing and unloading sequence of containers into the model, are suggested for the
stability constraints. No evaluation of the impact of these linearizations is pre-
sented, probably due to the fact that their model was not used in practice. Shear
forces and bending moments are addressed, but they disregard the impact of the
cargo in the buoyancy force. The IP formulations introduced in [2, 6] determine
in which vessel slot to load each container in the loadlist. These models han-
dle transversal stability and trim by constraining the weight difference between
transversal (left and right) and horizontal (bow and stern) sections of the vessel
to be within certain tolerance. The GM is constrained by not allowing heavy
containers on top of light ones, a rule of thumb used in the industry for some
vessels, but that does not necessarily generalize to all kinds of vessels. In [5], a
model that distributes types of containers to sections of the vessel is introduced.
This model constrains the center of gravity of the vessel with respect to pre-
computed constants to satisfy GM, trim, and transversal stability constraints.
To the best of our knowledge, the only approach available in the literature that
considers the use of ballast tanks is presented in [3]. A heuristic uses ballast wa-
ter to bring the longitudinal center of gravity within a permissible range defined
based on the trim desired. Later, a local search is used to fix the GM.

4 Stability and Stress Model with Ballast Tanks

The introduction of ballast tanks into the optimization model causes the dis-
placement of the vessel to become variable. This makes the calculation of the cen-
ter of gravity non-linear and thus, it is no longer possible to use the linearization
of the hydrostatic data from our previous work. Two major non-linearities must
be handled once variable displacement has to be modelled. First, the calculation
of the center of gravity, and second the linearization of the hydrostatic data. Con-
sider the calculation of lcg without ballast tanks: LMo+

P
l∈L G

L
l vl

W , where LM o is
the constant longitudinal moment of the vessel, GLl is the lcg and vl is the weight
of a location l ∈ L, and W is the displacement given by W = W o +

∑
l∈L vl,

where W o is the constant weight of the vessel. Since all containers in the loadlist
are loaded, the displacement is constant, which makes the calculation linear.
Now consider the same calculation where we include ballast tanks as a variable:
LMo+

P
l∈L G

L
l vl+

P
u∈U GL

uvu

W+
P

u∈U vu
, where U is the set of ballast tanks, GLu is their lcg,

and vu is the variable defining the amount of water to be loaded in tank u ∈ U .
Since the amount of water in the tanks is not known a priori, the displacement
of the vessel is now no longer constant, and the calculation becomes non-linear.
In order to deal with this, we propose the following approximation:

LCG =
LM o +

P
l∈LG

L
l vl +

P
u∈U G

L
u (vu +∆u)

W +WT +
P
u∈U ∆u

(1)

≈
LM o +

P
l∈LG

L
l vl +

P
u∈U G

L
u (vu +∆u)

W +WT
, (2)



where we model the stowage coordinator estimation error with the variables
∆u, thus the total displacement becomes W + WT +

∑
u∈U ∆u, where WT

represents the amount of water that we expect to remain constant. We then
make a linear approximation of the vessel lcg by removing the allowed changes
of ballast water from the denominator of the fraction resulting in equation (2).
Given the total capacity of the tanks (WT ) and the fact that the constant weight
of an empty vessel W o ≈ 2WT and that the weight of the cargo WC ≈ 6WT , we
can reasonably assume that the error in the approximation of the lcg, given that
stowage coordinators can estimate the ballast within 15 percent accuracy, is less
than 0.15WT /(2WT + 6WT +WT ) = 1.7%. Note that the same approximation
can be used to calculate the vertical and transversal center of gravity.

The assumption that the amount of ballast water lies within a given interval
is useful for the linearization of the hydrostatic calculations. Hydrostatic cal-
culations are in practice linear approximations of given data points. When the
center of gravity and the displacement of the vessel are known, the linearization
is very accurate. For the problem we are going to model, this is, however, not
the case since both the center of gravity and the displacement can vary. Figure 4
shows a plot of the hydrostatic data for the trim and metacenter calculation.
The functions are clearly non-linear. Notice that within a small displacement
interval it is possible, however, to approximate the functions accurately with
a plane. This is only true for displacement levels that are not at the extremes
of the data tables, but it is reasonable to assume that the displacement of a
stowage plan will be within these extremes. The planes described above can be
defined by the limited ballast water change and thus be used in our model. The
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Fig. 4: (a) Trim as a function of displacement and lcg (b) Metacenter as a function of
displacement and lcg.

buoyancy of a vessel is the volume of water that the vessel displace. In order to
calculate this volume, it is necessary to know the shape of the vessel hull. For
this purpose, the hydrostatic data tables provide the possibility of calculating
the submerged area of a vessel at a specific point called a station. Figure 5 shows
an example of such areas and how stations are distributed along the vessel. Given
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Fig. 5: Areas for buoyancy calculation and stations distribution

two adjacent stations, s1 and s2, the buoyancy of the vessel section between the
two stations is approximated by (As1+As2)D(s1,s2)δ

W

2 , where As is the underwater
area at station s from now on called bonjean, D(s1, s2) is the distance between
the two stations and δW is the density of the water. As Figure 5 shows, stations
are not evenly distributed along the vessel. A greater concentration is found at
the vessel’s extremities, where the hull changes the most. Figure 6 shows two
plots of the hydrostatic data related to the bonjean of a station at bow and a
station in the middle of a vessel. As expected, the function describing the hull
at bow is highly non-linear since the hull greatly changes, which is not the case
for stations in the middle of the vessel. Within specific displacement ranges, it
is still possible to approximate the function linearly. Should one want to model
displacement ranges that include the most non-linear parts, piece-wise linear
approximations with a few binary variables can be used.
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4.1 A Linear Model

Following the linear approximation described in the previous section, we propose
a refined Linear Programming (LP) model for the master planning phase that
includes ballast tank modeling. We constrain ourselves, without loss of generality,
to analyse the model for one loading port and several discharge ports. Objectives
that focus on efficiency of the master plan (described in [7]) are not included in
the model under analysis as they do not have any influence on the seaworthiness
of the vessel, and are thus irrelevant to this study.

The multi-port master planning phase assigns types of containers to sub-
sections of bays (locations). Figure 3(a) shows four locations within a bay. Outer
locations are symmetrically split (such as locations 2 and 4 in the Figure) to
ease transverse stability calculations. For 20’ and 40’ containers, we consider a
set of four mutually exclusive container types T = {L,H,RL,RH}, respectively
light and heavy containers and light and heavy reefer containers. Notice that
the container types T are only a classification and thus are not bound to fixed
weight ranges. For each type τ ∈ T the average weight of the containers going
to a specific discharge port p ∈ P is calculated and represented by the constants
W 20τ
p and W 40τ

p , thus causing a more refined weight categorization than taking
the average weight of the containers in each container class. We define two sets
of decision variables, x20τ

pl and x40τ
pl , representing respectively the amount of 20’

and 40’ containers of type τ ∈ T to be stowed in location l ∈ L going to port
p ∈ P , where L is the set of all locations. Given the set U of ballast tanks in a
vessel, we define a set of decision variables, xu ∈ R, representing the amount of
water present in the tanks. We then propose the following LP model:

minimizeX
u∈U

yu (3)

subject toX
p∈P

X
τ∈T

`
x20τ
pl + 2x40τ

pl

´
≤ Cl ∀l ∈ L (4)

X
p∈P

X
τ∈T

xατpl ≤ Cαl ∀l ∈ L,α ∈ {20, 40} (5)

X
p∈P

X
τ∈{RL,RH}

`
x20τ
pl + x40τ

pl

´
≤ CRSl ∀l ∈ L (6)

X
p∈P

X
τ∈{RL,RH}

`
0.5x20τ

pl + x40τ
pl

´
≤ CRCl ∀l ∈ L (7)

X
p∈P

X
l∈L

xατpl = LDατp ∀τ ∈ T, α ∈ {20, 40} (8)

X
p∈P

X
τ∈T

Wατ
p xατpl = vWα

l ∀l ∈ L,α ∈ {20, 40} (9)

vW20
l ≤W 20

l ∀l ∈ L (10)

0.5vW20
l + vW40

l ≤W 40
l ∀l ∈ L (11)

vW20
l + vW40

l = vWl ∀l ∈ L (12)



X
u∈U

xu +
X
l∈L

vWl +W o = vW (13)

xu ≤ Cu ∀u ∈ U (14)

(Eu − ε) ≤ xu ≤ (Eu + ε) ∀u ∈ U (15)P
l∈LG

L
l v

W
l +

P
u∈U G

L
uxu + LM o

W
= vLcg (16)P

l∈LG
V
l v

W
l +

P
u∈U G

V
u xu + VM o

W
= vVcg (17)

LTrim− ≤ AWT vW +ALcg
T vLcg +AT ≤ LTrim+ (18)

LDraftA− ≤ AWDAvW +ALcg
DAv

Lcg +ADA ≤ LDraftA+ (19)

AWDF v
W +ALcg

DF v
Lcg +ADF ≤ LDraftF+ (20)

AWM v
W +ALcg

M vLcg +AM = vM (21)

vM − vVcg ≥ LGM− (22)

δWD(i,j)

P
s∈{i,j}A

W
Bsv

W
p0 +ALcg

Bs v
Lcg +ABs

2
= vB(i,j) ∀(i, j) ∈ S (23)

Wα
f +

X
l∈L

pαlfv
W
l +

X
u∈U

pαufxu −
X
s∈S

pαsfv
B
s = vSαf ∀f ∈ F, α ∈ {Aft ,Fore} (24)

Mα
f +
X
l∈L

aαlfp
α
lfv

W
l +
X
u∈U

aαufp
α
ufxu−

X
s∈S

aαsfp
α
sfv

B
s =vBαf ∀f ∈ F, α ∈ {Aft ,Fore} (25)

S−f ≤ wfv
sFore
f + (1− wf )vSAft

f ≤ S+
f (26)

B−f ≤ wfv
BFore
f + (1− wf )vBAft

f ≤ B+
f (27)

Eu − xu ≤ yu ∀u ∈ U (28)

xu − Eu ≤ yu ∀u ∈ U (29)

All the weight limits and capacities of the model have been reduced to account
for onboard containers. The TEU capacity of each location, Cl, is enforced by
constraint (4). Location specific capacity requirements regarding the length of
the containers (C20

l and C40
l ) are enforced using constraint (5). Constraint (6)

and (7) limit, respectively the total number of reefer TEU (CRSl ) and Forty-
foot Equivalent Units (FEU) (CRCl ) used. Constraint (8) ensures that all con-
tainers are loaded.With constraint (9), we define the variables vW20

l and vW40
l ,

holding respectively the weight of the 20’and 40’ containers in location l ∈ L.
Weight limitations for the 20’ (W 20

l ) and 40’ W 40
l containers are guaranteed

by constraints (10) and (11). Constraint (12) defines the auxiliary variable vWl
representing the weight of location l ∈ L. The displacement of the vessel is
represented by the auxiliary variable vW with constraint (13) where W o is the
constant weight of the vessel. Note that the constant weight of the vessel also
includes the weight of the onboard containers. Constraint (14) defines the ca-
pacity (Cu) of the tanks, while given Eu as the initial condition of the tanks
constraint (15) defines the allowed ε ballast change. Variable vLcg represents the
lcg of the vessel and is computed in constraint (16) using the approximation
defined in (2). The constant LM o is the constant longitudinal moment of the
vessel, including onboard containers, GLl is the lcg of location l ∈ L, GLu is the



lcg of tank u ∈ U , and W is the approximated constant displacement. The same
approximation is used in constraint (17) for the calculation of the vertical center
of gravity (vcg) represented by the variable vVcg . Constraint (18) represents the
linearized hydrostatic calculation of trim. Given the displacement of the vessel
vW and its lcg vLcg , constraint (18) approximates the plane with the coefficients
AWT , A

Lcg
T and AT . The calculated trim is then kept within the limits LTrim−

and LTrim+. Changing the coefficients accordingly, constraint (19) and (20) ap-
proximate the draft aft and fore of the vessel. Both drafts are kept within the
maximum limits LDraftA+ and LDraftF+. Due to the propeller it is also necessary
to constrain the draft aft to be at a minimum depth LDraftA−. The metacenter
is also calculated using the hydrostatic approximation and it is defined in con-
straint (21) by the variable vM . The GM is then calculated in constraint (22)
and kept above the security limit LGM . The buoyancy of the section of a vessel
between two adjacent stations is defined in constraint (23) by the variable vB(i,j).
The set S is the set of adjacent station pairs (i, j), D(i,j) is the distance between
the two stations, and δW is the density of the water. In the shear and bending
calculations, we take into account the forces aft or fore of a frame. Since frames
do not always coincide with the starting points of tanks, locations or buoyancy
stations, it is necessary to know given a frame (a fixed calculation point) f ∈ F
the faction of weight that needs to be taken into account from a location l, tank
u or station s. For this purpose the constant pAft

lf ∈ [0, 1] is used to denote the
fraction of cargo to be considered from location l ∈ L aft of frame f ∈ F and
pFore
lf for the fraction fore of the frame (pAft

uf , p
Fore
uf for the tanks and pAft

sf , p
Fore
sf

for the buoyancy). Since the shear forces and bending moments are calculated
per frame, errors from the linearization are accumulated the further away from
the calculation frame that the weights are. This can become very problematic in
the case of bending, where the forces are multiplied by the arm, increasing the
approximation error substantially. Shear and bending calculations can be done
for either fore or aft part of a frame. A more precise modelling of stress forces
requires the calculation at both the aft and fore part of a frame, where the two
resulting stresses are blended such that aft calculations are weighted more at
the stern and less at the bow. Constraint (24) calculates the shear forces both
aft and fore of each frame f ∈ F and defines the shear variable vSf , and where
Wα
f is the constant weight aft or fore of frame f . The final shear calculation,

where the aft and fore shear are mixed using a scaling factor wf ∈ [0, 1] (such
that it is 1 for the first frame at bow and 0 in the first frame at stern) is kept
within the limits S+

f and S−f in constraint (26). The same calculation is made
for the bending. The bending variable vBαf is defined in constraint (25), where
aαlf , a

α
uf , a

α
sf are respectively the arm to frame f ∈ F of location l ∈ L, tank

u ∈ U and buoyancy section s ∈ S for both the aft and fore calculation. The
constant moment of the vessel is given by the constant Mo

f and bending is kept
within the limits B+

f and B−f by constraint (27). Constraints (28) and (29) de-
fine the cost variable yu quantifying the changes in tank configuration from the
initial estimate. The accuracy of the approximations decreases with the extend
of the change in ballast water. Thus, objective (3) minimizes this change.



Instances Characteristics

ID
TEU (%) Weight (%)

Displacement (103 tons) Tanks (103 tons)
Total Release Load Total Release Load

1 92 39 53 32 13 19 149 5
2 74 37 37 45 23 23 176 8
3 60 18 41 42 12 30 169 7
4 81 29 52 53 20 33 192 7
5 66 13 52 26 8 18 135 11
6 49 18 31 25 9 16 133 11
7 69 28 41 41 17 23 161 5
8 46 13 33 29 8 21 144 10
9 59 25 34 30 14 16 141 5
10 59 20 39 32 10 22 146 7

Table 1: Characteristics of the test instances. Starting from the left the columns indicate: the ID
of the instance, the total utility percentages in terms of TEU capacity used, thereof the percentage
of containers in the release and in the loadlist. The next three columns indicate percentages of
utilization in terms of weight, in total, for the containers in the release and in the loadlist. The
initial displacement and the estimated ballast water are given by the last two columns.

5 Analysis of Model Accuracy

The model has been evaluated experimentally on a case study of 10 industrial
stowage plans for a vessel of approximately 15.000 TEUs. The linear approxima-
tions used by the LP model for the generated solutions are compared with exact
manual calculations. Table 1 gives an overview of the instances’ characteristics.

We performed experiments allowing different changes in displacement and
observed how the accuracy of the model changes accordingly. First we consider
the linear approximation about the center of gravity of the vessel.
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Fig. 7: (a) Error in the lcg. (b) Error in the vcg.

Figure 7 shows two graphs describing how the approximation of the longitu-
dinal (a) and vertical (b) center of gravity behaves as the displacement changes.
For both graphs, the horizontal axis represents the change of displacement in
percentage, while the vertical axis represents the error in meters. Each point
in the graph is generated by forcing changes in the ballast water of the 10 test
instances. In Figure 7a it is possible to see, as expected, that when the displace-



ment is unchanged, the value of the lcg is accurate and the more the displacement
moves away from its true value the less accurate the approximation becomes.
Note that for a displacement range of 5 percent, the calculation inaccuracy is at
most 0.3 meters and is thus, still very accurate for practical usage. The calcu-
lations for the vcg are not as accurate (Figure 7b). Within the 5 percent range,
the linearized value is, however, at most 0.8 meters from the correct one. This
was an expected result, as it is not possible to precisely estimate the vcg of, for
example, locations since we do not know where the containers will be stowed.
The accuracy error of the vcg is, however, still very small.
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Fig. 8: (a) Error for the trim (b) Error for the GM .

Now that we have shown that linearizations for the center of gravity are ac-
curate, we focus on analyzing the accuracy of the hydrostatic data linearization.
In Figure 8 we use the same graph as before with the horizontal axis describing
the percentage displacement changes and the vertical axis the calculation error.
Figure 8a represents the error for the trim which, as it can be seen, is very small.
Within a 5 percent displacement range, the error is at most 15 centimeters. Fig-
ure 8b shows the same analysis for the calculation of GM . Notice that both for
the trim and GM calculations, an error is present even at constant displacement.
The error we see is due to the linearization of the hydrostatic functions. For GM
it also includes the approximation error of the vcg.

We now move our focus to the linearization of the bonjean areas which we
expect to be the most inaccurate. Figure 9a shows the same analysis we have
done so far for the bonjean areas. The graph shows the maximum error over all
bonjean areas as a function of the displacement changes. As can be seen, the
variation in displacement is not the main source of error. Most of the inaccuracy
is due to the linearization of the hydrostatic data. Figure 9b shows how the
bonjean error is concentrated at the extremities of the vessel where the hull
changes most. The horizontal axis represents the position of the station on the
vessel (where 0 is at bow) and the vertical axis is the bonjean error. Notice that
the largest errors are found for stations at the bow. This can be explained by
the fact that the range of drafts in our test data forces the linearization of these



bonjean areas to be right by the inflection point of the hydrostatic curve (see
figure 6a) where the linearization is most inaccurate. Better approximations can
then be expected for larger drafts, as it is the case for the bonjean of the stations
at the stern. The inaccuracy of the bonjean is, however, still quite small if we
consider that the in the worst case, there is an error of only 4 square meters over
an area of over 111 square meters.
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Fig. 9: (a) Approximation error of the total bonjean as a function of displacement
change (b) Approximation error of the bonjean areas per station.

Shear forces and bending moment calculations depend on the buoyancy of the
vessel which in turn is calculated using the bonjean approximations. Figure 10a
shows, in the same way as the other graphs, how the percentage error in the
shear calculation (the vertical axis) behaves as a function of the variation of
the displacement (the horizontal axis). As expected, the dominant error is not
the approximation of the center of gravity of the vessel since the inaccuracy is
more or less the same independently of how much the displacement changes.
A more tight relation can be seen when the shear calculation is related to the
error in the bonjean linearization. Figure 10b shows the percentage error of the
shear force calculation as a function of the total error in bonjean area from the
hydrostatic linearization. As depicted, the error in the shear calculation increases
with the error in the bonjean linearization. The graph also groups the data
points according to their displacement range, and for the data points with no
displacement change we can see that the tendency remains the same. One must
also take into account that the linearization error of the bonjean is amplified
in the shear foces calculation by the fact that it becomes accumulated in the
summation of the forces. This particular information is very important when
analyzing the error in the bending moment calculation, since this accumulated
error is multiplied by the arm of the moment and thus multiplies its impact.

Figure 11a shows the error in the bending calculation as a function of the
changes in displacement. As expected, like for the shear force calculation, the
main source of error is not the approximation of the lcg, but rather the error
in the linearization of the bonjean areas. Due to the fact that the bonjean error
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Fig. 10: Approximation error of the shear forces as (a) a function of displacement
change, and (b) a function of the total bonjean error.
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Fig. 11: Approximation error of the bending moment (a) as a function of displacement
change, and (b) at each bonjean station for constant displacement.

is amplified by the multiplication of the arm, it is necessary to look at the
error at each calculation frame in order to see how the error of the bending
moment changes. We do this by forcing the displacement to remain constant, thus
removing the error of the lcg approximation, and analyzing how the bending error
changes at each calculation frame as the draft of each of the 10 test instances
changes. The result is shown in Figure 11b, where the horizontal axis represents
the frames of the vessel and the vertical axis is the percentage of error in the
bending moment calculation. Each of the lines plotted in the graph represent
one of the 10 test instances each of which has a different draft. As expected the
bending moment is less accurate at the bow and stern due to the imprecision
in the bonjean calculations. One more thing worthy of notice is that there is no
direct relation between the bending error and the draft of the vessel. This is due
to the non-linear shape of the hull. The bending error for constant displacement
does not exceed 1.4 percent, however, when variable displacement is considered
an error of up to 3.5 percent might be reached within a 5 percent displacement



variation. We consider these approximations acceptable. Higher accuracy can
be achieved by reducing the linearization error of the hydrostatic functions for
bonjean.

6 Conclusion

This paper introduced an LP model including ballast tanks for the master plan-
ning phase of a 2-phase stowage planning optimization approach. Analysis of 10
real instances show that our model is successful at coping with variable displace-
ment, a feature introduced by the ballast tanks, within an acceptable error toler-
ance. Within a 5% band of the current displacement, the master plans generated
were seaworthy, with the error in stability calculations increasing proportionally
to the variability of the displacement. In future work, we plan to introduce piece-
wise linearizations on the bonjean hydrostatic data to reduce the error in the
stress calculations in our model. This must be done carefully since it might be
necessary to include Boolean variables that will negatively impact the perfor-
mance of the solver. A study of the trade-off between the inclusion of piece-wise
linearizations and the error reduction must be carried out.

Acknowledgments We would like to thank Wai Ling Hoi, Andreas Hollmann,

Kasper Andreasen, and Mikkel Mühldorff Sigurd at Maersk Line for their support

of this work. This research is sponsored in part by the Danish Maritime Fund under

the BAYSTOW project.

References

1. Ambrosino, D., Anghinolfi, D., Paolucci, M., Sciomachen, A.: An experimental com-
parison of different heuristics for the master bay plan problem. In: Proceedings of
the 9th Int. Symposium on Experimental Algorithms. pp. 314–325 (2010)

2. Ambrosino, D., Sciomachen, A., Tanfani, E.: Stowing a conteinership: the master
bay plan problem. Transportation Research Part A: Policy and Practice 38(2), 81–99
(2004)

3. Aslidis, A.H.: Optimal Container Loading. Master’s thesis, Massachusetts Institute
of Technology (1984)

4. Botter, R., Brinati, M.A.: Stowage container planning: A model for getting an op-
timal solution. In: Proceedings of the 7th Int. Conf. on Computer Applications in
the Automation of Shipyard Operation and Ship Design. pp. 217–229 (1992)

5. Kang, J., Kim, Y.: Stowage planning in maritime container transportation. Journal
of the Operations Research Society 53(4), 415–426 (2002)

6. Li, F., Tian, C., Cao, R., Ding, W.: An integer programming for container stowage
problem. In: Proceedings of the Int. Conference on Computational Science, Part I.
pp. 853–862. Springer (2008), LNCS 5101

7. Pacino, D., Delgado, A., Jensen, R.M., Bebbington, T.: Fast generation of near-
optimal plans for eco-efficient stowage of large container vessels. In: Proceedings
of the Second International Conference on Computational Logistics (ICCL’11). pp.
286–301. Springer (2011)



8. Tupper, E.C.: Introdution to Naval Architecture. Elsevier (2009)
9. Wilson, I.D., Roach, P.: Principles of combinatorial optimization applied to

container-ship stowage planning. Journal of Heuristics (5), 403–418 (1999)


