Efficient BDD-based Search for Planning

Thesis Proposal

Rune M. Jensen
School of Computer Science
Carnegie Mellon University

April 23, 2001

Committee Members M. M. Veloso, Carnegie Mellon University (Co-chair)
R. E. Bryant, Carnegie Mellon University (Co-chair)
R. Simmons, Carnegie Mellon University
P. Traverso, Istituto Trentino Di Cultura, Italy

Abstract

In this thesis we propose to develop specialized search algorithms and domain
encodings based on reduced ordered binary decision diagrams (BDDs) for determinis-
tic and non-deterministic planning problems. BDDs are compact representations of
Boolean functions that have been successfully applied in model checking to implic-
itly represent and traverse very large state spaces. Recent research has shown that
BDD-based search can be one of the most efficient known approaches for optimal de-
terministic planning and that BDDs are very suitable for representing universal plans
for non-deterministic problems. However, when optimality constraints are relaxed,
classic heuristic state-space planners currently outperform BDD approaches.

A BDD-based heuristic search algorithm has been suggested but does not pro-
vide a satisfying solution on how to represent heuristic functions. An open question
remains as whether there exist efficient BDD-based search algorithms that can trade
optimality or even completeness for speed and scalability without severely compro-
mising the quality of the generated plans. The proposed research aims at developing
such new algorithms and determine applicability conditions for both deterministic
and non-deterministic planning problems. The thesis work will investigate features
of BDD-based search applied to effectively scale model-checking problems and apply
them to planning problems.

Our proposed approach is to use directed search with efficient heuristic encodings
combined with 1) two-level abstraction of the search space derived from GRAPH-
PLAN’s parallel relaxation, 2) transition relation partitioning suitable for determin-
istic and non-deterministic planning domains, and 3) compact domain encoding of
SsTRIPS and PDDL domains. Furthermore, within non-deterministic planning do-
mains, we propose to investigate the generation of universal plans that are k-fault
tolerant, in the sense that some goal can be reached with at most & rare events
causing non-determinism. The thesis work will include the algorithmic develop-
ment and experimental analysis in existing and new domains of relevance to the
planning community.

1 Introduction

Planning involves search in large state spaces for the automatic generation of actions to
achieve specific goal states. Planning is hard (in general PSPACE-complete [11]) and
efficient approaches that extend beyond the most restricted domain languages like STRIPS
[28] and PDDL [48] are lacking.

Reduced ordered binary decision diagrams (BDDs) can contribute to both of these
problems. A BDD [7] is a compact and robust data structure for Boolean functions that
can be used to symbolically represent state spaces. Through their canonical representation
BDDs have been effectively applied to the synthesis and verification of hardware circuits [8]
and incorporated within the area of symbolic model checking [49]. Due to the implicit state
space representation BDD-based search often scales to very large state spaces. In addition,
the BDD-based symbolic state space representation and search algorithms naturally extend
to non-deterministic domains and have furthermore been shown to compactly represent
universal plans in these domains [15].

In this thesis we want to address the development of efficient BDD-based search al-
gorithms specialized to deterministic and non-deterministic planning domains. Several
questions need to be answered in order to achieve this goal. In deterministic planning
recent research [25, 23] (see also Section 4.3) indicates that BDD-based search is one of the
best known approaches for optimal deterministic planning.! However, it is well known in
planning that there is a trade off between solution quality and search speed. As shown by
heuristic state-space planners [37, 4] and graph planners [1, 44] solutions to deterministic
planning problems can be found very fast when optimality constraints are relaxed. A key
question is, if such algorithms can be developed for BDD approaches as well. A BDD-based
heuristic search algorithm (BDDA*) has been suggested, but it fails provide an efficient

!'We define an optimal plan of a deterministic planning problem to be a solution with shortest length.

representation of informative heuristics [21]. An important goal of the thesis is therefore
to investigate if other directed BDD-based search algorithms exist that use a less com-
plex representation of the heuristic function. Abstraction is an alternative way to relax a
search problem. There is no published work on abstraction for BbD-based planning, but
our studies on parallel relaxed transition relations for two-level abstraction in BDD-based
search show a potential speed up of several magnitudes without a severe degradation of
the solution quality (see Section 4.5). The thesis will continue this research and investi-
gate to what extent the approach can be made generally applicable. In addition, we will
study ways of combining directed search methods with abstraction.

Heuristic search and abstraction apply to deterministic planning where only one path
to a goal state needs to be found. In non-deterministic domains however, the search
problem is different since actions may have multiple possible outcomes. Thus, a plan in
a non-deterministic domain has to cover all the states that can be visited and this may
prevent an effective use of relaxation. The approach, we will focus on for non-deterministic
domains, is universal planning [56]. In BDD-based universal planning [15, 14, 40, 39] a
plan is generated incrementally from a backwards breadth-first search algorithm. It is
unclear to what extent directed search and abstraction can be applied to this approach
without significantly reducing the quality of the generated plan. One way to do this,
that we want to investigate, is to consider k-fault tolerant algorithms, where some goal
can be reached with at most & rare events causing the non-determinism. In addition, we
want to consider how the existing algorithms can be made more efficient for example by
partitioning the transition relation representation of the search space [40] and/or reducing
the search space by constraining it to only reachable states. Currently BDDs have been
shown to be an efficient representation for universal plans [15], but previous research has
focused on developing new kinds of universal plan solutions rather than efficient search
techniques.

A final question, we plan to address, is how to make efficient Boolean state encodings
of STRIPS and PDDL domains where a state is represented by a set of grounded predicates.
These encodings are typically very redundant and often exponentially smaller Boolean
encodings exist [22]. As discussed in Section 2.2 the complexity of the BDD representation
is highly dependent on the size and variable ordering of the Boolean encoding. In the
thesis we will continue previous work on extracting structural information from planning
domains in order to build compact Boolean encodings. Moreover, we want to study if
good variable orderings can be found by static domain analysis.

In summary, the goal of the proposed research is to develop specialized
BDD-based search algorithms for deterministic and non-deterministic plan-
ning problems that in contrast to current algorithms can trade optimality

or even completeness for speed and scalability without severely compromising
the quality of the generated plans. The proposed research aims at developing
such algorithms using directed search methods combined with abstraction,
partitioning and compact domain encoding.

The remainder of this proposal is organized as follows. First we give a brief introduc-
tion to BDD-based planning in Section 2. It may be skipped by readers already familiar
with the topic. Then in Section 3 we describe related work on deterministic and non-
deterministic planning. In Section 4 we give a detailed description of current issues in
BDD-based planning including some of our unpublished work. Finally, in Section 5, we
give a summary of the proposed thesis work.

2 Background

2.1 Planning

Planning is one of the oldest and most formalized subfields of AI. A planning domain is
a discrete representation of some target world, where actions are modelled as transitions
between states. The states and actions of a domain are defined by a domain theory given
in some planning language.

The STRIPS planning language has been widely used to represent deterministic plan-
ning problems. In STRIPS instantiated predicates are facts. A state in a planning problem
is a set of facts. An operatoris a triple (P, A, D) of preconditions, add-effects and del-
effects, with P, A and D being sets of facts. An operator is applicable if all preconditions
are fulfilled. The state is altered by adding the corresponding add-effects and removing
the del-effects. Operators or actions are defined by schemas that contain free variables,
to be instantiated by the facts given in a state.

A disadvantage of STRIPS is that it can not represent non-deterministic domains.
For this reason, we will assume that domains are described in the Non-deterministic
Agent Domain Language (NADL) that extends to both non-deterministic and multi-agent
domains [40].

An NADL domain description consists of: a definition of state variables, a description of
system and environment agents, and a specification of initial and goal conditions. The set
of state variable assignments defines the state space of the domain. An agent’s description
is a set of actions. At each step, all of the agents perform exactly one action, and the

resulting action tuple is a joint action.? The system agents model the behavior of the

2In the remainder of this presentation we will simply refer to joint actions as actions.

agents controllable by the planner, while the environment agents model the uncontrollable
world. A valid domain description requires that the system and environment agents
constrain a disjoint set of variables. An action has three parts: a set of state variables,
a precondition formula, and an effect formula. Intuitively the action takes responsibility
of constraining the values of the set of state variables in the next state. It further has
exclusive access to these variables during execution.

There are two causes of non-determinism in NADL domains: (1) actions not restricting
all their constrained variables to a specific value in the next state, and (2) the non-
deterministic selection of environment actions. As an example consider the NADL domain
shown in Figure 1. This domain has two agents. One system agent, Lift , with two actions
Up and Down and one environment agent, Knv, with one action Brake. There is a single
numerical state variable pos and Boolean state variable lift_works. Up and Down constrain
Pos in the next state but are conditioned by [lift_works. Brake constrains lift_works and is
a non-deterministic action. If lift_works is true in the current state [ift_works can either be
true or false in the next state. The semantics of an NADL description is a non-deterministic
finite transition system with initial and goal states. We will call this a domain. A domain

is a 5-tuple D = (S, A, T, I, G) where:
1. S is the finite set of states given by the NADL state variables.
2. A is the finite set of joint actions of system agents .

3. T C S x Ax S is a transition relation, such that 7'(s,a,s’) iff a is applicable in s
and causes a transition to s'.

4. I C S is the set of initial states.
5. G C § is the set of goal states.

The domain of the NADL example in Figure 1 is illustrated in Figure 2.

As shown in Figure 6 the transition relation 7'(s, a, s’) can be represented by a BDD.
For a detailed discussion on how to represent NADL domains with BDDs, we refer the
reader to Jensen and Veloso (2000).

An applicable action in a deterministic domain has exactly one possible outcome.
Thus, if T'(s,a,s’) holds for a state s, an action a and a next state s’ € S” then 5" is a
singleton set. In non-deterministic domains, actions can have several possible outcomes.
Thus, S” may be an arbitrary nonempty subset of S. A path from s to s, in a domain
D is a sequence of states sgs;---s, such that Ja € A.T'(a,sj,s;41) forall 0 < j < n.
The length of a path sgsy--- s, is the number of transitions, n. A sequential plan is a
sequence of actions ajas---a,. We say that a sequential plan ajas---a, starting at sg

variables
nat(4) pos bool lift_works

system
agt: Lift
Up
con: pos
pre: pos < 3
eff: [ift_works — pos’ = pos + 1, pos’ = pos
Down
con: pos
pre: pos > 0
eff: [ift_works — pos’ = pos — 1, pos’ = pos
environment
agt: Env
Brake
con: i ft_works
pre: lrue
eff: —lift_works = —lift_works'
initially
pos = 0 A lift_works
goal
pos = 3

Figure 1: An NADL domain example with two agents. One system agent, Lift
, with two actions Up and Down and one environment agent, Env, with one
action Brake.

can generate a path sgsy--- s, if T'(a;41,5;,5;41) holds for all 0 < 57 < n. The length of
a plan is simply the number of actions in the plan. Given these basic definitions we can
now define a deterministic planning problem:

Input: A domain D = (S,A,T,1,G).

Output: A sequential plan that can generate a path from an initial state : € I to a
goal state g € G.

We define an optimal deterministic plan to be a sequential plan solution with shortest

robot_works

AL

e @@~ @0

1 3 pos

Figure 2: The domain representation of the NADL example. Solid and dashed
arrows denote the action Up and Down respectively. States marked with “I”
and “G” are initial and goal states.

length.

In general solutions to non-deterministic planning problems have to be more expressive
than sequential plans since actions may lead to several next states. In this introduction
we assume that solutions are given as universal plans [56]. A universal plan U for a
domain D is a partial mapping from states to sets of actions U/ : S — 24. A universal
plan is executed by iteratively observing the current state and executing an action in the
plan associated to the state. Thus, a universal plan U starting at so can generate a path
Sp81 -8y if dJa € U(sj).T(a,sj,s;41) for all 0 < 5 < n. The optimality of a universal
plan depends on the definition of the non-deterministic planning problem. To illustrate
this, we define the optimistic non-deterministic planning problem:

Input: A domain D = (S,A,T,1,G).

Output: A universal plan U : S — 24 such that the initial states are covered by U,
I C dom(U), and for all states in the plan, s € dom(U), U can generate a path from s to
a goal state s, € G.

An optimal optimistic solution is an optimistic universal plan mapping each state s to
the largest set of actions such that each action has a possible next state being the second
state on a shortest length path from s to a goal state.

2.2 BDD-based Planning

An ordered reduced binary decision diagram (BDD) is a canonical representation of a
Boolean function with n linear ordered arguments zq, z,...,z,. A BDD is a rooted, di-
rected acyclic graph with one or two terminal nodes labeled 1 or 0, and a set of variable

nodes u of out-degree two. The two outgoing edges are given by the functions high(u)
and low(u). Each variable node is associated with a Boolean variable in the function the
BDD represents. The graph is ordered in the sense that all paths in the graph respect the
ordering of the variables.

A BDD representing the function f(xy,23) = 1 A 22 is shown in Figure 3. Given an
assignment of the arguments z; and x4, the value of f is determined by a path starting
at the root node and iteratively following the high edge, if the associated variable is true,
and the low edge, if the associated variable is false. The value of f is True or False if the
label of the reached terminal node is 1 or 0, respectively. A BBD graph is reduced so that

7%

\‘1

0

Figure 3: A BDD representing the function f(z1,zs) = 1 Az2. High and low
edges are drawn as solid and dotted lines, respectively.

no two distinct nodes u and v have the same variable name and low and high successors
(Figure 4a), and no variable node u has identical low and high successors (Figure 4b).
The BDD representation has two major advantages: First, due to the reductions, it is a

u Vv u

(@) (b)

Figure 4: Reductions of BDDs. (a) nodes associated to the same variable with
equal low and high successors will be converted to a single node. (b) nodes
causing redundant tests on a variable are eliminated.

canonical representation of Boolean functions that can be exponentially more compact
than their corresponding truth table representation [8]. Second, any operation on two
BDDs, corresponding to a Boolean operation on the functions they represent, has a low
complexity bounded by the product of their node size [§8]. A disadvantage of BDDs is that

the size of a BDD representing some function is highly dependent on the ordering of the
variables. To find an optimal variable ordering is a co-NP-complete problem in itself [8],
but as illustrated in Figure 5 a good heuristic for choosing an ordering is to locate related
variables near each other [16].

o]

() (b)

Figure 5: This Figure shows the effect of variable ordering for the expression
(1 Ay1) V (2 Ay2) V (x3 A ys). The BDD in (a) only grows linearly with the
number of variables in the expression, while the BDD in (b) grows exponentially.
The example illustrates that placing related variables near to each other in the
ordering often is a good heuristic.

BDDs can represent planning domains implicitly. As an example, consider the non-
deterministic planning domain shown in Figure 6a. In this domain there are four states
given by the four possible value assignments of the two Boolean state variables z; and z,.
The actions in the domain are defined by the Boolean variable a. The BDD representing the
transition relation T'(a, x1,], x2, 2)) of the domain is shown in Figure 6b. The definition
of T' is straightforward: for some assignment of its arguments, 7' is true iff action a causes
a transition from the current state given by the value of z; and x5 to the next state given
by the value of z} and z/,. Note that the BDD representing 7" for the example turns out
not to depend on x%,.

Assume that the state 01 is a goal state G. A key operation for solving planning
problems for reaching G is to find all the state action pairs (s,a) such that G can be
reached from s by executing a. This set is labeled P; in Figure 6¢. To find P, from 7" we
constrain z} to False and zf, to True in T'. This reduces 1" to the BDD shown in Figure 6d.
The resulting BDD represents P; with the states described in the current state variables

Figure 6: A non-deterministic planning domain is shown in (a). States are
defined by Boolean state variables x; and x5, and the two actions in the domain
represented by the Boolean variable a. The symbolic representation of the
transition relation is shown in (b). In (c), Py is the set of state action pairs for
which, execution of the action can lead to the goal. The symbolic representation
of Py is shown in (d). It is obtained from the transition relation by restricting
the next state to 01.

zy and z,. Logically we performed the computation Jz7, 2}, . —z] A 25 A T to obtain the
BDD representing P;.

We end this section by showing a simple backward BDD-based search algorithm for
solving non-deterministic planning problems (see Figure 7). Let the preimage of a set
of states V of a domain D be a partial mapping, Prelmage(T,V) : S — 24, where
a € Prelmage(T,V)(s) iff T'(a,s,s’) and s’ € V. That is, a can cause a transition from
s into a state s’ in V. In a similar way, we can define the image of a set of states that
is used for forward search algorithms. The algorithm generates an optimal optimistic
universal plan U for reaching a set of goal states G from a set of initial states I by
performing a backward breadth-first search from the goal states to the initial states. In
each step the preimage is computed of the visited states, V. All states previously visited
are removed from the preimage by the function FrontierSet and the result is stored in
the optimistic universal plan component U.. If U, is empty a fixed point of V' has been

10

function Plan(T,1,G)
U=0,V:=G
while I/ ¢ V
P := Prelmage(T,V)
U. := FrontierSet(P, V)
if U. = () then return failure

else
U:=UUU.
V =V U states(U.)
return U

Figure 7: Optimistic BDD-based planning algorithm.

reached that does not cover the initial states. Since this means that no universal plan can
be generated that covers the initial states, the algorithm returns failure. Otherwise, U.
is added to the universal plan and the states in U, are added to the set of visited states.
All variables in the algorithm are sets. In particular, the universal plan and the preimage
are represented by a set of state action pairs (s,a). These sets are implicitly manipulated
by BDDs operating on their characteristic function. For the NADL example domain the
generated universal plan maps every state to the action Lift.

If the domain is deterministic a sequential plan can be extracted from the universal
plan by a forward traversal of the universal plan from an initial state to a goal state by
adding a single action from the universal plan to the sequential plan for each state visited.

3 Related Work

Major related work is shown in Figure 8 and is divided into four groups according to its
use of BDDs and the type of target domain.

Previous work on deterministic planning, not using BDDs, include state space plan-
ners (e.g. PRODIGY [51]), plan space planners (e.g. UCPOP [58]) and hierarchical planners
(e.g. SIPE [59]). In PRODIGY a plan is generated from a single-state bidirectional search
guided by control rules. UCPOP, on the other hand, carries out a search in the space of
possible plans guided by the least commitment principle where orderings between actions
only are introduced if the actions are causally linked or interfere. SIPE uses hierarchical
task networks (HTNs) to apply abstraction in the search. First, a solution is found at
an abstract level which then is refined to a concrete plan. A problem for the above ap-

11

BDD-based

Yes No
Planning via model checking State space planning
MBP (deterministic) e.g. Prodigy
BDD-search planning Plan space planning
MIPS 1.0, DOP, PropPlan, BDDPlan e.g. UCPOP
Heuristic planning HTN planning
BDDA* e.g. SIPE
Graph plannin
Yes e.g.pGrzEphPIan,gI]PP, STAN 1

SAT planning
e.g. SATPIan, BlackBox

Heuristic planning
e.g. HSP, FF, AltAlt

Deterministic Hybrid planning
€.9. MIPS 1.5, STAN 4

Universal planning Recurrent approaches
MBP, UMOP 1.0 e.g. min—max LRTA*, ASP
Conformant planning Universal planning
CMBP SCR approaches
No Adversarial planning Conditional planning
UMOP 0.8 e.g. CNLP

Probabilistic planning

Reinforcement learning
e.g. Q-learning

Figure 8: Related work on deterministic or non-deterministic planning.

proaches is that their explicit state representation makes it hard for them to scale to large
domains. GRAPHPLAN [1] avoids the state explosion problem by representing reachable
states implicitly. Graph planners [1, 47, 44] use a two step approach. In the first step
a planning graph is generated. The planning graph consists of alternating action and
state layers and keep track of the interferences between actions and states resulting in a
compact representation of the reachable states. In the second step a plan is extracted
from the planning graph by a backwards search. Graph planners relax optimality con-
straints by only finding parallel optimal plans, i.e., plans with shortest length assuming
that actions can be applied concurrently in each step. More recently this relaxation has
been used by SAT planners and heuristic planners. SAT planners, like SATPLAN [42],
encode a planning problem as a satisfiability problem of a Boolean expression stating goal
achievement within a certain number of steps. Using binary search this approach can be
optimal but better results have been obtained using GRAPHPLAN’s parallel relaxation by

12

encoding goal achievement of the planning graph as a SAT problem (BLACKBOX,[43]).
The problem with planning as satisfiability is that even for small problems the number of
Boolean variables in the expression is high. Heuristic planners like HSP, FF and ALTALT
[4, 61, 37] have returned to state-space planning and avoid to traverse a large number of
states by heuristic directed search. The current success of the approach relies on efficient
but non-admissible heuristics for deterministic planning problems that are closely related
to the number of steps in the planning graph. However, as discussed in Section 4.3,
heuristic single-state search is currently not a suitable approach for optimal deterministic
planning. Finally, a new trend in planning is to combine several approaches in one hy-
brid system. The hybrid planners include M1ps 1.5 [23] (combining heuristic search and
BDD-based search) and STAN 4 [31] (combining graph planning and heuristic search).

The first application of BDDs for deterministic planning (deterministic MBP, [12]) was
based on symbolic model checking where the plan solution corresponded to a counter ex-
ample of the verified property. The approach was shown to be competitive with GRAPH-
PLAN and SATPLAN in several classical domains. More recent approaches are Mips 1.0,
DOP, BDDPLAN and PROPPLAN [25, 38, 29]. All of these planners rely on blind breadth-
first search from model checking. Mips 1.0 uses a specialized preprocessing of domains to
find compact Boolean state encodings [22] whereas DOP (see Section 4.5) uses an analysis
derived from the TIM preprocessing module [30]. Both planners apply bidirectional search
from the initial and goal states. BDDPLAN and PROPPLAN are more simple BDD-based
planners without domain preprocessing and therefore worse performance than Mips 1.0
and DOP. As discussed in Section 4.3 blind BDD-based search is currently one of the most
efficient approaches for optimal deterministic planning. However, when optimality con-
straints are relaxed, heuristic state-space planners like HSP and FF, outperform BDD-based
blind search. A heuristic BDD-based search algorithm called BDDA* has been suggested
[24]. Tt represents the priority queue of A* [36] as a BDD. The approach relies on a BDD
representation of the heuristic function for each state. Since this representation becomes
complex for the heuristics used by HSP and FF, the approach does not scale as well as the
heuristic state-space planners [21].

Related work on non-deterministic planning, not relying on BDDs, include conditional
[27, 52, 3], probabilistic [20, 18, 2] and universal planning [56, 41]. For example, the CNLP
partial order conditional planner handles non-determinism by constructing a conditional
plan that accounts for each possible situation or contingency that could arise [52]. Prob-
abilistic planners try to maximize the probability of goal satisfaction, given conditional
actions with probabilistic effects. Drummond and Bresina (1990) represent plans as a
set of Situated Control Rules (SCRs) [19] mapping situations to actions. The planning
algorithm begins by adding SCRs corresponding to the most probable execution path that
achieves the goal. It then continues adding SCRs for less probable paths and may end

13

with a complete plan taking all possible paths into account. Universal planning was intro-
duced by Schoppers (1987) who used decision trees to represent plans. A recent approach
also represents plans as a set of Situated Control Rules [41]. This algorithm incrementally
adds SCRs to a final plan in a way similar to Drummond and Bresina (1990). Reinforce-
ment Learning (RL) [57] can be regarded as kind of universal planning. In RL the goal
is represented by a reward function in a Markov Decision Process (MDP) model of the
domain. Value iteration is applied to generate control policies maximizing the expected
reward. Because RL is a probabilistic approach, its domain representation is more com-
plex than the domain representation used by a non-deterministic planner. Thus, we may
expect non-deterministic planners to be able to handle domains with larger state spaces
than RL. An alternative to RL and non-deterministic planning is to interleave planning
with execution. This approach has been widely used in non-deterministic robotic domains
e.g. [33, 32, 60, 35]. A group of planners suitable for this purpose is action selectors based
on heuristic search [45, 5].

Several BDD-based planning approaches has been developed for non-deterministic do-
mains. They can be divided into two groups according to the form of the synthesized plan.
The first group keeps the plan on sequential form and may not guarantee goal achieve-
ment due to non-determinism [12] or only allow sequential plans that succeed despite of
non-determinism (conformant planning, [13]). The second group generates universal plans
that are partial mappings from domain states to relevant actions. Several algorithms for
synthesizing universal plans with different properties have been developed. The strength
of these plans range from strong solutions, that guarantee progress towards the goal in
each step [15], to strong cyclic and optimistic (or weak) solutions that either may cycle
forever or reach dead ends [14, 40]. The latter two solutions have further been extended
to reason explicitly about the actions of an adversarial environment [39].

4 Issues in BDD-based Planning

In this section we describe the state of the art of BDD-based planning. The purpose of the
presented techniques is to reduce the complexity of one or more of the four major steps
involved in BDD-based planning:

1. Make a Boolean encoding of the domain states.

2. Build a symbolic BDD representation of the transition relation of this encoding.

o

. Perform a state space search.

4. Extract a plan.

14

4.1 BDD package optimization

A BDD package is an implementation of efficient data structures and algorithms for com-
puting basic operations on BDDs. Modern BDD packages typically share the following
common implementation features based on [6, 54]: 1) a single shared BDD with several
roots representing a set of BDDs, 2) a set of dynamic programming algorithms for carrying
out operations on the BDDs that due to a large number of distinct subproblems use a cache
instead of a memoization table, and 3) data structures that facilitate dynamic variable
reordering and garbage collection of unreferenced BDD nodes that is invoked when the
percentage of unreferenced BDD nodes exceeds a preset threshold.

The three major parameters are: the initial number of nodes allocated to the shared
BDD, the cache size, and the type of dynamic variable reordering if any. Experiments in-
dicate that these parameters should be adjusted differently for BDD-based model checking
compared to circuit verification [62]. The experiments show that model checking com-
putations have a large number of repeated subproblems across the top level operations.
Thus, a large cache size is more important for model checking than for circuit verification.
Furthermore, model checking computations can have a very high death and rebirth rate
(unreferenced nodes being referenced again) compared to circuit computations. Thus,
garbage collection should occur less frequently, which for example can be accomplished
by initially allocating a large number of nodes for the shared BDD. Finally, dynamic re-
ordering of variables is efficient given an initial bad variable ordering, but given a good
initial variable ordering the time spend on reordering does not pay off.

Since the reachability analysis that forms the core of symbolic model checking re-
sembles the state space search of BDD-based planning, we would expect these results to
apply to deterministic and non-deterministic BDD-based planning as well. No systematic
experiments have been carried out to confirm this, but our experiences with deterministic
planning problems fit well with the hypothesis: 1) a planning problem initiated with a
good variable order seems always to perform better without dynamic variable reordering,
2) each garbage collection seems to impair performance by deleting nodes that later must
be recomputed, and 3) a too little cache can cause a performance degradation of several
factors (a cache size that works well in practice is about 10 percent of the number of
allocated nodes). To illustrate the latter Figure 9 shows the complexity of a subset of the
Logistics problems in ATPS-00 using a cache with 10000 and 400000 nodes, respectively.
In this experiment bidirectional search with frontier set simplification was used based on
a monolithic transition relation representation with no action representation. Garbage
collection was suppressed by allocating “enough” initial BDD nodes.?

3The experiments reported in this proposal are based on the UMOP planning framework and the
BuDDyY BDD package [46]. The experiments were carried out on a 500 MHz Pentium IIT PC with 512

15

10000

" Cache Size = 10000 ——
Cahce Size = 400000 ---x---

1000

100

CPU Time / Sec

L L L L
4 5 6 7 8 9 10
Problem Number

Figure 9: Impact of the cache size on AIPS-00 Logistics planning problems.

A detailed study of the reuse of BDD computations in planning problems compared to
symbolic model checking and circuit verification may be crucial for developing efficient
search algorithms tuned to the BDD packages. As discussed in Section 4.3 the typical
exponential blow up in the size of a blind search fringe for planning domains may indicate
a significant difference between planning and model checking domains.

4.2 Efficient Domain Encodings

Finding an efficient domain encoding consists of two completely different tasks. The first
is to analyze the domain description in order to find domain structures that may lead to
more efficient Boolean state representations than a direct translation. The second is to
find a good ordering of the variables of the transition relation for this state representation.

For NADL domains the first task is trivial since the state variables are assumed to
compactly represent the state space. However, for STRIPS and PDDL domains this task
is difficult since the fact based state representation often hides important structure of
the domain. Boolean state encoding for BDD-based PDDL planning has been studied by
Edelkamp and Helmert (1999). Their results rely on previous work by [30, 34]. Since
the size of the BDD representation of the transition relation and the symbolic state explo-
ration are highly dependent on the number of Boolean state variables, the goal of their
approach is to find state encodings with minimal Boolean description length. A naive
encoding using a single Boolean state variable for each grounded predicate of the domain
is only feasible for very small problem instances. Instead sets of balanced predicates used

MB RAM running Linux 5.2.

16

to encode state variables are identified. The approach typically leads to a logarithmic
reduction in the number Boolean states variables since most planning problems consider
moving objects between physical locations. Figure 10 shows the performance improve-
ment of this approach for a subset of the AIPS5-00 Blocks problems. In this experiment
bidirectional search with frontier set simplification was used based on a disjunctive par-
titioned transition relation with no action representation. Again garbage collection was
suppressed by allocating “enough” initial BDD nodes. One direction for future research

1000

T T
Predicate Rep. —+—
Location Rep. ---x---

100

CPU Time / Sec
.
15

0.1

L L L L L L
4 5 6 7 8 9 10 11 12

Figure 10: Results of a naive one-to-one encoding of grounded predicates of
a subset of the AIPS-00 Blocks problems compared with an encoding of the
location of each block.

is to extend this approach with knowledge substitution. For instance in the AIPS-98
Gripper domain a substitution of the free(gripper) predicates with expressions on the ball
locations improves performance substantially.

Given a minimal Boolean state representation, the second task is to find a good order
of the variables in the transition relation. The BDD variables fall into 3 groups: variables
to represent the current state, the action and the next state. Since the same ordering is
shared by all BDDs finding a good ordering not only influence the size of the transition
relation representation but also the size of BDDs used to represent sets of states expressed
either in current state variables or next state variables. As discussed in Section 2.2 related
variables should be near each other in the ordering. In practice it is a good heuristic to
place the action variables first followed by the current and next state variables interleaved.
However, no previous work has addressed how the current and next state variables should
be ordered internally. Heuristics like the fan in and weight heuristic for constructing
good variable orders of combinational circuits [50] still need to be developed for both
deterministic and non-deterministic BDD-based planning.

17

4.3 Search algorithms

As discussed in next section the complexity of the first phase of BDD-based planning, where
the transition relation is being constructed, can be lowered by partitioning. Unfortunately
no equally efficient technique for reducing the complexity exists in the second phase, where
the search is carried out.

In deterministic planning the first application of BDDs [12] was based on symbolic
model checking where the plan solution corresponded to a counter example of the verified
property. The approach was shown to be competitive with GRAPHPLAN and SATPLAN
in several classical domains. Subsequent applications of blind search methods from model
checking by Mips 1.0, BDDPLAN, uMOP and PROPPLAN have lead to good results com-
pared to other planners in the Gripper domain (AIPS-98) , Miconic 10 domain (AIPS-00)
and to some extent the Logistics domain (AIPS-98). Furthermore, the optimal breadth-
first search of these methods make them among the most efficient known today for optimal
deterministic planning. In particular this approach seems to scale better than optimal di-
rected single-state search as indicated by an experiment, we carried out, comparing UMOP
and MIPS 1.0 with ALTALT and HSP 2.0 using admissible heuristics (all other parameters
adjusted for best performance). The results are shown in Figure 11.

A disadvantage of BDD-based blind search is that it can not exploit that determinis-
tic planning problems often have many solutions. The AIPS planning competitions have
shown that one of these solutions typically can be found very fast using directed but pos-
sibly suboptimal single-state search methods. Blind search even seems to be particularly
hard for planning domains. In the following experiment we measured the CPU time as a
function of the size of Boolean state encoding for a range of planning problems (see Fig-
ure 12). A blind bidirectional search method with frontier set simplification was used and
the number of initial BDD nodes, cache nodes and variable order was varied manually for
best performance. We then made a profile of the size of BDD nodes used to represent the
forward and backward search frontier for problems with 32 Boolean state variables (see
Figure 13). The experiment shows two crucial problems with blind search for determinis-
tic planning: 1) the fringe representation of most planning domains grows exponentially
or worse, and 2) the growth order of the fringe is the main source of complexity since it
predicts the general complexity of problems of a domain.

The size of the search fringe can be reduced by directed search approaches. A directed
BDD-based search algorithm has been developed for deterministic planning [24, 21] and has
been shown to improve performance considerably in the Logistics domain. The algorithm
is called BDDA* and corresponds to A* search with the priority queue represented by a
BDD. The approach relies on a BDD-based encoding of the heuristic function that may be
fairly complex. It therefore seems likely that other informed search algorithms simplifying

18

Gripper Logistics
T T 100

100

10 |

CPU Time / Sec
-
T

CPU Time / Sec
-
T

01} 01} 4

0.01 L L L L L L L L L 0.01 L L L
8 10 12 14 16 18 20 4 5 6 7 8 9
Problem Number Problem Number

Blocks Elevator
1000 T T T 100 T T

CPU Time / Sec
CPU Time / Sec
-

T

8 9 10 11 12 13 0 2 4 6 8 10 12
Problem Number Problem Number

Figure 11: CPU time for umoP and MIPS compared to ALTALT and HSP
2.0 in the Blocks, Elevator and Logistics domains of AIPS-00 and the Gripper
domain of ATPS-98.

this problem may have better performance.

Frontier set simplification is another way to reduce the search fringe. The technique
has origins in model checking [17]. The idea is to include previously visited states in
the search fringe only if it reduces the size of the BDD representation. Unfortunately
in deterministic and non-deterministic BDD-based planning the full power of frontier set
simplification is hard to exploit since the plan extraction requires that no previous visited
states are included in the search fringe. As shown by the above experiment pruning
of previous visited states does not prevent a high fringe growth rate for most planning
domains.

The growth rate of the search fringe usually depends highly on the search direction.
Figure 14 shows the growth of the search fringe for forward and backward search in the

19

1000 I ' T T T T T T]
Logistics AIPS-00 —+—
Elevator AIPS-00 ---%--- 1
Blocks AIPS-00 ------
Gripper AIPS-98 @
¥ NPuzzle RMJ-01 --m-—
100]
[" ; -
B) ¥ /x
[] /,/
® 10 | /x’/ _-
n
g |
E S e B
= 3 ~H
5 g8 -
LE
(@] 1 - _.
0.1 _-
0.01 4 : L | 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Number of Boolean State Variables

Figure 12: CPU time as a function of Boolean state encoding length for a
range of planning domains.

AIPS-00 Logistics problem 6-0.* As for most other deterministic planning problems the
backward search fringe grows faster than the forward. But for most problems the first
couple of backward fringes are cheap to generate. Thus, a bidirectional search approach
often pays off in deterministic domains. A good heuristic for choosing which direction
to expand the search is simply the to measure the CPU time used for the last expansion
in each direction and choose the direction with smallest previous CPU time [23]. An
interesting direction for future research is to combine directed and bidirectional search for
deterministic planning.

Unfortunately these techniques only apply to deterministic BDD-based planning. BDD-
based universal planning for non-deterministic domains relies on a blind backward search
to build a plan. No previous work has considered if more efficient algorithms exist. There

41t is common that the fringe size decreases towards the end of the search. The effect is due to the
fact that BDDs representing either small or large fractions of a state space normally are smaller than BDDs
representing fractions of the state space between these extremes.

20

100000 3 T T T T T T T T T

1)

(]

©

o

c

[a)

[a) 10000 | -

m -

@

N

2]

(4]

D

£

=

] -]

g 1000 .]

< L

[}

I

o)

©

c

©

B

s

S 100 -

© il EEVVIVINIAV] P

£ F Logistics AIPS-00 ——

A Elevator AIPS-00 ---x---
Blocks AIPS-00 ------
Gripper AIPS-98 &
NPuzzle RMJ-01 --m-—

10 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Fringe Number

Figure 13: Fringe growth rate of different planning domains.

are good reasons to believe this since most planning domains are more efficiently traversed
by forward search. A new algorithm could for instance start with a forward search and
restrict the backward search only to reachable states. Furthermore, there might exist
very efficient algorithms for domains with sparse non-determinism and algorithms trading
optimality or even completeness for speed and scalability without severely compromising
on the quality of the generated solutions. As an example consider domains with sparse
non-determinism caused by infrequently occurring errors. Since errors are rare, solutions
that can handle up to k of them (k-fault tolerant solutions) may be quite strong. An
interesting question is whether such solutions can be generated by a directed forward
search resembling the search used for deterministic domains.

4.4 Partitioning

Partitioning is another well known technique from model checking [10, 53]. The basic idea
is to split the transition relation expression into a conjunction or disjunction of smaller

21

3000

y T
e Forward —+—
x* X, backward -----

2500 >
2000 | X X,

1500 / 1

Fringe Size / BDD nodes

1000

500 -

. . . .
0 5 10 15 20 25
Step Number

Figure 14: Fringe size profile for forward and backward search in the AIPS-00
Logistics problem 6-0.

partitions. The gain of doing this is twofold. First, it often reduces the complexity of
computing the transition relation in the first phase of BDD-based planning, and second it
may reduce the complexity of the fringe calculations in the second phase.

4.4.1 Conjunctive Partitioning

Assume that the transition relation T'(s, a, s') is represented by a Boolean function 7'(s,, a,, s!)
where s,, a, and s/ are sets of Boolean variables used to represent the current state, the
action and the next state. A conjunctive partitioning with n partitions is then n Boolean
expressions P;(s,, a,, s') where 0 <7 < n such that:

n
T Svaavv u /\ vaavv u

Since we save n — 1 conjunctions for Computmg this representation the total size
of the partitioned representation may be much smaller than the size of a monolithic
representation and therefore less complex to compute. Another important reason for
partitioning the transition relation is that it can reduce the complexity of computing
the preimage (or image for that matter). The characteristic function of the preimage
Prelmage(s,, a,) of a set of states A(s) is:

Prelmage(s,, a,) = 3s! . T(sy,a,,5,) N A(s])

Unfortunately the complexity of this computation is exponential in the number of
quantified variables s!. To reduce the complexity we want to quantify variables as soon

22

as possible in the calculation when the intermediate BDDs still may be small. This can be
accomplished with a conjunctive partitioning because a variable can be quantified early
if no later partitions depend on it:

Prelmage(s,,a,) = 3s, . P, A --- EIS’U2 Py A Elsgl Py A A(S))

7=n v
NADL, it is straight forward to define conjunctive partitioning that works well in practice
[40]. This is not the case for deterministic planning. The reason is that we want to discard

the actions in the search phase and only consider them when extracting a sequential

where s,, Z [Jit] 3’] for 0 < 2 < n. For a non-deterministic planning problem, described in

plan. We therefore need to find a partitioning without action representation that can
be early quantified. Unfortunately this does not seem to be possible without adding
extra information about which action executes. We have developed bit partitions where
an extra Boolean variable per partition provides this information. In a bit partitioning
each partition constrains a set of next state variables disjoint from the set of next state
variables constrained by any other partition. Assume that an NADL domain has m actions
only constraining a subset of the next state variables V' C 5,. The expression of the bit
partitioning for V' is then:

bA (A AIV(v) V Ay AIV(02) V-V Ay AV(v,)) vV =bATV(V)

A; is the subexpression for action ¢ in the partition, and I'V(w) expresses that the state
variables w are unchanged between the current and next state. The extra bit of informa-
tion given by b denotes if an action in the partition executes or not. Bit partitions for
NADL can be defined both for forward and backward search. However, for all determin-
istic planning domains, we have studied, a monolithic transition relation outperforms a
bit partitioned. Figure 15 shows the CPU time for solving a single problem from a range
of domains varying the threshold for recombining partitions. At the smallest threshold
level as many partitions as possible are used. At the largest threshold level only one
partition (a monolithic transition relation) is used. As depicted, the best CPU time for
these domains is obtained with a monolithic transition relation. Apparently the cost of
adding an extra variable to each partition is higher than the savings in the fringe calcu-
lations. This is not always the case. In model checking conjunctive partitions with extra
information have been shown to improve overall performance for some problems.®> The bit
partitioning results are disappointing. But it is important to stress that the complexity
of the fringe calculations at least is linear with the size of the fringe. If the fringe grows
exponential so will the fringe calculations no matter how sophisticated the partitioning

5Communication with Pankajkumar Chauhan.

23

1000

T T
Blocks AIPS-00 —+—
Gripper AIPS-00 ---%---
Elevator AIPS-00 ---*---
Logistics AIPS-00 &
8Puzzle RMJ-01 --m=-

100 | i

CPU Time / Sec
i
i
n
i
i
i
’!
n
[}

4 5
Partition Threshold Level

Figure 15: CPU time as a function of bit partition threshold from a range of
planning problems.

is. As discussed in Section 4.3 an exponential growth of the search fringe seems to be a
particular bottleneck for BDD-based planning based on blind search. When using directed
search methods the efficiency of partitioning may become more important.

4.4.2 Disjunctive Partitioning

Disjunctive partitioning techniques have been developed in model checking for asyn-
chronous circuits [16]. Since actions in a planning domain correspond to units in an
asynchronous circuit this approach can also be applied to deterministic planning with-
out adding any extra information to the partitions. A disjunctive partitioning with n
partitions is n Boolean expressions, P;(s,, a,, s,) where 0 < i < n, such that:

T (sy,a,,8,) = \/ Pi(8y, ay,s,)

=1

Similar to a conjunctive partitioning, a disjunctive partitioning may be less complex to
compute than a monolithic representation, and again, the preimage Prelmage(s,,a,) of

24

a set of states A(s,) can be efficiently computed:

P(sy,a,) = \/ Elsfji Pi(sy,ay,8)) N A(sy — sy, s'vl)
i=1

The representation of the set of states A is a little tricky. The arguments s, — s,, are in
current state variables since they are not changed by F;, but the arguments s;, are in next
state variables because they are changed by P; and need to be quantified. A less efficient
approach quantifying all next state variables has been implemented in MIPS version 1.1. It
is simple to define disjunctive partitions of NADL domains for both forward and backward
search algorithms. However, disjunctive partitioning only improves performance if the
peak fringe size is small compared to the size of the transition relation. We carried
out an experiment for disjunctive partitioning similar to the experiment for conjunctive
partitioning. As depicted in Figure 16, the CPU time was approximately cut in half for
problems where the size of the peak fringe was small relative to the size of the monolithic
transition relation (the peak fringe fraction of the monolithic transition relation is shown
to the right of the domain name in the figure). Compared to conjunctive partitioning,

1000 T

T T
Blocks AIPS-00 [0.13] —+—
Gripper AIPS-00 [1.21] ---x---
Elevator AIPS-00 [3.46] ------
Logistics AIPS-00 [10.66] &
8Puzzle RMJ-01[0.12] --=--

100 | i

CPU Time / Sec

i
om

Partition Threshold Level

Figure 16: CPU time as a function of disjunctive partition threshold for a
range of planning problems.

disjunctive partitioning suffers from introducing the A expression in each sub-computation

25

of the preimage. In conjunctive partitioning, A is only introduced once. For this reason
it is still worthwhile to investigate if more powerful conjunctive partitionings exist for
deterministic planning.

4.5 Abstraction

Abstract and hierarchical search are a classical approaches in deterministic planning [55,
59, 26, 58]. The main idea is to reduce the search complexity by first solving the planning
problem in an abstract search space and then refining each abstract search step to a
sequential plan.

We have been working on defining abstract search spaces for deterministic BDD-based
planning where each transition corresponds to the effect of a set of actions instead of
just a single action. Recall that the set of actions of each partition in a bit partitioning
constrains a disjoint set of next state variables. If we further can prove that the effect of
actions in each partition do not interfere with the preconditions of actions in the other
partitions then actions from different partitions can be executed concurrently. In this case
a partitioned abstract transition relation can be computed from a bit partitioning simply
by removing the partitioning bit from each partition by existential quantification.

Another approach is to reason explicitly about which applicable actions that can be
executed concurrently. Consider the following definition of the abstract transition relation

T'aBs:

Taps(s,s’) = 3. (N Als,a,8)) AF(s,1,5) AC(1)

a€l

F(Svlvsl) = /\ (P/ZP)

p¢Chyy
C(lI) = Yo,wel.(v#w)=-Md(v,w)

I is a set of concurrent actions. A(s,a,s’) expresses the precondition and effect of action
a. F(s,1,s") is a frame expression ensuring variables not constrained by the actions in [
keep their value in the next state. Finally, C'([) is a consistency expression that ensures
that no distinct actions in [are mutual dependent. Two actions are mutual dependent if,
for each action, the effect of the action interferes with the precondition of the other action.
The consistency expression does not guarantee that the set of actions can be executed
concurrently. But for some domains, including the Logistics domain, the condition is
sufficient.

We implemented a planning system called DOP using this abstraction transition re-
lation combined with domain preprocessing based on TIM [30] for generating compact

26

Boolean state encodings. An experiment measuring the CPU time of DOP in 6 Logistics
problems derived from the AIPS-98 Logistics problem 1-1 shows several magnitudes of
speed up compared to ordinary bidirectional search (see Table 1). The abstract search

Abstract Ordinary
Problem | Time / sec | Length | Time / sec | Length
1 5.08 8 1.07 7
2 5.63 12 2.37 10
3 7.48 18 11.32 16
4 10.73 28 145.61 24
5 15.90 31 1908.19 26
6 22.78 34 - -

Table 1: Abstract search compared to ordinary search for 6 Logistics problems
derived from the Logistics problem 1-1 of the AIPS-98 planning competition.

algorithm of DOP first finds an abstract solution based on bidirectional search in the
abstract search space and subsequently refines each abstract step using ordinary bidirec-
tional search. The approach is sketched in Figure 17. We will refer to this as two-level
abstraction. Notice that the plans generated by abstract search are suboptimal. In our

Figure 17: Abstract bidirectional search planning.

experiment they are a few steps longer than the optimal plans generated by the ordinary
approach. The reason for this is that the concurrent action sequences considered by the
abstract search only constitute a subset of all possible action sequences. Thus, this ab-
straction is a relaxation of the problem. Optimal abstraction techniques can be obtained
with iterative squaring [9]. However, this approach often turns out to be too complex in
practice.

No abstraction techniques have been developed for non-deterministic BDD-based plan-
ning and the approaches studied for deterministic planning still need further investigation.

27

Continued work in this direction is promising since: 1) abstraction alters the search fringe
and thus may avoid exponential growth, and 2) it can be combined with directed search
methods.

5 Summary of Proposed Research

As already mentioned, deterministic and non-deterministic search techniques differ be-
cause of dissimilar demands on the search and the solution formats. For this reason we
choose to describe our approach to each problem separately.

5.1 BDD-based Deterministic Planning

Due to the exponential blow up of the fringe in blind search, we focus on directed search
methods possibly combined with one or more additional approaches for reducing the
search fringe size. Since our previous research already has shown that BDD-based planning
using blind search is one of the fastest optimal planning approaches known today, we
further choose to concentrate on fast but possibly suboptimal or even incomplete search
algorithms not severely compromising with the solution quality.

Initially we plan to investigate directed search methods based on simpler heuristics
than used by BDDA*. The heuristic function could for example be the number of BDD
variables different from a possible goal value. This simple heuristic would enable an
efficient partitioning of the search fringe into three sets: states with smaller (5), unchanged
(U) and larger (L) heuristic value. A complete heuristic search would be easy to implement
as a depth first search expanding the partitioned fringe in the order S,U,L. Further, an
incomplete but possibly faster version of this search algorithm could simply skip the L
set in each expansion. The example is easy to extend to bidirectional search. However,
for more elaborate versions this might not be the case. To summarize, we propose to:

1. Investigate simple directed BDD-based search algorithms that can trade
optimality or even completeness for speed and scalability without signif-
icantly reducing the solution quality.

2. Experiment with different partial fringe expansion paradigms.
3. Generalize the approaches to bidirectional search if possible.

An interesting extension of this research is to combine it with abstraction techniques and
partitioning for blind search. We therefore propose to:

28

1. Define two-level abstraction approaches for directed and undirected BDD-
based search based on:

(a) Concurrent actions.

(b) Other abstractions (e.g. similar to ABSTRIPS [55]).

2. Continue current research on disjunctive and conjunctive partitioning
approaches suitable for deterministic domains.

For comparison experiments we plan to develop a fully automatic BDD-based PDDL plan-
ner. In order to do this more research is needed on generating minimal length Boolean
state encodings of PDDL planning domains. We plan to:

1. Continue our research on balanced predicate analysis.

2. Consider approaches for predicate substitution.

5.2 BDD-based Non-Deterministic Planning

Initially we want to concentrate on finding more efficient BDD-based search approaches for
the known strong, cyclic and optimistic BDD-based universal planning algorithms. The
current approach is to perform a blind backward search and incrementally synthesize a
universal plan from the preimages. As described in the previous section one obvious way
to reduce this search is to constrain it only to states reachable from the initial states. It
might also be possible to constrain the search further without violating the properties of
the solution. Such search algorithms could be directed and cutting a subset of alternative
paths to the goal. Another interesting direction is to consider specific algorithms for
domains with particularly sparse or dense non-determinism. In short, we propose to:

1. Investigate approaches for reducing the search space of BDD-based uni-
versal planning algorithms by:

(a) Reachability analysis.
(b) Cutting off valid solutions paths from the produced plan.

2. Study to what extent approaches reducing the number of solutions paths
can be made directed as in deterministic planning.

3. Develop specialized algorithms for domains with sparse or dense non-
determinism.

29

As for deterministic planning, we also want to continue the work on partitioning for
non-deterministic domains. As shown by our previous research, partitioning can speed up
the search by at least a factor of two in some non-deterministic domains. So, partitioning
may be more important for non-deterministic planning than deterministic planning. Also
it may be possible to define abstraction for non-deterministic planning even though the
plan is incrementally build. In summary, we propose to:

1. Continue our work on partitioning techniques for non-deterministic do-
mains

2. Investigate possible abstraction methods for non-deterministic planning
that still allows an efficient plan synthesis.

References

[1] A. Blum and M. L. Furst. Fast planning through planning graph analysis. In Proceed-
ings of the 14th International Joint Conference on Artificial Intelligence (I1JCAI-95),
pages 1636-1642, 1995.

[2] J. Blythe. Planning under Uncertainty in Dynamic Domains. PhD thesis, Computer
Science Department, Carnegie Mellon University, 1998. CMU-CS-98-147.

(3] J. Blythe and M. M. Veloso. Analogical replay for efficient conditional planning.
In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI'97),
pages 668-673. AAAI Press, 1997.

[4] B. Bonet and H. Geffner. Planning as heuristic search: New results. In Proceedings

of the Furopean Conference on Planning (ECP-99), 1999.

[5] B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mechanism
for planning. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAATL°97), pages 714-719. AAAI Press, 1997.

[6] K. Brace, R. Rudell, and R. E. Bryant. Efficient implementation of a BDD package.
In Proceedings of the 27th ACM/IEEE Design Automation Conference, pages 40-45,
1990.

[7] R. E. Bryant. Symbolic manipulation of boolean functions using a graphical repre-

sentation. In DAC, pages 688694, 1985.

30

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

R. E. Bryant. Graph-based algorithms for boolean function manipulation. [FKEFE
Transactions on Computers, 8:677-691, 1986.

J. R. Burch, E. M. Clarke, and K. McMillan. Symbolic model checking: 10%° states
and beyond. In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science, pages 428-439, 1990.

J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with partitioned
transition relations. In International Conference on Very Large Scale Integration,

pages 49-58. North-Holland, 1991.

T. Bylander. The computational complexity of propositional STRIPS planning. Ar-
tificial Intelligence, 69:165—-204, 1994.

A. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso. Planning via model
checking: A decision procedure for AR. In Proceedings of the Jth European Confer-
ence on Planning (FCP’97), Lecture Notes in Artificial Intelligence, pages 130-142.
Springer-Verlag, 1997.

A. Cimatti and M. Roveri. Conformant planning via symbolic model checking. Jour-

nal of Artifictal Intelligence Research, 13:305-338, 2000.

A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based generation of
universal plans in non-deterministic domains. In Proceedings of the 15th National

Conference on Artificial Intelligence (AAAI’98), pages 875-881. AAAI Press, 1998.

A. Cimatti, M. Roveri, and P. Traverso. Strong planning in non-deterministic do-
mains via model checking. In Proceedings of the 4th International Conference on

Artificial Intelligence Planning System (AIPS’98), pages 36-43. AAAI Press, 1998.
E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

O. Coudert, C. Berthet, and J. Madre. Verification of sequential machines using
symbolic execution. Automatic Verification Methods for Finite State Machines, pages
365-373, 1989.

T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson. Planning under time con-
straints in stochastic domains. Artificial Intelligence, 76:35-74, 1995.

M. Drummond. Situated control rules. In Proceedings of the 1’st International Con-
ference on Principles of Knowledge Representation and Reasoning (KR’89), pages
103-113. Morgan Kaufmann, 1989.

31

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

M. Drummond and J. Bresina. Anytime synthetic projection: Maximizing the prob-
ability of goal satisfaction. In Proceedings of the 8th Conference on Artificial Intel-
ligence, pages 138-144. AAAT Press, 1990.

S. Edelkamp. Directed symbolic exploration in Al-planning. In AAATI Spring Sym-
postum, 2001.

S. Edelkamp and M. Helmert. Exhibiting knowledge in planning problems to mini-
mize state encoding length. In Proceedings of the 6th European Conference on Plan-
ning (ECP’99), pages 135-147, 1999.

S. Edelkamp and M. Helmert. On the implementation of MIPS. In Proceedings of
AIPS-2000 Workshop on Decision-Theoretic Planning, pages 18-25, 2000.

S. Edelkamp and F. Reffel. OBDDs in heuristic search. In KI, pages 81-92, 1998.

S. Edelkamp and F. Reffel. Deterministic state space planning with BDDs. In
Proceedings of the 5th European Conference on Planning (FCP-99), pages 381-382,
1999.

K. Erol, J. Hendler, and D. S. Nau. HTN planning: Complexity and expressivity.
In Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94),
pages 1123-1128, 1994.

O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, and M. Williamson. An approach
for planning with incomplete information. In Proceedings of the 3’rd International
Conference on Principles of Knowledge Representation and Reasoning, 1992.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

M. P. Fourman. Propositional planning. In AIPS-2000 Workshop on Model-Theoretic
Approaches to Planning, pages 1017, 2000.

M. Fox and D. Long. The automatic inference of state invariants in TIM. Journal

of Artificial Intelligence Research, 9:367-421, 1998.

M. Fox and D. Long. Hybrid stan: Identifying and managing combinatorial sub-
problems in planning. In UK Planning and Scheduling SIG Workshop, 2000.

32

32]

33]

[34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

[42]

E. Gat. Integrating planning and reacting in a heterogeneous asynchronous archi-
tecture for controlling real-world mobile robots. In Proceedings of the 10th National

Conference on Artificial Intelligence (AAAI’92), pages 809-815. AAAI Press, 1992.

M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings
of the 6th National Conference on Artificial Intelligence (AAAI’87), pages 677-682.
Morgan Kaufmann, 1987.

A. Gerevini and L. Schubert. Inferring state constraints for domain-independent
planning. In Proceedings of the 15th National Conference on Artificial Intelligence
(AAAT’98), pages 905-912, 1998.

K. Z. Haigh and M. M. Veloso. Planning, execution and learning in a robotic agent.
In Proceedings of the 4th International Conference on Artificial Intelligence Planning
Systems (AIPS’98), pages 120-127. AAAI Press, 1998.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for heuristic determination
of minimum path cost. IEEE Transactions on SSC, 100(4), 1968.

J. Hoffman and B. Nebel. The FF planning system: Fast plan generation through
heuristic search. Submitted, Journal of Artificial Intelligence Research, 2001.

S. Holldouble and H.-P. Stor. Solving the entailment problem in the fluent calcu-
lus using binary decision diagrams. In AIPS-2000 Workshop on Model-Theoretic
Approaches to Planning, pages 32-39, 2000.

R. M. Jensen, M. M. Veloso, and M. Bowling. Optimistic and strong cyclic adversarial
planning. 2001. To be submitted to ECP’01.

R.M. Jensen and M. M. Veloso. OBDD-based universal planning for synchronized
agents in non-deterministic domains. Journal of Artificial Intelligence Research,

13:189-226, 2000.

F. Kabanza, M. Barbeau, and R. St-Denis. Planning control rules for reactive agents.

Artificial Intelligence, 95:67-113, 1997.

H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic and
stochastic search. In Proceedings of the 13th National Conference on Artificial Intel-
ligence (AAAI’96), volume 2, pages 1194-1201. AAAI Press, 1996.

33

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In Proceed-
ings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99),
volume 1, pages 318-325. Morgan Kaufmann, 1999.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning graphs
to an ADL subset. In Proceedings of the 4th Furopean Conference on Planning
(ECP’97), Lecture Notes in Artificial Intelligence, pages 273-285. Springer-Verlag,
1997.

S. Koenig and R. G. Simmons. Real-time search in non-deterministic domains.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI-95), pages 1660-1667. Morgan Kaufmann, 1995.

J. Lind-Nielsen. BuDDy - A Binary Decision Diagram Package. Technical Report IT-
TR: 1999-028, Institute of Information Technology, Technical University of Denmark,
1999. http://cs.it.dtu.dk/buddy.

D. Long and M. Fox. Type analysis of planning domain descriptions. In Proceedings
of 17th Workshop of UK Planning and Scheduling SIG, 1998.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. PDDL - the planning domain definition language. Technical report,
Yale Center fro Computational Vision and Control, 1998.

K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

C. Meinel and T. Theobald. Algorithms and Data Structures in VLSI Design.
Springer, 1998.

J.S. Penberthy and D. S. Weld. UCPOP: A sound, complete, partial order planner for
ADL. In Proceedings of the 3’rd International Conference on Principles of Knowledge
Representation and Reasoning, pages 103-114. Morgan Kaufmann, 1992.

M. Peot and D. Smith. Conditional nonlinear planning. In Proceedings of the 1’st In-
ternational Conference on Artificial Intelligence Planning Systems (AIPS°92), pages
189-197. Morgan Kaufmann, 1992.

R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and C. Pixley. Efficient BDD
algorithms for FSM synthesis and verification. In IEEE/ACM Proceedings of the
International Workshop on Logic Synthesis, 1995.

34

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In
Proceedings of the International Conference on Computer-Aided Design, pages 139—
144, 1993.

E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence,

5(2):115-135, 1974.

M. J. Schoppers. Universal plans for reactive robots in unpredictable environments.
In Proceedings of the 10th International Joint Conference on Artificial Intelligence
(IJCAI-87), pages 1039-1046. Morgan Kaufmann, 1987.

R. S. Sutton and A. G. Barto. Reinforcement Learning: an Introduction. MIT Press,
1998.

M. Veloso, J. Carbonell, A. Pérez, D. Borrajo, E. Fink, and J. Blythe. Integrating
planning and learning: The PRODIGY architecture. Journal of Experimental and
Theoretical Artificial Intelligence, 7(1):81-120, 1995.

D. Wilkins. Practical Planning: FEztending the Classical AI Planning Paradigm.
Morgan Kaufman, 1988.

D. E. Wilkins, K. L. Myers, J. D. Lowrance, and L. P. Wesley. Planning and reacting
in uncertain and dynamic environments. Journal of Ezperimental and Theoretical

Artificial Intelligence, 6:197-227, 1994.

N. XuanLong and 5. Kambhampati. Extracting effective and admissible state space
heuristics from the planning graph. In Proceedings of the 17th National Conference
on Artificial Intelligence (AAAI’00), pages 798-805, 2000.

B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Coudert, G. Janssen, R. K.
Ranjan, and F. Somenzi. A performance study of BDD-based model checking. In
Formal Methods in Computer-Aided Design FMCAD’98, pages 255289, 1998.

35

