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Minimizing Lid Overstows in Master Stowage Plans for Container
Vessels isNP-Complete

Mai Lise Ajspur, Rune Møller Jensen, and Nicolas Guilbert

Abstract

Container vessel stowage is a particularly hard combinatorial problem within the shipping industry. The currently
most successful approaches decompose the problem hierarchicallyand first generate a master plan that handle high-
level constraints and objectives such as balance and stress moments, maximization of crane utility, and minimization
of crane lifts. Extra crane lifts are mainly caused by containers that overstow or block each other. In particular, it is
essential that no containers in a master plan stored under and over a hatch-lid cover overstow each other. In this report
we show that it is anNP-complete problem to generate master plans that minimize the number of these lid overstows.
Since any efficient approach to container vessel stowage most likely must include a master plan, the implication of
this result is that future research must focus and developing good heuristics for generating master plans or decompose
the generation of master plans into further levels of abstraction.

1 Introduction

Fast, reliable, and inexpensive containerized shipping has enabled the distributed lean supply chains that drive the
global economy [10]. To sustain the current economic growth, it is important to achieve better understanding of the
combinatorial structure of container shipping operations. A particularly challenging problem is to generatestowage
plans for liner vessels. A stowage plan is generated at each port ofcall and assigns containers to slots on the vessel.
To anticipate future demands, containers to load in downstream ports are often taken into account. “Good” stowage
plans are hard to generate since vessels may carry more than 12.000 containers that cannot be stacked freely due to
differences in height, length, weight, dangerous-goods restrictions, and power requirements in case of refrigerated
containers. The main combinatorial problem, though, is to arrange containers such that the number of crane lifts is
minimized. A stowage plan may induce extra crane lifts if containersoverstow each other. A containera overstows
another containerb in a stack ifa is placed aboveb but a is destined for a later port thanb. In this case,a must be
restowed orshifted in order to unloadb.

Minimizing shifts for a set of containers where each container is loaded and discharged in a specific port has
been shown to beNP-complete when the containers are to be placed in slots of more than three uncapacitated stacks
[3]. The result is more than theoretical. To our knowledge, all of the proposed “flat” optimization approaches which
introduce a decision variable for each possible slot assignment or similar have turned out to be intractable in practice
(e.g., [5, 8, 1]). Scalable approaches are either heuristic(e.g., [4, 6, 1]) or decompose the problem hierarchically
(e.g., [11, 9, 2]). The latter category is particularly well-suited for modeling the vessel stowage problem since it has
a natural two-level decomposition used by industry stowagecoordinators. At the first level, coordinators generate a
so-calledmaster plan where containers are clustered according to load and discharge port and placed in bays such
that overstowage is minimized, crane utility is maximized,and high-level requirements such as balance and stress
moments are satisfied. At the second level, coordinators assign containers to specific slots on the vessel to fulfill low-
level stacking rules due to for instance power requirements, dangerous-goods classes, length, height, and lashing. In
practice, the hardest problem is to generate the master plan. Given a good master plan, it is often an under constrained
and trivial problem to assign containers to specific slots.

The question is what the combinatorial complexity of vesselstowage is given this two-level decomposition of the
problem. If we ignore the second level and focus on reducing overstowage in the master plan, a common model of the
problem is to divide the vessel into a number of locations with fixed capacity and assign containers to these locations
without placing them in specific slots (e.g., [11, 9, 2]). It is reasonable to ignore overstowage within the location,
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since we assume it to be solved by the second level. Overstowage between containers placed in two different locations
separated by a hatch-lid, on the other hand, cannot be ignored because as illustrated in Figure 1,all containers in the
location above the hatch must be removed in order to unload orload a single container from the location below the
hatch. We name this kind of overstowslid overstows.

get off at portp

destined for a port afterp
containers onboard,

Container that needs to

Figure 1: The ship is arriving at portp. The containers over deck lid overstows the containers under deck since the
former will have to be moved when unloading (or loading) the latter.

It is easy to reduce capacitated shift minimization to lid overstow minimization. Consider a vessel where each bay
has a single under and over deck location separated by a hatch-lid. If we assume that each location can hold a
single container, lid overstow minimization is equivalentto capacitated shift minimization where the number of stacks
equals the number of bays and the capacity of each stack is equal to 2. Unfortunately, the complexity result for shift
minimization for uncapacitated stacks does not easily generalize to the capacitated case. Even for a stack capacity of
2, the problem is non-trivial and it is open whether it isNP-hard [3].

In this report, we prove that a slightly more elaborate version of the master plan problem isNP-complete. As
above, we consider a model where each bay is divided into an under and over deck location separated by a hatch-
lid. Each location can hold a fixed number of containers and the task is to decide how many containers to load and
discharge from a location in each port. The decision must be made such that location capacities and transportation
demands are satisfied and the number of lid overstows is minimized. In addition, we assume that some of the containers
arepre-placed and cannot be moved from a given location. This requirement models that vessels seldom are empty
when stowage plans are made and that load-lists may include containers with fixed slot assignments. We prove that
this problem isNP-complete by reduction from minimum set cover.

The implication of this result is that we cannot expect tractable algorithms for generating optimal master plans
given the natural model of the problem stated above. It is therefore necessary to either develop efficient heuristics
and approximation algorithms for solving the master planning problem or consider further decomposition of container
vessel stowage problem.

The remainder of this report is organized as follows. In Section 2, we formally define the master plan problem as
the Minimum Lid Overstow Problem (MLO). We then in Section 3 remind the reader about the Minimum Set Cover
Problem (MSC) and introduce a special version of this problem called MSC∗. Section 4 defines a corresponding MLO
instance for each MSC∗ instance and proves MLO to beNP-complete by a reduction from MSC∗. Finally Section 5
draws conclucions and discuss directions for future work.

2 The Minimum Lid Overstow Problem

In this section, we introduce the Minimum Lid Overstow Problem (MLO). Described informally, the MLO is con-
cerned with a container vessel that sails between a number ofports, picking up cargo on the way. These containers
are then placed in various stowage areas on board the ship called locations. For some of the containers it is predeter-
mined in which locations they should be placed, while we havea choice for other containers. When cargo is loaded

2



or unloaded, i.e. when a container is moved by a crane designed for that purpose, it has a cost. The task is to assign
containers to locations such that demand and capacity constraints are satisfied and the number of lid overstows are
minimal. The MLO assumes that there is a single under and overdeck location for each bay of the vessel. If there is
cargo under deck that has to be discharged or loaded at a port,while some containers in the corresponding location
over board has to stay on board, the containers over deck lid overstows the containers under deck. The MLO requires
that containers can be placed such that the number of lid overstows is within a given threshold.

Key parameters of the MLO are illustrated in Figure 2. Formally, an instance of the MLO is defined by:

Instance: 〈P, L, LD, αpre, M, k′ 〉.

• P ∈ N is a number of ports. For convenience we letP denote the set of ports, i.e.P = {1, . . . , P}.

• L is the number of location columns, i.e. over and under deck location pairs. We let

L = Lo ⊎ Lu = {lo1, l
o
2, . . . , l

o
L} ⊎ {lu1, l

u
2, . . . , l

u
L}

denote the set of locations, whereLo is the set of locations over deck andLu is the set of locations under deck.

• LD is a load-dischargeP×P matrix of free containers, whereldse ∈ N0 is the number of containers to transport
from start ports to end porte that we have a choice of where to place. It is required that

∀s ≥ e . ldse = 0. (1)

FromLD we can construct the set of free transports,

T free = {(s, e) ∈ P × P | ldse 6= 0}.

• αpre : P × P → N
2L
0 is an assignment of preplaced containers. It tells how many containers (possibly 0) from

start ports ∈ P to end porte ∈ P that are predestined to be placed in each of the2L locations. We therefore
have no choice of where to put those containers.

For anl ∈ L we identify

αpre(s, e)l =

{

αpre(s, e)i if l = loi
αpre(s, e)L+i if l = lui

,

andαpre(t) = αpre(s, e) if t = (s, e). It is obvious thatαpre is given if αpre(s, e)l is given for alls, e ∈ P and
l ∈ L.

As before it is required that

∀s ≥ e . αpre(s, e) = 0. (2)

Fromαpre we can construct the set of preplaced transports similar to the construction ofT free:

T pre = {(s, e) ∈ P × P | αpre(s, e) 6= 0}.

We say that a part of a preplaced transportt = (s, e) ∈ T pre is placed in a locationl ∈ L if αpre(s, e)l 6= 0.

Finally we let
T = T pre ∪ T free

be the set of all transports. We note that a transportt ∈ T can be both inT pre andT free.

• M = (M l)l∈L. For l ∈ L, M l ∈ N is the maximal number of containers that can be stored at the specified
locationl at the same time, i.e.M l is the maximal capacity of locationl.
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Concerning the capacity, the following two conditions are required to be fulfilled:

∀p ∈ P.
∑

(s,e)∈T on
p

(

ldse +
∑

l∈L

αpre(s, e)l

)

≤
∑

l∈L

M l, (3)

whereT on
p = {(s, e) ∈ T | s ≤ p < e}, i.e. T on

p is the set of transports that are on board at departure from port
p. (3) therefore says that there must be room enough for all containers that will be on board the ship at a specific
port.

Secondly

∀p ∈ P, l ∈ L .
∑

(s,e)∈T on
p

αpre(s, e)l ≤ M l, (4)

i.e. for each location there must be room enough for the preplaced transports that will be placed in that location
at a specific port.

• k′ ∈ N0 is a number of allowed lid overstows, see Definition 4 below.

αpre(2, P ) = (0, 3
↑
lo
2

, 0, 0, 0, 0, 0, 0, 0, 0)

M
l

P

has to be placed in locationlo2

ld1,3 = 4

1 2 3 . . .

Lo

Lu

Figure 2: An illustration of the parameters of the MLO problem.

Definition 1 (Assignment) Let B be an MLO instance. An assignment forB is then a functionαfree : P×P → N
2L
0 .

We letαfree(s, e)l denote

αfree(s, e)l =

{

αfree(s, e)i if l = loi
αfree(s, e)L+i if l = lui

,

and letαfree(t) = αfree(s, e) if t = (s, e). As for αpre, αfree is said to place a part oft ∈ T free in l if αfree(t)l 6= 0.
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Clearly not all assignment corresponds to a packing of the containers in the load list. The following gives the charac-
teristics of such an assignment:

Definition 2 (Legal assignment)Let αfree be an assignment for an MLO instanceB. αfree is then a legal assignment
for B if the following is true:

∀(s, e) /∈ T free . αfree(s, e) = 0, (5)

∀(s, e) ∈ T free .
∑

l∈L

αfree(s, e)l = ldse, (6)

and

∀p ∈ P, l ∈ L .
∑

t∈T on
p

(

αpre(t)l + αfree(t)l

)

≤ M l. (7)

(5) ensures that only transports containing containers areplaced, whereas (6) ensures that all containers are placed and
(7) ensures that the containers are placed within the maximal capacity of the ship.

Keeping (5) in mind when defining an assignment for an MLO instance it suffices to explicitly giveαfree(t) for all
t ∈ T free and implicitly assume thatαfree(s, e) = 0 for all (s, e) /∈ T free. We will use this later on.

When a legal assignment is available, we can consider the total assignment of containersα : P × P → N
2L
0 , where

α = αfree + αpre.

Example 3 Consider the MLO instanceB = 〈P, L, LD, αpre, M, k′ 〉, where

• P = 5.

• L = 2, i.e.L = {lo1, l
o
2} ⊎ {lu1, l

u
2}.

• LD =













0 1 0 2 2
0 0 0 2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













. FromLD we see that

T free = {(1, 2), (1, 4), (1, 5), (2, 4)}.

• αpre : P × P → N
2L
0 is given by:

αpre(2, 3) = (0, 0, 1, 0)

αpre(1, 2) = (0, 0, 0, 1)

αpre(3, 5) = (0, 3, 0, 0)

and
∀ (s, e) /∈ {(1, 2), (2, 3), (3, 5)} . αpre(s, e) = 0.

The preplaced transports are the set
T pre = {(1, 2), (2, 3), (3, 5)}.

Note thatT pre ∩ T free = {(1, 2)} is non-empty.

• M l = 10 for all l ∈ L.

• k′ = 10.
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lu1lo1 lu2lo2

5

4

3

2

1

2

2

3

1

1

1

1

1

Figure 3: Each circle represents a location at a port. The arrows represents the transports inT and in which locations
they are placed; the fat arrows are (parts of) the free transports that are placed byαfree, while the dotted arrows are
(parts of) preplaced transports that are placed byαpre. The number next to the arrow explains how many of the
containers in the transport that are placed in the given location. M andk′ are not shown in the figure.

We consider the functionαfree : P × P → N
2L
0 , where the function values onT free is given by

αfree(1, 2) = (0, 1, 0, 0)

αfree(1, 4) = (0, 0, 0, 2)

αfree(1, 5) = (2, 0, 0, 0)

αfree(2, 4) = (1, 0, 1, 0).

αfree is then a legal assignment forB and is visualized in Figure 3. 3

We will now look at the concept of lid overstows.
If some containers are placed in the over deck locationloj at a time when other containers are getting on or off

the corresponding under deck locationluj , then each container on top has to be moved back and forth, andso each
container on top contributes with one lid overstow. The formal definition is given below.

Definition 4 (Lid overstow) Let αfree be a legal assignment for the MLO instanceB = 〈P, L, LD, αpre, M, k′ 〉.
First we define the set of on/off portsO = (Oj)j∈{1,...,L}. This is a set of ports, where a transport is getting on or

off at the under deck locationluj , that is:

Oj =

{

p ∈ P

∣

∣

∣

∣

∣

P
∑

q=1

(

α(q, p)lu
j
+ α(p, q)lu

j

)

> 0

}

.

For each port inOj there is a possibility for lid overstows while there is none at any other ports for location pairj.
For a portp in Oj we therefore have to consider the number of containers that are placed in the over deck locationloj
at portp.

The total number of lid overstows is then

#LOαfree =
L

∑

j=1

∑

(s,e)∈T

α(s, e)lo
j
·
∣

∣Oj ∩ ] s, e [
∣

∣.

By this we can talk about the lid overstows caused by a transport (s, e) ∈ T as

#LOαfree(s, e) =

L
∑

j=1

α(s, e)lo
j
·
∣

∣Oj ∩ ] s, e [
∣

∣, (8)
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and obviously
#LOαfree =

∑

(s,e)∈T

#LOαfree(s, e).

Example 5 Consider the MLO instance described in Example 3. As seen from the definition of lid overstows, when
counting the number of lid overstows for an assignmentαfree, we are only interested in the ports where there is a load-
or discharge to or from an under deck location, i.e.Oj .

Counting the number of lid overstows is now very simple: First we fill the circles corresponding to ports inOj .
Then we just have to take each transport placed in an over decklocation and count the number of filled circles in the
corresponding under deck location between (excluding) theload port and the discharge port of the transport. This is
then multiplied with the number of containers in the transport that are placed in the considered location and finally we
add all those numbers and get the number of lid overstows.

l1

5

4

3

2

1

l2

3

1

21

Figure 4: For each pair of locations (loj andluj ) the figure shows a column. The parts of transports that are placed in
the over deck locationloj is shown in columnj while the ports ofOj are filled in columnj (compare with Figure 3).

For this particular example (for reference see Figure 4) we have that the number of lid overstows is

#LOαfree =
∑

(s,e)∈T

L
∑

j=1

α(s, e)lo
j
·
∣

∣Oj ∩ ] s, e [
∣

∣

= α(1, 5)lo
1
·
∣

∣{2, 3, 4}
∣

∣ + α(2, 4)lo
1
·
∣

∣{3}
∣

∣ + α(1, 2)lo
2
· ∅ + α(3, 5)lo

2
·
∣

∣{4}
∣

∣

= 2 · 3 + 1 · 1 + 1 · 0 + 3 · 1 = 10. 3

We can now define the Minimum Lid Overstow Problem:

Definition 6 (Minimum Lid Overstow Problem) The Minimum Lid Overstow Problem is given by the following:

Instance: 〈P, L, LD, αpre, M, k′ 〉.
Question: Does there exist an assignmentαfree that causesk′ or less lid overstows, i.e. where#LOαfree ≤ k′?

3 Minimum Set Cover

In the following theNP-completeness of the MLO-problem will be proven. For this weneed another knownNP-
complete problem that can be reduced to MLO. A version of the Minimum Set Cover Problem (MSC) will be used for
this purpose.

Definition 7 (Minimum Set Cover Problem) The Minimum Set Cover Problem is given as follows:

Instance: 〈 S, C, k 〉.
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• S is a finite set,

• C ⊆ 2S is a set of subsets ofS, i.e. C′ ∈ C ⇒ C′ ⊆ S, and

• k ∈ N is a number withk ≤ |C|.

Question: DoesC contain a cover forS of size less or equal tok?

I.e. we consider the existence of a setK ⊆ C, such that

|K| ≤ k and ∀s ∈ S . ∃C′ ∈ K . s ∈ C′.

Example 8 Let S = {s1, s2, s3, s4, s5}, and letC = {C1, C2, C3}, whereC1 = {s1, s2, s3}, C2 = {s2, s5} and
C3 = {s3, s4, s5} (see Figure 5) and letk = 2.

C3

s3

s1
s2

s4

s5

C1 C2

Figure 5:S andC = {C1, C2, C3}

There is no cover of size1, since neitherC1, C2 norC3 contains all elements.C1 andC3 is a cover forS of size2 and
is the only cover of size2.

We can conclude thatS is a ”‘yes”’-instance. 3

This decision problem is known to beNP-complete [7].
We will use a variation of this problem, MSC∗ to show theNP-completeness of MLO. The only difference between

MSC and MSC∗ is that we for MSC∗ require that each instance of the problemdoes have a cover, i.e. thatC in it self
is a cover ofS. Since it can be determined in polynomial time whether thereexists a cover of any size or not, we can
make a polynomial reduction of MSC to MSC∗:

An instances of MSCwith a cover is an MSC∗ instance and is simply mapped into itself, while an instanceof MSC
without a cover is mapped into a generic ”‘no”’-instance of MSC∗, e.g. 〈 S = {s1, s2}, C = {{s1}, {s2}}, k = 1 〉.
From this it follows that MSC∗ is NP-complete as well.

4 Reducing MSC∗ to MLO

The key idea of the reduction from MSC∗ to MLO is to associate each element ofS with a local element transport of
a single container and associate each subset inC with an over deck location with a capacity of one container. We can
now define the preplaced containers such that they occupy allthe space under deck and are loaded and unloaded in
such a way that a local transport ofsi ∈ S only lid overstows a preplaced container in the over deck location associated
with Cj ∈ C if si /∈ Cj . In this way, if local transports are placed such that they donot lid overstow any containers, it
must be the case that the set of subsets inC corresponding to over deck locations holding some containers must cover
S. This cover, however, is not guaranteed to be minimal. To ensure this, we introduce ablocker transport. The blocker
transport goes from the first to the last port. The number of blocker containers equal the number of subsets inC, and
we arrange the preplaced containers such that the blocker transport induces fewest lid overstows if placed in the over
deck locations associated with the subsets inC. For each of these, however, we introduce a new bay, where a blocker
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transport can be placed with a slight overhead in the number of lid overstows. This construction ensures that local
transports try to use as few over deck locations as possible and thus form a minimum set cover. A small example of
the reduction is shown in Figure 8.

In order to make a reduction from MSC∗ to MLO, we introduce a corresponding MLO instance for each MSC∗

instance. For this purpose, we need to order the elements ofS, such that each elementsi of S is uniquely determined
by its indexi. In order to do this we just make a set isomorphism fromS

σ
→ {1, 2, . . . , |S|} and use the notationsi for

the elementσ−1(i). Likewise we assume that any elementCj of C is uniquely determined by its indexj.

Definition 9 (Corresponding MLO) Let A be an MSC∗ instance and define the corresponding MLO instance by
specifyingP , L, LD, αpre, M andk′ as follows:

• P = 6|S| + 2.

• L = 2|C|.

• The non-zero entries ofLD are:
ld1P = |C|

and
ld3i−2,3i+1 = 1 for all i ∈ {1, . . . , |S|}.

We therefore have that
T free =

{

(3i − 2, 3i + 1)
∣

∣ 1 ≤ i ≤ |S|
}

∪
{

(1, P )
}

.

We will distinguish between the free transports and letb = (1, P ) ∈ T free be called the blocker transport and
for all i ∈ {1, . . . , |S|} let ei = (3i − 2, 3i + 1) ∈ T free be called an element transport; we create an element
transport for each elementsi ∈ S and the transportei is therefore associated with the elementsi ∈ S.

• Preplaced containers will only be placed in under deck locations.αpre is defined in terms ofOj , where

Oj =
{

{3i − 1, 3i}
∣

∣

∣
i ∈ {1, . . . , |S|} andsi /∈ Cj

}

∪
{

{3i − 1 + 3|S|, 3i + 3|S|}
∣

∣

∣
i ∈ {1, . . . , |S|} andsi ∈ Cj

}

∪
{1, P}

for j ≤ |C|, and

Oj =
{

{3i − 1, 3i}
∣

∣

∣
i ∈ {1, . . . , |S|}

}

∪
{1, P − 1, P}

for j > |C|.

A visualization ofOj is made in Figure 6.

We then have:

αpre(s, e)l =

{

1 if l = luj , s ∈ Oj \ {P} ande = min{o ∈ Oj | s < o}
0 otherwise

(9)

• We define the maximal capacity simply as

∀l ∈ L . M l = 1.

• k′ = 2|C||S| + k.

9



p = 1

...

...

...

...

1

3i − 1

3i

P

P − 1

3i

3i − 1

1

...

...

3i − 1

...

3i − 2

3i − 1

3i
...

|C| + 1 ≤ j ≤ 2|C|

3i

3i − 2

P − 1

P

if si ∈ Cj

1 ≤ j ≤ |C|

if si /∈ Cj 3i − 2

3i − 2

P − 1 ≤ p ≤ P

1 ≤ p ≤ 3|S|

3|S| + 1 ≤ 1 ≤ 6|S|

Figure 6: The figure shows how the elements ofOj are distributed according to the indexj and the portp. A filled
(black) circle means that the corresponding portp is in Oj for the correspondingj. As the figure suggests, some of
the circles are filled depending on the elements ofCj while others are filled under any circumstances.

It is an easy exercise to show that (1) and (2) are fulfilled andthatT = T free ⊎ T pre, i.e. the set of free transports
and the set of preplaced transports are disjoint (see Lemma 10 and Lemma 11). It should likewise be easy to see that
the ”‘capacity constraints”’, i.e. (3) and (4), are met, since there are at most|C|+ 1 containers from free transports on
board at any time, while there per construction is at most onepreplaced container per under deck location at a time,
see Lemma 10.

Lemma 10 The corresponding MLO is an MLO.

Proof: (1) is obvious since ifldse 6= 0, then either(s, e) = (1, P ) or (s, e) = (3i−2, 3i+1), and in either cases < e.

(2) is just as obvious, since:

αpre(s, e) 6= 0 ⇒ ∃j . αpre(s, e)lu
j

= 1

⇒ ∃j . e ∈ {o ∈ Oj | s < o} ⇒ s < e.

(4) is true per construction since the preplaced transportsare defined as transports between 2 consecutive ports in
the setOj ; if p and l are given and the transport(s, e) ∈ T pre ∩ T on

p is placed (partly) inl, i.e. s ≤ p < e and
αpre(s, e)l 6= 0, then no other preplaced transport(m′, n′) ∈ T pre ∩ T on

p is placed in locationl. Each preplaced
transport only contains one container, so

∑

(s,e)∈T on
p

αpre(s, e)l
∗
=

∑

(s,e)∈T on
p ∩T pre

αpre(s, e)l ≤ αpre(s′, e′)l = 1
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for an(s′, e′) ∈ T pre. ∗ is true sinceαpre(s, e) = 0 for all (s, e) /∈ T pre.

(3) also follows easily. Letp ∈ P be given. If (s, e) ∈ T on
p ∩ T free, thens ≤ p < e and we must have that

(s, e) ∈ {e⌈ p

3
⌉, b}. Hereby we get

∑

(s,e)∈T on
p ∩T free

ldse ≤ ld3⌈ p

3
⌉−2,3⌈ p

3
⌉+1 + ld1P = 1 + |C|.

If (s, e) ∈ T on
p ∩ T pre we have as argued above, that

∑

l∈L

∑

(s,e)∈T on
p ∩T pre

αpre(s, e)l
∗
=

∑

l∈Lu

∑

(s,e)∈T on
p ∩T pre

αpre(s, e)l

≤
∑

l∈Lu

1 = L = 2|C|,

where∗ is true sinceαpre(t)lo
j

= 0 for all t ∈ T and allj. SinceT pre andT free are disjoint we have that if(s, e) ∈ T free,

then(s, e) /∈ T pre and herebyαpre(s, e) = 0. Likewise if (s, e) ∈ T pre, then(s, e) /∈ T free andαfree(s, e) = 0. This
finally gives us:

∑

(s,e)∈T on
p

(

ldse +
∑

l∈L

αpre(s, e)l

)

=
∑

(s,e)∈T on
p ∩T free

ldse +
∑

(s,e)∈T on
p ∩T pre

∑

l∈L

αpre(s, e)l

= 1 + |C| + 2|C| ≤ 4|C|,

i.e. (3) is true. �

Lemma 11 For a corresponding MLO the following is true:

• T free ∩ T pre = ∅.

• TheOj given in the definition of the corresponding MLO equals theOj given in the definition of lid overstows.

Proof: Notice that the first element of a free transport belongs to residue class1 modulo3, while the only elements in
anyOj with this property are1 andP − 1 = 6|S| + 1. From this we gather:

(s, e) ∈ T pre ⇒ ∃j . s ∈ Oj \ {P} ande = min{p ∈ Oj | s < p}

⇒ [s]3 = [1]3 or [s]3 6= [1]3

⇒ (s = 1 and[e]3 = [2]3) or (s = P − 1 andd = P ) or [s]3 6= 1

⇒ (s, e) /∈ T free,

henceT pre ∩ T free = ∅.

Last we show that theOj given in the definition of the corresponding MLO does equal the Oj given in the defi-
nition of lid overstows. To be able to distinguish between the two we will in the following letO′

j denote the set given
in the definition of the corresponding MLO, whileOj denotes the set given in the definition of lid overstow. For a
givenj we then get

p ∈ Oj ⇒ ∃q . α(q, p)lu
j
6= 0 or ∃q . α(p, q)lu

j
6= 0

(9)
⇒ p, q ∈ O′

j ,

11



i.e. Oj ⊆ O′
j . On the other hand,

p ∈ O′
j ⇒







p 6= P and∃q ∈ O′
j . αpre(p, q)lu

j
= 1

or
p = P and∃q ∈ O′

j . αpre(q, p)lu
j

= 1

⇒
P

∑

q′=1

(

α(q′, p)lu
j
+ α(p, q′)lu

j

)

> 0

⇒ p ∈ Oj ,

i.e. O′
j ⊆ Oj . That is,Oj = O′

j . �

Example 12 LetS = {s1, s2, s3, s4, s5}, and letC = {C1, C2, C3} andk = 2, whereC1 = {s1, s2, s3}, C2 = {s2, s5}
andC3 = {s3, s4, s5} as in Example 8.

The corresponding MLO is visualized in Figure 7.
Since all preplaced transports are placed in under deck locations, the figure only shows those locations to simplify the
drawing. As in Figure 4 a circle that corresponds to a location luj and a portp is filled (black) ifp ∈ Oj .

The free transports(s, e) ∈ T free are shown as arrows from the level of ports to the level of porte, since we
yet have no assignment to place them. They are labeled with their name followed by the number of containers in
the transport. Only the load- and discharge ports for the preplaced transports are shown, this isO. The preplaced
transports go from a filled circle in a column to the next filledcircle below in the same column all containing one
container.

To make the drawing more clear, the number of the ports are left out, but starts with1 in the top and ends with32
in the bottom.

k′ = 32. The capacity is as mentioned 1 for all locations. 3

In order to show theNP-completeness of MLO, we will show that an MSC∗ instance is a ”‘yes”’ instance if and only
if the corresponding MLO instance is a ”‘yes”’ instance. To do that we introduce the corresponding MLO assignment
for an MSC∗ cover.

Definition 13 (Corresponding assignment)Let A = 〈 S, C, k 〉 be an MSC∗ instance, and letB be the correspond-
ing MLO instance. LetK be a cover forS.
We then define the corresponding assignmentαfree

K : P × P → N
2L
0 for B as follows:

∀i ∈ {1, . . . , |S|} . αfree
K (ei)j =

{

1 if j = min
{

j′ ≤ |C|
∣

∣ si ∈ Cj′ andCj′ ∈ K
}

0 otherwise
, (10)

αfree
K (b)j =







1 if j ≤ |C| andCj /∈ K
1 if |C| + 1 ≤ j ≤ |C| + |K|
0 otherwise

(11)

and

∀(s, e) /∈ T free . αfree
K (s, e) = 0. (12)

The corresponding assignment places as seen an element transportei in an over deck locationloj where the correspond-
ing Cj is in K and contains the associated elementsi. If there are more sets in the cover that contains the elementsi,
then the assignments places the element transport in the location corresponding to the first of those sets.

The blocker transportb is placed with one container in each of the first|C| over deck locations where the corre-
spondingCj ’s arenot in the cover (i.e. that are not already occupied by an elementtransport). The remaining part of
the blocker transport is then placed with one container in other over deck locations (as many as needed, starting with
lo|C|+1 and continuing consecutively).

The following proposition shows thatαfree
K is a legal assignment:

12
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Figure 7: An MSC∗ instance and the corresponding MLO instance.

Proposition 14 Let A be an MSC∗ instance with a coverK, and letB be the corresponding MLO instance.
Then the corresponding assignmentαfree

K is a legal assignment forB.

Proof: We will show thatαfree
K fulfills (5), (6) and (7) since the requirement in Definition 1obviously is fulfilled.

(5) is true by definition.

(6): First we will consider the element transports. Let therefore i be given. By inspecting the definition ofαfree
K

we see that the only element ofαfree
K (ei) that is non-zero isφK(ei)j , wherej = min{j′ ≤ |C| | si ∈ Cj′ andCj′ ∈ K}.

The mentioned set is non-empty sinceK is a cover forS, which means that there exists a set inK, that containssi.
Since the set is finite as well there exists exactly one minimum. This means that exactly one element ofαfree

K is 1 while

13



the others are zero, i.e.
∑

l∈L

αfree
K (ei)l = 1 = ld3i−2,3i+1,

as required.
If we instead consider the blocker transportb, we see that the elements ofαfree

K (b) that equals 1 areαfree
K (b)j ’s with

j ∈
{

j′ ≤ |C|
∣

∣ Cj′ /∈ K
}

∪
{

j′
∣

∣ |C| + 1 ≤ j′ ≤ |C| + |K|
}

,

while the rest of the elements equals zero. However
∣

∣

{

j′ ≤ |C|
∣

∣ Cj′ /∈ K
}
∣

∣ = |C| − |K| and
∣

∣

{

j′
∣

∣ |C| + 1 ≤ j′ ≤ |C| + |K|
}
∣

∣ = |K|,

so
∑

l∈L

αfree
K (b)l = |C| − |K| + |K| = |C| = ld1P ,

again as required.

Finally we will show (7). Let thereforep and l be given. First we will consider the case wherel ∈ Lu. We have
(by inspection) thatαfree

K (t)l = 0 for all t ∈ T , which gives:

∑

t∈T on
p

(

αpre(t)l + αfree
K (t)l

)

=
∑

t∈T on
p

αpre(t)l

∗
≤ M l,

where∗ is true since the corresponding MLO is an MLO and therefore fulfill the capacity criteria (4).
If on the other handl = loj ∈ Lo thenαpre(t)l = 0 for all t ∈ T . If an element transportei is placed inl, i.e.

αfree
K (ei)l = 1, thenCj ∈ K and thenαfree

K (b)l 6= 1. Likewise

αfree
K (b)l = 1 ⇒ Cj /∈ K ⇒ αfree

K (ei)l 6= 1.

Since two element transports are not on board the ship at the same time, we gather that
∑

t∈T on
p

(

αpre(t)l + αfree(t)l

)

=
∑

t∈T on
p

αfree(t)l ≤ 1.

That is, (7) is true in this case too. �

Example 15 Consider the MSC∗ instanceA defined in Example 8 and the corresponding MLO, as presented in
Example 12.
Let the coverK beK = {C1, C3}. Then the corresponding assignmentαfree

K is the function

αfree
K : {1, . . . , 32} × {1, . . . , 32} → N

12
0

where the function values onT free are given by:

αfree
K (e1) = αfree

K (1, 4) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
αfree
K (e2) = αfree

K (4, 7) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
αfree
K (e3) = αfree

K (7, 10) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
αfree
K (e4) = αfree

K (10, 13) = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
αfree
K (e5) = αfree

K (13, 16) = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
αfree
K (b) = αfree

K (1, 32) = (0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0).

αfree
K is visualized in Figure 8. The figure only shows one location/column for each bay. This should cause no confusion

since the preplaced transports are placed in under deck locations only, while the free transports are placed in over deck
locations only. 3
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Figure 8: A corresponding MLO instance with the assignmentαfree
K corresponding to the coverK = {C1, C3}.
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For a corresponding MLO, the following facts are easily deduced from the definition.

Proposition 16 Let A be an MSC∗ instance and letB be the corresponding MLO instance. Letαfree be an arbitrary,
legal assignment forB.
The following is then true:

1. αfree places free transportst ∈ T free in over deck locations only. If part of the blocker transportis placed in an
over deck locationloj then no other transport is placed inloj .

2. Each element transportei is placed in exactly one location. The blocker transportb is placed in exactly|C|
locations with one container in each location.

3. The number of lid overstows caused by the blocker transport b is

#LOαfree(b) = 2|C||S| + xαfree ,

where
xαfree =

∣

∣

{

j > |C|
∣

∣ αfree(b)lo
j
6= 0

}∣

∣.

Therefore any assignment causes at least2|C||S| + xαfree lid overstows.

4. If αfree places the element transportei in an over deck locationloj , then the number of lid overstows caused by
this element transport is

#LOαfree(ei) =

{

0 if 1 ≤ j ≤ |C| andsi ∈ Cj

2 otherwise
.

Due to 3.) and 4.), the locationsloj for j ≤ |C| are referred to as ”‘cheap”’ locations whereas the locationloj for j > |C|
are referred to as ”‘expensive”’ locations. It is thereforeseen thatxαfree is the number of expensive locations thatα
places parts of the blocker transport in.

The above statements follows as mentioned easily from the definition of a corresponding assignment and the
definition of a legal assignment. Understanding how the corresponding MLO is defined, especially theOj ’s (see
Figure 6) should give an intuition of why they are true. The statements are nevertheless proved below.

Proof:
1.): The statement follows from the fact that the set of preplaced containers has been constructed to fill up the capacity
of the under deck locations:

Take an arbitraryi ∈ {1, . . . , |S|} and letluj ∈ Lu be an arbitrairy under deck location. Lets′ = max{p ∈
Oj | p ≤ 3i}. s′ exists since1 ∈ { p ∈ Oj | p ≤ 3i}. Sincep < P there exists ane′, such that(s′, e′) ∈ T pre and
(s′, e′) ∈ T on

3i .
Using equation (7) withl = luj andp = 3i we get that

1 = M luj ≥
∑

t∈T on
3i

(

αfree(t)lu
j
+ αpre(t)lu

j

)

≥ αpre(m′, n′)lu
j
+ αfree(ei)lu

j
+ αfree(b)lu

j

= 1 + αfree(ei)lu
j
+ αfree(b)lu

j
,

i.e. αfree(ei)lu
j
+ αfree(b)lu

j
= 0. Hence the free transportsb, e1, . . . , e|S| are not placed in an under deck location.

Next we will show that ifαfree(b)l 6= 0 thenαfree(ei)l = 0 for all i. Let thereforel ∈ L be given and take an
i ∈ {1, . . . , |S|}. Assume thatαfree(b)l 6= 0. Using equation (7) withp = 3i we get that

1 = M l ≥
∑

t∈T on
3i

(

αfree(t)l +
∑

l∈L

αpre(t)l

)

≥ αfree(ei) + αfree(b) ≥ 1 + αfree(ei)l,
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i.e. αfree(ei)l = 0.

2.): Let ei = (3i − 2, 3i + 1) be an element transport. Per definitionld3i−2,3i+1 = 1, so sinceαfree is a legal
assignment,

∑

l∈L

αfree(ei)l
(6)
= 1.

Since all addends in the sum are non-negative, we must have that there is only one positive addend and that it equals
1, i.e. there exists exactly onel ∈ L such thatαfree(ei)l = 1 while the rest is zero.

Since we have that

1 = M l ≥
∑

t∈T on
2

(

αfree(t)l +
∑

l∈L

αpre(t)l

)

≥ αfree(b)l,

αfree(b)l ≤ 1 for all l. Since

∑

l∈L

αfree(b)l
(6)
= ld1P = |C|,

we therefore must have thatb is placed in exacly|C| locations with one container in each location.

3.): Assume thatαfree placesb in loj ∈ Lo, i.e. αfree(b)lo
j

= 1. Assume furthermore thatloj is an expensive loca-
tion, i.e.j > |C|. Then

Oj ∩ ] 1, P [ =
{

{3i − 1, 3i} | i ∈ {1, . . . , |S|}
}

∪ {P − 1},

and
∣

∣Oj ∩ ] 1, P [
∣

∣ = 2|S| + 1.
If j ≤ |C| we likewise get:

Oj ∩ ] 1, P [ =
{

{3i − 1, 3i}
∣

∣ i ∈ {1, . . . , |S|} andsi /∈ Cj

}

∪
{

{3i − 1 + 3|S|, 3i + 3|S|}
∣

∣ i ∈ {1, . . . , |S|} andsi ∈ Cj

}

.

The size ofOj ∩ ] 1, P [ is therefore
∣

∣Oj ∩ ] 1, P [
∣

∣ = 2|S \ Cj | + 2|Cj | = 2|S|.

Since the blocker transport according to 2). will be placed in exactly|C| locations out of whichxαfree are expensive
locations, we have that

#LOαfree(b) =

L
∑

j=1

∣

∣Oj ∩ ] 1, P [
∣

∣ · αfree(b)lo
j

= xαfree(2|S| + 1) + (|C| − xαfree) · 2|S|

= 2|C||S| + xαfree .

4.): Let i ∈ {1, . . . , |S|} be given. ThenOj ∩ ] 3i − 2, 3i + 1 [⊆ {3i − 1, 3i}.
Assume first thatei is placed byαfree in loj ∈ Lo with j ≤ |C| (ei is placed in exactly one location according to 2.)

and this is an over deck location according to 1). ).
According to the definition ofOj we have that ifsi ∈ Cj then

Oj ∩ ] 3i − 2, 3i + 1 [= ∅
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i.e. ei causes zero lid overstows.
If j ≤ |C| andsi /∈ Cj we get that

Oj ∩ ] 3i − 2, 3i + 1 [= {3i − 1, 3i},

i.e. ei causes2 lid overstows. Likewise ifsi is placed in inloj with j > |C| we have that

Oj ∩ ] 3i − 2, 3i + 1 [= {3i − 1, 3i},

i.e. ei causes 2 lid overstows if it is placed in an expensive location.
Henceei causes 2 lid overstows ifei is not placed in a locationloj with j ≤ |C| andsi ∈ Cj . �

We can now show the correspondence between the two decision problems, i.e. that an MSC∗ instance is a ”‘yes”’-
instance if and only if the corresponding MLO is a ”‘yes”’-instance. This is done in the following two propositions.

Proposition 17 Let A = 〈 S, C, k 〉 be an MSC∗ instance and letB be the corresponding MLO instance.
Assume there exists a coverK for S with |K| ≤ k. Then there exists a legal assignmentαfree for B with #LOαfree ≤ k′.

Proof: We will show that the assignmentαfree
K corresponding to the provided cover has the required property.

Let ei ∈ T be an arbitrary element transport. According to the definition ofαfree
K (Definition 13),ei is placed in a

locationloj wherej ≤ |C|, si ∈ Cj andCj ∈ K. According to Proposition 16(4),ei does not contribute with any lid
overstows. Sincei is arbitrairy, this is true for all local transports.

We have by definition ofαfree
K that the number of expensive locations in which the blocker transport is placed is

xαfree = |K|. According to Proposition 16(3), the lid overstows caused by the blocker transport is

#LOαfree
K

(b) = 2|C||S| + xαfree = 2|C||S| + |K|.

Sinceαpre(t)lo
j

= 0 for all t ∈ T pre we have that#LOαfree
K

(t) = 0 for all t ∈ T pre. The total number of lid overstows
is therefore:

#LOαfree
K

=
∑

t∈T

#LOαfree
K

(t)

= #LOαfree
K

(b) +

|S|
∑

i=1

#LOαfree
K

(ei)

= 2|C||S| + |K| + 0 ≤ 2|C||S| + k
def. ofk′

= k′,

which is what we wanted to show. �

Proposition 18 Let A = 〈 S, C, k 〉 be an MSC∗ instance and letB = 〈P, L,LD, αpre, M, k′, 〉 be the correspond-
ing MLO instance.

Assume there exists a legal assignmentαfree for B with #LOαfree ≤ k′. Then there exists a coverK for A with
|K| ≤ k.

Proof: Let µ be the smallest integer such that there exists a legal assignmentβ for B with #LOβ = 2|C||S| + µ.
Sinceαfree exists and has#LOαfree ≤ k′ = 2|C||S| + k, we must have2|C||S| + µ ≤ 2|C||S| + k, i.e. µ ≤ k, and
according to Proposition 16(3)µ must be larger or equal toxβ , i.exβ ≤ µ.

To a start we will show that any element transportei is placed in a locationloj wherej ≤ |C| and the corresponding
elementsi ∈ Cj .

Assume therefore on the contrary that there exists an element transportei′ that is placed byβ in a locationloj
wherej > |C| or j ≤ |C| andsi′ /∈ Cj . According to 16(4) we must have that#LOβ(ei′) = 2. We want to reach
a contradiction. Since theredoes exist a cover forS (A is an MSC∗ instance) there must be aj′ ≤ |C| such that
si′ ∈ Cj′ .
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We must have thatβ places a part of the blocker transport in the corresponding over deck location,loj′ , because
otherwiseei′ could be moved to the locationloj′ where it would cause no lid overstows. I.e. we can consider the
following assignmentβ′ : P × P → N

2L
0 defined onT free as follows:

∀t 6= ei′ . β′(t) = β(t)

β′(ei′) = (0, . . . , 0, 1
↑
j′

, 0, . . . , 0)

It is easy to see, thatβ′ is a legal assignment and that#LOβ′ = #LOβ − 2. I.e. β′ causes fewer lid overstows than
β, which contradicts the choice ofβ as the assignment causing the fewest lid overstows.

I.e. β places a part of the blocker transport inloj′ . However, we can still find another assignment that causes fewer
lid overstows thanβ: We will move a part of the blocker transport from the location loj′ to a vacant expensive location.
Hereby we only get one extra lid overstow due to the blocker transport while we can save two lid overstow due toei′ ,
since we can move this to the cheap location where part of the blocker transport was moved from.

That is, we consider the assignmentβ′ given onT free by the following:

∀t /∈ {ei′ , b} . β′(t) = β(t),

β′(ei′)l =

{

1 if l = loj′

0 otherwise
,

β′(b)l =







1 if β(b)l = 1 andl 6= loj′

1 if l = lomax{r | β(b)lor
=0}

0 otherwise
.

β′ places local transports different fromei′ in the same locations asβ, while ei′ is placed inloj′ . The blocker transport
is placed whereβ places it, except that the part of the blocker transport thatis placed byβ in the mentionedloj′ is
moved to an expensive location (the last vacant one).

According to 16(3) and (4) we have that

#LOβ′(b) = #LOβ(b) + 1,

#LOβ′(ei′) = #LOβ(ei′) − 2,

#LOβ′(ei) = #LOβ(ei) for all i 6= i′.

Therefore we have thatβ′ causes fewer lid overstows:

#LOβ′ = #LOβ′(b) +

|S|
∑

i=1

#LOβ′(ei)

= #LOβ(b) + 1 +

|S|
∑

i=1

#LOβ(ei) − 2 = #LOβ − 1,

which again contradicts the choice ofβ as the assignment causing the least number of lid overstows.
Ergo we must have that for alli, ei is placed byβ in a locationloj wherej ≤ |C| and the corresponding element

si ∈ Cj . I.e.
K = {Cj ∈ C | ∃i . β(ei)lo

j
= 1}

is a cover ofS. A seen,K is the set of subsets ofC corresponding to the cheap locations where at least one element
transport is placed byβ.

According to 16(2),b is placed in|C| locations out of whichxβ are expensive locations, which means thatb is
placed in|C|−xβ cheap location. Since noei can be placed in a location where part ofb is placed (16(1)), the element
transports are placed in at most|C| − (|C| − xβ) = xβ locations. Hence

|K| ≤ xβ ≤ µ ≤ k,

i.e. K is the needed cover ofS of size at mostk. �
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Now we are finally ready to prove theNP-completeness of MLO:

Proposition 19 Let Φ : MSC∗ → MLO be the function that maps an MSC∗ instance to its corresponding MLO
instance.

We then have thatA ∈ MSC∗ is a ”‘yes”’-instance’ if and only ifΦ(A) ∈ MLO is a ”‘yes”’-instance.

Proof: Follows from Proposition 17 and Proposition 18. �

Theorem 20 MLO is NP-complete.

Proof: Since the length of the parameters of an MLO instance is a polynomial in the length of the parameters of
an MSC∗ instance, the corresponding MLO instance can be calculatedin polynomial time. To show that MLO is
NP-complete we therefore only need to argue, that MLO is inNP, then the result follows from Proposition 19.

However, MLO∈ NP is true since the number of lid overstows for the MLO instancecan be calculated in polyno-
mial time for a given assignment: By definition we have that

#LOαfree =

L
∑

j=1

∑

(s,e)∈T

α(s, e)lo
j
·
∣

∣Oj ∩ ] s, e [
∣

∣.

Both sums are over finite sets whose sizes are polynomial in the size of the MSC∗ instance.αfree(s, e)lo
j

andαpre(s, e)lo
j

can be accessed in polynomial time ifαpre andαfree are implemented e.g. as arrays.
Oj can be found in polynomial time since a portp can be added to the set if

P
∑

q=1

(

α(q, p)lu
j
+ α(p, q)lu

j

)

6= 0.

Again the sum is overP whose size is polynomial in the length of the MSC∗ instance, and the addends of the sum can
be accessed in polynomial time. The elements ofOj that are in the open interval froms to e can further be found in
linear time. Thus the number of lid overstows can be calculated in polynomial time and MLO isNP-complete. �

5 Conclusion

The currently most successful approaches to container vessel stowage decompose the problem hierarchically and first
generates a master plan that distribute containers to abstract storage areas of the vessel called locations. Overstowage
between containers within locations can normally be ignored, but overstowage of containers between locations sepa-
rated by a hatch-lid must be taken into account. In this report, we have shown that it is anNP-complete problem to
generate master plans which minimize the number of these lidoverstows.

Since master plans most likely will be central to any successful approach to container vessel stowage, this result
show that future research should focus on finding efficient heuristics for generating master plans or decompose the
problem further.
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