
Constraint-Based Local Search for Container
Stowage Slot Planning

Pacino Dario, and Rune Møller,Jensen

Abstract—Due to the economical importance of stowage
planning, there recently has been an increasing interest in
developing optimization algorithms for this problem. We have
developed 2-phase approach that in most cases can generate
near optimal stowage plans within a few hundred seconds for
large deep-sea vessels. This paper describes the constrained-
based local search algorithm used in the second phase of this
approach where individual containers are assigned to slots in
each bay section. The algorithm can solve this problem in an
average of 0.18 seconds per bay, corresponding to a 20 seconds
runtime for the entire vessel. The algorithm has been validated
on a benchmark suite of 133 industrial instances for which
86% of the instances were solved to optimality.

Index Terms—container-stowage, constraint-based local
search, slot planning

I. INTRODUCTION

DUE to globalization, the world economy depends on
cost efficient and reliable container shipping. A con-

tainer vessel sails on a closed loop service like a city bus. A
key objective is to reduce the time spent in each port. This
not only saves terminal fees and fuel (bunker) due to lower
speeds, but also provides buffer time to deliver a reliable
service. Loading and unloading operations in a container
terminal are performed by quay cranes. Since the number
of quay cranes available is typically fixed by contract, the
main instrument for a liner shipper to reduce the port time is
to require that the terminal discharges and loads containers
according to a time efficient stowage plan.

Stowage plans, however, are hard to produce in prac-
tice. First, they are made under time pressure by human
stowage coordinators just hours before the vessel calls the
port. Second, deep-sea vessels are large and often require
thousands of container moves in a port. Third, complex
interactions between low-level stacking rules and high-level
stress limits and stability requirements make it difficult to
minimize the makespan of cranes and, at the same time,
avoid that containers block each other (overstowage). Finally,
according to our industrial partner, runtimes of more than 10
minutes are impractical, since stowage coordinators possibly
need to run several forecast scenarios.

In [1] we presented an approach to stowage planning based
on a 2-phase hierarchical decomposition that in most cases is
able to produce near optimal stowage plans for large deep-
sea vessels within a few hundred seconds. As depicted in
Figure 1, first the multi-port master planning phase decides
how many containers of each type to stow in a set of bay
sections of the vessel using an Integer Programming (IP)
model. Based on this distribution, a complete stowage plan

Manuscript received December 08, 2012. This research is sponsored in
part by the Danish Maritime Fund under the BAYSTOW project.

D. Pacino and R. M. Jensen are with the IT-University of Copenhagen.
[dpacino,rmj]@itu.dk

for the current port is generated in the slot planning phase
where individual containers are assigned to specific positions
on the vessel for each bay section. This method is able to
generate phase-wise optimal stowage plans for 75% of the
tested instances in less than 400 seconds.

In this paper, we describe the constrained-based local
search algorithm that is used as a heuristic fallback of an
exact constraint programming model [2], [3] to solve the
slot planning phase. Since the slot planning phase consists
of up to 100 slot planning instances (one for each bay
section) and since master planning historically has been
time consuming, we aim at solving individual slot planning
instances within 1 second in order to achieve total runtimes
of less than 10 minutes as needed by the industry. First the
Contraint Programming (CP) model attempts finding optimal
solutions within 1 second, should it fail (or should the
instance be infeasible), the Constraint Based Local Search
(CBLS) algorithm presented in this paper is used to find
(near-)optimal solutions heuristically, and can also handle in-
feasibilities by rolling out containers. We have evaluated the
CBLS algorithm experimentally using 133 real slot planning
instances provided by our industrial partner. We compare
our results with the ones from the CP model presented in
[2]. Each instance is solved in an average of 0.18 seconds.
Thus, if only using the CBLS algorithm for slot planning,
the total time needed for the slot planning phase is less than
20 seconds in average.

The remainder of the paper is organized as follows. Section
II describes the problem. Section III introduces related work.
Section IV presents the approach taken. Section V and VI
present the experiments and draw conclusions.

II. BACKGROUND AND PROBLEM STATEMENT

A liner shipping vessel is a ship that transports box formed
containers on a fixed cyclic route. Containers typically have
a width of 8 feet, and a length of either 20 or 40 feet. There
exists, however, longer containers such as 45 and 50-foot.
Standard containers are 8.6 feet high with the exception of
some higher 40-foot containers called high-cube containers
that are 1 foot taller. Some containers are refrigerated and
require access to special power plugs. Other special types
of containers are pallet-wide containers, where a standard
European pallet can be stored, and IMO containers, which
are used to store dangerous goods. In addition, there are out-
of-gauge (OOG) containers with cargo sticking out in the top

Plan
Master

StowageLoadlists

Vessel Data

Port Data

Muti−Port

Planning

Current Port

Master

Slot

Planning Plan

Muti−Port

Master

Plans

Fig. 1. Hierarchical decomposition of stowage planning into master and
slot planning.

or at the side (e.g., a yacht) and non-containerized break-bulk
like windmill wings.

Hatch cover Bay

Line of sight

Lashing bridge

Fig. 2. The arrangement of bays in a small container vessel.

The cargo space of a vessel is composed of a number of
bays, which are a collection of container stacks along the
length of the ship. Each bay is divided into an on-deck and
below-deck part by a hatch cover, which is a flat water tight
structure that prevents the vessel from taking in water. An
overview of a vessel layout is shown in Figure 2.

Figure 3 shows how each stack is composed of two
Twenty foot Equivalent Unit (TEU) stacks and one Forty foot
Equivalent Unit (FEU) stack, which hold vertically arranged
cells indexed by tiers. The TEU stack cells are composed
of two slots, which are the physical positioning of a 20-foot
container. The aft slot refer to the position toward the stern
of the vessel, while fore slots are allocated on the bow side.
Some of the cells have access to power plugs.

The loading and unloading of containers are carried out
by quay cranes that can access the stacks individually. Some
cranes can lift two 20-foot containers at the same time, but
they only have access to the container on top of the stack.

: Reefer plugAFT FORE

FEU Stacks

1 2 3 4 5

1
5

4
2

3

Stacks

T
ie

r
s

Fig. 3. A bay structure seen from behind (left) and from the side (right).

The primary objective of stowage planning is to minimize
port stay. An important secondary objective is to generate
stowage plans that are robust to changes in the cargo forecast.
The reason is that the number of containers of each type to
load in downstream ports is only fairly accurately known a
few ports ahead.

When a set of containers to stow in a bay has been decided,
the positioning of these containers has limited interference
with containers in other bays. For this reason, it is natural to
divide the constraints and objectives of the stowage planning
problem into high-level inter bay constraints and objectives
and low-level intra bay constraints and objectives.

High-level constraints mainly consider the stability of the
vessel as defined by its trim, metacentric height, and stress
moments such as shear, bending and torsion. In addition,
any distribution of containers to bays must satisfy weight
and volume capacity limits as well as capacity limits of the
different container types. High-level objectives include the
minimization of the crane makespan and of the overstowage
between on and below deck.

Since we focus on slot planning in this paper, we describe
the low-level constraint and obecjtives in more detail. Low-

level constraints are mainly stacking rules. Containers must
be stowed forming stacks, taking into consideration that two
20-foot containers cannot be stowed on top of a 40-foot
container (this is due to the lack of supports in the middle
of a 40-foot container). Each stack has a maximum allowed
height and weight which cannot be exceeded. Each cell can
have restrictions to which kind of containers it can hold.
Some cells can be, for example, reserved to only 40-foot
containers. Reefer containers require power, and can only be
stowed in cells with access to special power plugs. Dangerous
goods (IMO containers) must be stowed following predefined
security patterns, while OOG containers can only be stowed
where sufficient space is available. On-deck special rules
also apply due to the use of lashing rods. On deck container
weight must decrease with stack height. Wind also imposes
special stacking patterns on deck and line of sight rules
restrict the stack heights.

Low-level objectives reflect rules of thumb from stowage
coordinators in order to get stowage plans that are robust
to changes in forecasted demands. The objectives include
maximizing the number of empty stacks, clustering of con-
tainer’s discharge port in stacks, minimizing the number of
reefer slots used for non-reefer containers, and minimizing
overstowage between containers in the same stack.

Taking all industrial constraints and objectives into account
is desirable, however, it makes an academic study of the
problem impractical. to that end, we have together with our
industrial partner defined a representative problem where
the number of constraints and objectives is reduced but the
structural complexity is kept.

Here we give a formal definition of this representative
problem using the IP model given in [2]. Given a set of stacks
S and the sets of tiers per stacks Ts of the bay section for slot
planning, we indicate a cell by a pair of indexes s ∈ S and
t ∈ Ts. Let xstc ∈ {0, 1} be a decision variable indicating if
the cells indexed by s ∈ S and t ∈ T contains the container
c ∈ C, where C is the set of all containers to be stowed in
the bay section.

1

2

∑
c∈C20

xs(t−1)c +
∑
c∈C40

xs(t−1)c −
∑
c∈C40

xstc ≥ 0

∀s ∈ S, t ∈ Ts
(1)

∑
c∈C20

xs(t−1)c +
∑
c∈C40

xstc ≤ 1 ∀s ∈ S, t ∈ Ts (2)

1

2

∑
c∈C20

xstc +
∑
c∈C40

xstc ≤ 1 ∀s ∈ S, t ∈ Ts (3)

xstc = 1 ∀(s, t, c) ∈ P (4)∑
s∈S

∑
t∈T

xstc = 1 ∀c ∈ C (5)∑
c′∈C20

xstc′ − 2xstc ≥ 0 ∀s ∈ S, t ∈ Ts, c ∈ C20 (6)∑
c∈C

Rcxstc −Rst ≤ 0 ∀s ∈ S, t ∈ Ts (7)∑
t∈Ts

∑
c∈C

Wcxstc ≤ Ws ∀s ∈ S (8)

∑
t∈Ts

(1
2

∑
c∈C20

Hcxstc +
∑
c∈C40

Hcxstc

)
≤ Hs ∀s ∈ S (9)

t−1∑
t′=1

d−1∑
d′=2

∑
c∈C

Acd′xst′c − 2(t− 1)δstd ≤ 0

∀s ∈ S, t ∈ Ts, d ∈ D

(10)

Acdxstc + δstd − oc ≤ 1 ∀s ∈ S, t ∈ Ts, c ∈ C (11)
es − xstc ≥ 0 ∀s ∈ S, t ∈ Ts, c ∈ C (12)
psd −Acdxstc ≥ 0 ∀s ∈ S, t ∈ T, d ∈ D, c ∈ C (13)

Constraints (1) and (2), where C20 ⊆ C and C40 ⊆ C are
respectively the set of 20-foot and 40-foot containers, forces
containers to form valid stacks where 20-foot containers
cannot be stowed on top of 40-foot onces. Constraint (3)
ensures that either 20-foot or 40-foot containers can be
stowed in a cell but not both at the same time. The set P
of containers already onboard is composed of triples (s, t, c)
indicating that container c ∈ C is stowed in stack s ∈ S
and tier t ∈ Ts. Constraint (4) forces those containers to
their preassigned cell. Cells holding 20-foot containers must
be synchronized, meaning that they cannot hold only one
20-foot container. Such contraint is handled by inequality
(6). Constraint (7), where Rc ∈ {0, 1} indicates if container
c ∈ C is a reefer container and Rst holds the reefer capacity
of a cell, enforces the reefer cells capacity. Given Wc as the
weight of container c ∈ C, constraint (8) limits the weight
of a stack s ∈ S to not exceed the maximum weight Ws.
Similarly the height limit is enforced by constraint (9), where
Hc indicates the height of container c ∈ C and Hs is the
maximum height of stack s ∈ S. Constraint (10) defines the
indicator variable δstd which indicates if a container below
the cell in s ∈ S and t ∈ Ts is to be unloaded before port
d ∈ D, where D is the set of discharge ports. The constant
Acd ∈ {0, 1} indicates if container c ∈ C must be discharged
at port d ∈ D. Constraint (11) then uses the δstd variable to
count overstowage into the variable oc. The number of non-
empty stacks is stored in the variable es via the constraint
(12). The number of discharge ports used within a stack is
then calculated into the variable psd in constraint (13).

An optimal solution to slot planning minimizes the fol-
lowing objective:

100
∑
c∈C

oc + 20
∑
s∈S

∑
d∈D

psd + 10
∑
s∈S

es+

5
∑
s∈S

∑
t∈Ts

(
Rst
∑
c∈C40

xstc(1−Rc)+
∑
c∈C20

xstc(
1

2
Rst −Rc)

) (14)

which, following the priorities of the stowage coordinators,
minimizes: overstowage, the number of different discharge
ports in a stack, the number of non-empty stacks and the
number of reefer cells used by non-reefer container.

III. LITERATURE SURVEY

The number of publications on stowage planning has
grown substantially within the last few years. Contributions
can be divided into two main categories: single-phase and
multi-phase approaches. Multi-phase approaches decompose
the problem hierarchically. 2-phase [4], [5], [6], [1] and 3-
phase approaches [7], [8] are currently the most successful
in terms of model accuracy and scalability. Single-phase
approaches represent the stowage planning problem (or parts
of it) in a single optimization model. Approaches applied
include IP [9], [10], [11], [12], CP [13], [3], GA [14],

[15], SA [16], placement heuristics [17], 3D-packing [18],
simulation [19] , and case-based methods [20].

Slot planning models and algorithms in the work above,
however, either do not solve sufficiently representative ver-
sions of the problem or lack experimental evaluation. In our
previous work, we have used the same representative model
as in this paper. In [3] and [2] a CP approach is used to
solve this model. The CP model solved with Gecode [21]
was shown to greatly outperform both the IP model given
in this paper solved with CPLEX and a column generation
approach. As our comparison with the CP approach in this
paper shows, however, these exact methods may need long
time to prove optimality.

IV. SOLUTION APPROACH

As mentioned in Section I, the aim of slot planning is to
stow containers within a bay section (also called a location)
as fast as possible. Knowing that up to 100 slot planning
instances must be solved for a stowage plan and that master
planning is time consuming, it easy to argue that a 1 second
time limit on slot planning is adequate.

In order to reach or even improve such high performance
we propose a CBLS with a simple hill-climbing search.
Details about CBLS can be found in [22], however, some of
the basic principles can easily be captured by the following
description of the algorithm used in this work.

Hill-climbing might seem like a simplistic approach espe-
cially when the objectives of the problem are clearly non-
linear. Our choice for this search method is supported by the
fact that fast solutions must be found. We concentrated our
effort on developing an accurate guiding heuristic, which,
in combination with incremental computations is able to
drive the hill-climb towards (near-)optimal solutions. The
search could be probably be improved using a metaheuristic
framework. Our preliminary studies, however, show that this
is non-trivial due to the structure of the problem.

We model slot planning with a set of decision variables
xstp ∈ C∪{⊥} defining which container is to be stowed into
which slot (one cells is composed of an AFT and a FORE
slot). Slots are identified by a triple (s, t, p) where s ∈ S is
the stack, t ∈ Ts is the tier and p ∈ P = {AFT, FORE} is
the position within the cell. Slots without stowed containers
are assigned the special value ⊥. Unlike the original IP
model, which was cells based, our CBLS model is slot based.
Such a model is more robust in terms of future development
when slot based constraints need to be applied.

The algorithm uses a neighborhood generated by swapping
containers. A swap is an exchange of some containers
between a pair of cells. Formally, a swap γ is a pair of
tuples γ = (〈s, t, c〉, 〈s′, t′, c′〉) where the containers c in
the cell at stack s and tier t exchange position with the
containers c′ in the cell at stack s′ and tier t′. The sets c and c′

can contain at most two containers. Swaps are implemented
with two functions swap20 for exchanging position of 20-
foot containers (that is one 20-foot with another or with
an ⊥ container), and swap40 for exchanging position of 40-
foot containers (with an other 40-foot, or with a mixture of
20-foot and ⊥ containers).

The constraints of the model are defined in terms of
violations. Violations are numerical evaluations of how far
the current solution is from satisfying the constraint under

consideration. Once a constraint has no violation it is con-
sidered satisfied, thus a solution where all constraint have no
violation is a feasible solution. Given an assignment π, let
xπstp be the value of the decision variables for assignment
π. Taking constraint (1) as an example the violations for a
single slot can be defined as

vπstp =

t−1∑
t′=0

¬(t(xπstp =⇒ ¬f(xπst′AFT)) (15)

where t(c) is true if c ∈ C is a 20-foor container, f(c) is true
if c ∈ C is a 40-foot container. We also represent boolean
variables as {0, 1} and allow arithmetic operations over them.
The total violation for constraint (1) is thus defined as∑

s∈S

∑
t∈T

∑
p∈P

vπstp (16)

Violations are also used during the search as heuristic guid-
ance, as it will soon be described in the description of the
search algorithm.

Objectives are defined, in terms of violations like the
constraints. A solution minimizing the objective violations
is optimizing the objective. Violations for the overstowage
objective (11) are, for example defined for each slot as

oπstp = ∃t′ ∈ {0, ..., t− 1}, p′ ∈ P.
dsp(xπstp) > dsp(xπst′p′) (17)

where dsp(c) indicates the discharge port of container c. The
total numer of overstowing containers thus is∑

s∈S

∑
t∈T

∑
p∈P

oπstp (18)

Other constraints and objectives are defined in a similar
fashion. A comprehensive definition is found in [23].

A. A 3-Phase approach

Constraint satisfaction and objective optimization, tend to
drive the search in opposite directions, ultimately generating
a poor heuristic. For this reason we decided to split the main
search into a feasibility and optimality phase. We start with
a greedy initial solution, generated by relaxing the stack
height and weight constraint. Containers are then stowed
using the lexicographical order (reefers ≺ discharge port ≺
20-foot container), designed to optimize the objective func-
tion. Containers that cannot be stowed, due to the constraints,
are then sequentially stowed at the end of the procedure.
This, placement heuristic, produces high quality solution
that are slightly infeasible. Such solutions become the in-
put of the feasibility phase where only the violation of
the constraints are minimized. Feasible solutions are then
passed to the optimality phase which will now only consider
feasible neighborhoods and optimize the objective functions.
Both the feasibility and optimality phases use a min/max
heuristic where swaps are chosen by selecting a slot with
the maximum number of violations and swapping it with a
slots producing the minimum violations (in other words,
the most improving swap). This is how violations become
the essential building blocks of the search heuristic.

Algorithm 1 shows the details of the search. The placement
heuristic is used in line 1 to generate and initial solution π.
Lines 2-6 are the implementation of the feasibility phase.

Algorithm 1: SolveLocation()
π = placementHeuristic(); /* Heuristic Placement1
*/while ¬satisfy(constraints) do2

π′ ← π; /* Feasibility phase */3
select s1 ←most violated slot do4

select s2 ←most improving slot to swap do5
π ← swap(s1, s2);6

if π′=π then perform side move7

while there is objective improvement do8
π′ ← π; /* Optimality phase */9
select s1 ←most objective violating slot do10

select s2 ←most objective improving feasible slot to11
swap do

π ← swap(s1, s2);12

if π′ = π then π =perform tie-breaking swap on π13

return π;14

While the constraints are not satisfied (line 2), we perform
swaps (line 6) selecting the most violated slot (line 4) and
the most improving slot (line 5). If the swap generates a non
improving (but not worse) solution, we accept the solution
as a side move. Side moves are allowed only after a number
of failed improving tentatives.

Lines 8-13 are the implementation of the optimality phase.
With π now being a feasible solution, we perform feasible
swaps (line 12) so long as an objective improvement can
be generated. Similarly to the feasibility phase, lines 10-
11 select the most violating and most improving slots. The
selection, however, is limited to feasible swaps (swaps that
do not generate any violations on the constrains). Should the
swap generate a non-improving solution, a limited number
of side moves are allowed where solutions are chosen using
tie-breaking rules (line 13). For the overstowage objective
(11) the tie-breaking is defined as the number of containers
overstowed by each container, which will make the algorithm
choose a container that overstows many containers over
one that only overstows a single container. For the non-
empty stack objective (12) the tie is broken by the number
of containers in the stack, so that the search rather swaps
containers that are in almost empty stacks. The clustering
objective (13) calculates the tie-breaker by summing the
quadratic product of the number of containers with the same
discharge port, which will favor those stacks that have the
most containers with the same discharge port.

B. Incremental computations

In order to efficiently compute and evaluate the neigh-
borhoods, we designed incremental calculations for each
constraint and objective. Incremental calculations (or delta
evaluations) allow the algorithm to evaluate and apply swaps
efficiently without having to recompute all of the constraint
and objective violations. A delta evaluation is based on a
simple construction/destruction principle, where the viola-
tions of the original assignment are first removed from the
total violation, to then be reinserted according to the new
assignment. A delta evaluation can be made volatile, thus
only be used as an evaluation, or persistent if the change has
to be applied to the solution.

Consider a single 20-foot to 20-foot swap γ =
(〈s, t, c〉, 〈s′, t′, c′〉) between two distinct stacks. Starting
from stack s we first remove the known violations of

Class 40’ 20’ Reefer HC DSP>1 Inst.
1

√
6

2
√

18
3

√ √
4

4
√ √

42
5

√ √ √
27

6
√ √ √

8
7

√ √ √ √
7

8
√ √ √

7
9

√ √ √ √
10

10
√ √ √ √

2
11

√ √ √ √ √
2

TABLE I
Test Set Characteristics. THE FIRST COLUMN IS AN INSTANCE CLASS ID.

COLUMN 2, 3, 4, AND 5 INDICATE WHETHER 40-FOOT, 20-FOOT,
REEFER, AND HIGH-CUBE CONTAINERS ARE PRESENT. COLUMN 6

INDICATES WHETHER MORE THAN ONE DISCHARGE PORT IS PRESENT.
FINALLY, COLUMN 7 IS THE NUMBER OF INSTANCES OF THE CLASS.

container c. Then we look at all the containers stowed above
it, removing one violations for each of the ones that only
overstow container c. Now all the violations connected to
container c are removed. Swapping c with c′ we now have
to do a similar but opposite operation where we add 1
violation to all container that only overstow c′ in stack s
at tier t and 1 violation if c′ is overstowing any container
below it. The same operation is then performed on the
other stack s′ where c and c′ exchange roles. It is easy to
show that given the correct data structures such operations
can be performed linearly with the size of the tiers under
consideration. More details and formal definitions for all
constraints and objectives as well as incremental evaluations
can be found in [23].

V. COMPUTATIONAL RESULTS

The algorithm has been implemented in C++ and all
experiments have been conducted on a Linux system with
8 Gb RAM and 2 Opteron Quad Core CPUs, each running
on 1.7 GHz and having 2Mb of cache. The slot planning
instances have been derived from real stowage plans used
by our industrial collaborator for deep-sea vessels.We use
test data set of 133 instances, including locations between 6
TEUs and 220 TEUs. Table I gives a summarized overview
of these instances. Notice that many instances only have 1
discharge port, this is a feature of the instances generated
after a multi-port master planning phase, thus it reflects the
actual problem we are facing.

The experimental results on the test data set, shown in
Table II(a), show the percentage of solutions solved within a
specific optimality gap (optimal solutions have been gener-
ated using the constraint programming algorithm described
in [2]). It is easy to see that only few instances diverge from
near optimality and that in 86% of the cases the algorithm
actually reached the optimal solution. Studying the algorithm
performance closer, we were able to gain some insight on
the quality of the different phases. The heuristic placement
does not take the height and weight constraint into account,
leaving space for improvements. However Table II (c) and
(d) show that the solution found by the heuristic placement
is not far from being feasible in most of the cases. This is
supported by the fact that often feasibility is reached within
20 iterations and that 61% of the time, the objective value
is not compromised. The quality of the objective value of

Opt. Gap Opt. Gap (Feas.) Feas. Iter. Feas. Worse
Gap. Freq. Gap. Freq. It. ≤ % Obj % %

0% 86% 0% 74% 0 29% -20% 2%
1% 2% 5% 6% 5 23% -10% 2%
2% 2% 10% 2% 10 18% -5% 4%
3% 2% 15% 5% 15 8% 0% 61%
4% 1% 20% 3% 20 6% 5% 8%

10% 1% 25% 3% 25 3% 10% 2%
15% 4% 35% 3% 30 6% 20% 7%
20% 1% 40% 1% 35 1% > 20% 15%
30% 2% > 100% 3% 40 2%

45 2%
50 1%
65 2%

(a) (b) (c) (d)

TABLE II
Algorithm Analysis (A) COST GAP BETWEEN RETURNED SOLUTION AND

OPTIMAL SOLUTION. (B) COST GAP BETWEEN FIRST FEASIBLE
SOLUTION AND OPTIMAL SOLUTION. (C) NUMBER OF ITERATIONS

NEEDED TO FIND THE FIRST FEASIBLE SOLUTION. (D) WORSENING OF
THE COST OF THE HEURISTIC PLACEMENT WHEN SEARCHING FOR THE

FIRST FEASIBLE SOLUTION.

the first feasible solution is also optimal in 74% of the
cases (Table II(b)), suggesting that the heuristic placement
procedure is performing well. The results also point to the
fact that the optimality phase improves only a limited number
of instances, which however is important especially in the
cases where the optimality gap after the feasibility phase is
more than 20%.

The limited improvement of solutions in the optimality
phase probably happens because the search does not allow
for a large degree of diversification. Preliminary tests using
tabu search have shown that local diversification often was
unsuccessful to escape a local minimum due to large struc-
tural differences between the local minimum and an optimal
solution. A possible approach to solve this problem could be
to less closely follow the heuristic in the initial placement
and the search procedures. This method, however, would
probably be more expensive in terms of runtime performance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250

T
im

e
(s

ec
.)

TEUs

Runtime performance

Runtime

Fig. 4. Execution time as a function of instance size measured in TEUs.

The average runtime of the instances is 0.18 seconds, with
a worst case of 0.65 seconds. Figure 4 shows the runtime
of the algorithm as a function of the size of the instance
measured in TEUs. As depicted, the execution time scales
well with the instance size. Figure 5 compares the execution
time between our algorithm and the complete constraint
programming approach used for generating optimal solu-
tions. When generating the instance set for investigating the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
P

 ti
m

e

LS time

LS vs CP runtime comparison

Normal
Unsolved

More than 5 sec.
More than 3 sec.

Fig. 5. Execution time comparison between our algorithm and the complete
constraint programming approach used to generate optimal solutions.

optimality gap shown in table II, we excluded instances that
were not solvable by the CP approach within 160 seconds.
However, in a comparison between the two approaches these
instances are particularly interesting.

As depicted, the CP approach is highly competitive within
the set of instances that it can solve in 160 seconds. However
our approach can solve the problematic instances for CP
fast as well. This result indicates that the under-constrained
nature of the problem might force exact methods to spend
an excessive amount of time proving optimality. A pragmatic
solution would be to execute the two approaches in parallel
and rely on the optimal CP solution for the locations where
it can be generated fast.

VI. CONCLUSION

We have developed an accurate slot planning model to-
gether with a major liner shipping company and implemented
a constraint-based local search algorithm to solve them. Our
experimental results show that these problems in practice are
easy even though the general problem is NP-Complete. Our
work contributes to our current understanding of stowage
planning. It shows that if these problems are combinatorially
hard in practice, the main challenge is to distribute containers
to locations in vessel bays rather than assigning them to
individual slots in these bays.

REFERENCES

[1] D. Pacino, A. Delgado, R. M. Jensen, and T. Bebbington, “Fast
generation of near-optimal plans for eco-efficient stowage of large
container vessels,” in ICCL, 2011, pp. 286–301.

[2] A. Delgado, R. M. Jensen, K. Janstrup, T. H. Rose, and K. H.
Andersen, “A constraint programming model for fast optimal stowage
of container vessel bays,” European Journal of Operations Research,
2011, [Accepted for publication].

[3] A. Delgado, R. M. Jensen, and C. Schulte, “Generating optimal
stowage plans for container vessel bays,” in Proceedings of the 15th
Int. Conf. on Principles and Practice of Constraint Programming (CP-
09), ser. LNCS Series, vol. 5732, 2009, pp. 6–20.

[4] I. D. Wilson and R. P., “Principles of combinatorial optimization
applied to container-ship stowage planning,” Journal of Heuristics,
no. 5, pp. 403–418, 1999.

[5] J. Kang and Y. Kim, “Stowage planning in maritime container trans-
portation,” Journal of the Operations Research Society, vol. 53, no. 4,
pp. 415–426, 2002.

[6] W.-Y. Zhang, Y. Lin, and Z.-S. Ji, “Model and algorithm for container
ship stowage planning based on bin-packing problem,” Journal of
Marine Science and Application, vol. 4, no. 3, 2005.

[7] D. Ambrosino, D. Anghinolfi, M. Paolucci, and A. Sciomachen, “An
experimental comparison of different heuristics for the master bay plan
problem,” in Proceedings of the 9th Int. Symposium on Experimental
Algorithms, 2010, pp. 314–325.

[8] M. Yoke, H. Low, X. Xiao, F. Liu, S. Y. Huang, W. J. Hsu, and Z. Li,
“An automated stowage planning system for large containerships,”
in In Proceedings of the 4th Virtual Int. Conference on Intelligent
Production Machines and Systems, 2009.

[9] R. Botter and M. A. Brinati, “Stowage container planning: A model
for getting an optimal solution,” in Proceedings of the 7th Int. Conf.
on Computer Applications in the Automation of Shipyard Operation
and Ship Design, 1992, pp. 217–229.

[10] D. Ambrosino and A. Sciomachen, “Impact of yard organization on
the master bay planning problem,” Maritime Economics and Logistics,
no. 5, pp. 285–300, 2003.

[11] P. Giemesch and A. Jellinghaus, “Optimization models for the con-
tainership stowage problem,” in Proceedings of the Int. Conference of
the German Operations Research Society, 2003.

[12] F. Li, C. Tian, R. Cao, and W. Ding, “An integer programming for
container stowage problem,” in Proceedings of the Int. Conference on
Computational Science, Part I. Springer, 2008, pp. 853–862, LNCS
5101.

[13] D. Ambrosino and A. Sciomachen, “A constraint satisfaction approach
for master bay plans,” Maritime Engineering and Ports, vol. 36, pp.
175–184, 1998.

[14] Y. Davidor and M. Avihail, “A method for determining a vessel
stowage plan, Patent Publication WO9735266,” 1996.

[15] O. Dubrovsky and G. L. M. Penn, “A genetic algorithm with a compact
solution encoding for the container ship stowage problem,” J. of
Heuristics, vol. 8, pp. 585–599, 2002.

[16] M. Flor, “Heuristic algorithms for solving the container ship stowage
problem,” Master’s thesis, Technion, Haifa, Isreal, 1998.

[17] M. Avriel, M. Penn, N. Shpirer, and S. Witteboon, “Stowage planning
for container ships to reduce the number of shifts,” Annals of Oper.
Research, vol. 76, pp. 55–71, 1998.

[18] A. Sciomachen and A. Tanfani, “The master bay plan problem: a
solution method based on its connection to the three-dimensional bin
packing problem,” IMA Journal of Management Mathematics, vol. 14,
pp. 251–269, 2003.

[19] W. C. Aye, M. Y. H. Low, H. S. Ying, H. W. Jing, and Z. Min,
“Visualization and simulation tool for automated stowage plan gener-
ation system,” in Proceedings of the International MultiConference of
Engineers and Computer Scientists 2010 (IMECS 2010), vol. 2, Hong
Kong, 2010, pp. 1013–1019.

[20] S. Nugroho, “Case-based stowage planning for container ships,” in
The Int. Logistics Congress, 2004.

[21] Gecode Team, “Gecode: Generic constraint development environ-
ment,” 2006, available from http://www.gecode.org.

[22] L. Michel and P. V. Hentenryck, “A constraint-based architecture for
local search,” ACM SIGPLAN Notices, vol. 37, no. 11, pp. 101–110,
nov 2002.

[23] D. Pacino and R. M. Jensen, “A 3-phase randomized constraint based
local search algorithm for stowing under deck locations of container
vessel bays,” IT-University of Copenhagen, Tech. Rep. TR-2010-123,
2010.

