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Minimizing Lid Overstows in Master Stowage Plans for Congaiin
Vessels igVP-Complete

Mai Lise Ajspur, Rune Mgller Jensen, and Nicolas Guilbert

Abstract

Container vessel stowage is a particularly hard combinatorial problenmwtita shipping industry. The currently
most successful approaches decompose the problem hierarchicdlfirst generate a master plan that handle high-
level constraints and objectives such as balance and stress momaxitsjzation of crane utility, and minimization
of crane lifts. Extra crane lifts are mainly caused by containers thastoxeror block each other. In particular, it is
essential that no containers in a master plan stored under and ovehditiaiover overstow each other. In this report
we show that it is amWP-complete problem to generate master plans that minimize the number efitheserstows.
Since any efficient approach to container vessel stowage most likedyimzlude a master plan, the implication of
this result is that future research must focus and developing goatstiesifor generating master plans or decompose
the generation of master plans into further levels of abstraction.

1 Introduction

Fast, reliable, and inexpensive containerized shippirgdrabled the distributed lean supply chains that drive the
global economy [10]. To sustain the current economic grovttis important to achieve better understanding of the
combinatorial structure of container shipping operatioAgarticularly challenging problem is to generatewage
plans for liner vessels. A stowage plan is generated at each palbfind assigns containers to slots on the vessel.
To anticipate future demands, containers to load in dowastrports are often taken into account. “Good” stowage
plans are hard to generate since vessels may carry more thad0lcontainers that cannot be stacked freely due to
differences in height, length, weight, dangerous-googdgiations, and power requirements in case of refrigerated
containers. The main combinatorial problem, though, isrtargge containers such that the number of crane lifts is
minimized. A stowage plan may induce extra crane lifts iftedmersoverstow each other. A container overstows
another containeb in a stack ifa is placed abové but « is destined for a later port than In this caseq must be
restowed oshifted in order to unload.

Minimizing shifts for a set of containers where each corgaiis loaded and discharged in a specific port has
been shown to b&/P-complete when the containers are to be placed in slots oé thhan three uncapacitated stacks
[3]. The result is more than theoretical. To our knowleddkofthe proposed “flat” optimization approaches which
introduce a decision variable for each possible slot assém or similar have turned out to be intractable in practice
(e.g., [5, 8, 1]). Scalable approaches are either heufst., [4, 6, 1]) or decompose the problem hierarchically
(e.g., [11, 9, 2]). The latter category is particularly wellited for modeling the vessel stowage problem since it has
a natural two-level decomposition used by industry stowaadinators. At the first level, coordinators generate a
so-calledmaster plan where containers are clustered according to load and digeh@ort and placed in bays such
that overstowage is minimized, crane utility is maximizadd high-level requirements such as balance and stress
moments are satisfied. At the second level, coordinatorgrasentainers to specific slots on the vessel to fulfill low-
level stacking rules due to for instance power requirematgagerous-goods classes, length, height, and lashing. In
practice, the hardest problem is to generate the master @iaan a good master plan, it is often an under constrained
and trivial problem to assign containers to specific slots.

The question is what the combinatorial complexity of vesselvage is given this two-level decomposition of the
problem. If we ignore the second level and focus on reducirgstowage in the master plan, a common model of the
problem is to divide the vessel into a number of locationsiiiked capacity and assign containers to these locations
without placing them in specific slots (e.g., [11, 9, 2]). dtreasonable to ignore overstowage within the location,



since we assume it to be solved by the second level. Overgohetween containers placed in two different locations
separated by a hatch-lid, on the other hand, cannot be igimreause as illustrated in Figuredll, containers in the
location above the hatch must be removed in order to unloddaar a single container from the location below the
hatch. We name this kind of overstold overstows.

containers onboard,
destined for a port after
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Container that needs to
get off at portp

Figure 1: The ship is arriving at popt The containers over deck lid overstows the containers udelek since the
former will have to be moved when unloading (or loading) thigdr.

It is easy to reduce capacitated shift minimization to ligistow minimization. Consider a vessel where each bay
has a single under and over deck location separated by a-lditchf we assume that each location can hold a
single container, lid overstow minimization is equivalemtapacitated shift minimization where the number of stack
equals the number of bays and the capacity of each stack & &R. Unfortunately, the complexity result for shift
minimization for uncapacitated stacks does not easily igdize to the capacitated case. Even for a stack capacity of
2, the problem is non-trivial and it is open whether iNg-hard [3].

In this report, we prove that a slightly more elaborate \@rsf the master plan problem P-complete. As
above, we consider a model where each bay is divided into derwemd over deck location separated by a hatch-
lid. Each location can hold a fixed humber of containers ardalsk is to decide how many containers to load and
discharge from a location in each port. The decision must bdevsuch that location capacities and transportation
demands are satisfied and the number of lid overstows is iaednIn addition, we assume that some of the containers
arepre-placed and cannot be moved from a given location. This requiremesdeis that vessels seldom are empty
when stowage plans are made and that load-lists may inclugkaioers with fixed slot assignments. We prove that
this problem isNP-complete by reduction from minimum set cover.

The implication of this result is that we cannot expect @bt algorithms for generating optimal master plans
given the natural model of the problem stated above. It isefbee necessary to either develop efficient heuristics
and approximation algorithms for solving the master plagmroblem or consider further decomposition of container
vessel stowage problem.

The remainder of this report is organized as follows. In Bec?, we formally define the master plan problem as
the Minimum Lid Overstow Problem (MLO). We then in Sectionednind the reader about the Minimum Set Cover
Problem (MSC) and introduce a special version of this probdalled MSC. Section 4 defines a corresponding MLO
instance for each MSQnstance and proves MLO to éP-complete by a reduction from MSCFinally Section 5
draws conclucions and discuss directions for future work.

2 The Minimum Lid Overstow Problem

In this section, we introduce the Minimum Lid Overstow Peghl (MLO). Described informally, the MLO is con-

cerned with a container vessel that sails between a numheorts, picking up cargo on the way. These containers
are then placed in various stowage areas on board the sk datations. For some of the containers it is predeter-
mined in which locations they should be placed, while we haebhoice for other containers. When cargo is loaded



or unloaded, i.e. when a container is moved by a crane designehat purpose, it has a cost. The task is to assign
containers to locations such that demand and capacity reamist are satisfied and the number of lid overstows are
minimal. The MLO assumes that there is a single under anddrek location for each bay of the vessel. If there is
cargo under deck that has to be discharged or loaded at awddle some containers in the corresponding location
over board has to stay on board, the containers over deckdistows the containers under deck. The MLO requires
that containers can be placed such that the number of licstmxes is within a given threshold.

Key parameters of the MLO are illustrated in Figure 2. Folynaln instance of the MLO is defined by:

Instance (P, L, LD, o, M, k’).

e P € Nis anumber of ports. For convenience wefetlenote the set of ports, i.& = {1,..., P}.

e [ is the number of location columns, i.e. over and under decétlon pairs. We let
L=L0wWLY ={18,03,..., 15 yw{ly,0,...,011}
denote the set of locations, whefé is the set of locations over deck afd is the set of locations under deck.

e LD isaload-discharg® x P matrix of free containers, wheléd,. € N is the number of containers to transport
from start ports to end porte that we have a choice of where to place. It is required that

Vs >e.ldse = 0. (2)
From LD we can construct the set of free transports,

T — {(s,¢) € P x P | ldse #0}.

e af: P x P — N2l is an assignment of preplaced containers. It tells how manyainers (possibly 0) from
start ports € P to end porte € P that are predestined to be placed in each of2hdocations. We therefore
have no choice of where to put those containers.

For anl € £ we identify
aPe(s, e); if 1 =12
pre _ ) '3
[e% (57€)l - { Ckpre(S’e)L+i if | = l;] )

andaP(t) = aP(s,e) if t = (s,e). Itis obvious thatx®® is given if aP*(s, e); is given for alls,e € P and
lel.

As before it is required that

Vs >e.aP(s,e) = 0. @)

FromaP™ we can construct the set of preplaced transports simildreé@onstruction of free:
TP ={(s,e) € P x P |aP(s,e) # 0}.

We say that a part of a preplaced transpott (s, e) € 7P is placed in a locatioh € L if aP™(s,e); # 0.

Finally we let
T =7Peyy Tfree

be the set of all transports. We note that a transpart” can be both ir7 P and7free.

e M = (M), Forl € £, M' € N is the maximal number of containers that can be stored atpeeified
location/ at the same time, i.e\/! is the maximal capacity of locatidn



Concerning the capacity, the following two conditions aquired to be fulfilled:

peP. 3 (lde+ Y 0" (sen) < YoM, @3)

(s,e)eTyn lel lel

whereZ" = {(s,e) € 7 | s < p < e}, i.e. 7" is the set of transports that are on board at departure frain po
p. (3) therefore says that there must be room enough for atbomers that will be on board the ship at a specific
port.

Secondly

VpePleL. Y aP(se) < M, (4)
(s,e)€TSn

i.e. for each location there must be room enough for the pogal transports that will be placed in that location
at a specific port.

e k' € Ny is a number of allowed lid overstows, see Definition 4 below.
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aP®(2, P) = (0,3,0,0,0,0,0,0,0,0)
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3

Figure 2: An illustration of the parameters of the MLO prahle

Definition 1 (Assignment) Let B be an MLO instance. An assignment f1is then a functior™e : P x P — N2L.
We letaf™e(s, e); denote
free H o
free | a™e(s,e); if | =1
[0} (576)1 - { afree(s,e)L_H ifl = l’ILJ 3

and letare(t) = afre(s, e) if t = (s,€). As for aP™e, af'*¢ is said to place a part afc 7™ in [ if aree(¢); # 0.



Clearly not all assignment corresponds to a packing of tm¢adoers in the load list. The following gives the charac-
teristics of such an assignment:

Definition 2 (Legal assignment) Let o be an assignment for an MLO instanBe a¢ is then a legal assignment
for B if the following is true:

V(s,e) ¢ T . af(s,e) =0, (5)
V(s e) € T™. > afe(s,e); = lds, (6)
lel
and
VpePleLlL. > (aPe(t)+ae(t)) < M. (7)
teT

(5) ensures that only transports containing containerplaced, whereas (6) ensures that all containers are placked a
(7) ensures that the containers are placed within the maxapeacity of the ship.

Keeping (5) in mind when defining an assignment for an MLGainse it suffices to explicitly give™¢(t) for all
t € T and implicitly assume that™e(s, e) = 0 for all (s, e) ¢ 7. We will use this later on.

When a legal assignment is available, we can consider thieatgggnment of containers : P x P — N3, where
__ . free pre
a=a"" +a”".

Example 3 Consider the MLO instancB = ( P, L, LD, aP™, M, k'), where
e P=5.
o L=2ie.L={5I3}w{ly 15}

0 2

. From LD we see that
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Tfree — {(1’ 2), (174)’ (1, 5), (274)}
e 0P P x P N3 is given by:

aP®(2,3) =(0,0,1,0)
aP®(1,2) = (0,0,0,1)
aP®(3,5) = (0,3,0,0)
and
V(s,e) € {(1,2),(2,3),(3,5)} . a”(s,e) = 0.

The preplaced transports are the set
7P ={(1,2),(2,3),(3,5)}.

Note that7 P N 7fee = {(1,2)} is non-empty.
e M'=10foralll € L.
e k' =10.



I3

Figure 3: Each circle represents a location at a port. Trenarrepresents the transportsinand in which locations
they are placed; the fat arrows are (parts of) the free tramsphat are placed by, while the dotted arrows are
(parts of) preplaced transports that are placedhB§. The number next to the arrow explains how many of the
containers in the transport that are placed in the givertimeaM and%’ are not shown in the figure.

We consider the function'™e : P x P — N2E, where the function values ¢h™ is given by

afee(1,2) = (0,1,0,0)
afee(1,4) = (0,0,0,2)
afe(1,5) = (2,0,0,0)
af(2,4) = (1,0,1,0).
afree is then a legal assignment fé and is visualized in Figure 3. <&

We will now look at the concept of lid overstows.

If some containers are placed in the over deck locatfoat a time when other containers are getting on or off
the corresponding under deck locatitin then each container on top has to be moved back and forths@edch
container on top contributes with one lid overstow. The fakatefinition is given below.

Definition 4 (Lid overstow) Let o™ be a legal assignment for the MLO instanBe= ( P, L, LD, o, M, k' ).
First we define the set of on/off por@® = (O;);¢q1,.... 13- This is a set of ports, where a transport is getting on or
off at the under deck locatioty, that is:

(’)j:{pEP

i( (a.0)is + a(p, )>o}

q=1

For each port ir0; there is a possibility for lid overstows while there is noreaay other ports for location paji.
For a portp in O; we therefore have to consider the number of containers teatlaced in the over deck locatidh
at portp.

The total number of lid overstows is then

L
#Loaﬁee Z Z )l‘]’ . }(’)jﬁ]s,e[‘.
J=1(s,e)€T
By this we can talk about the lid overstows caused by a tramgpe) € 7 as

L
HLO e (s,€) = Zase ‘(’) N]s,e |, (8)
j=1



and obviously

#LOgme = > #LOgue(s,€).

(s,e)eT

Example 5 Consider the MLO instance described in Example 3. As seen fre definition of lid overstows, when
counting the number of lid overstows for an assignmefit, we are only interested in the ports where there is a load-
or discharge to or from an under deck location, €%.

Counting the number of lid overstows is now very simple: Five fill the circles corresponding to ports @;.
Then we just have to take each transport placed in an overldeakion and count the number of filled circles in the
corresponding under deck location between (excluding)ahe port and the discharge port of the transport. This is
then multiplied with the number of containers in the transgimat are placed in the considered location and finally we
add all those numbers and get the number of lid overstows.

ll 12

|

Figure 4: For each pair of location& (@andl}) the figure shows a column. The parts of transports that @eeplin
the over deck locatioff is shown in columry while the ports of0; are filled in columnj (compare with Figure 3).

For this particular example (for reference see Figure 4) axetthat the number of lid overstows is

L
#LO e = Z Za(s,e)l; 05N s,e|

(s,e)eT j=1
=a(1,5) - [{2,3,4} + (2, 4) - [{3}| + a(1,2)i3 - 0 + (3, 5)sg - [{4}
=2-3+1-14+1-04+3-1=10. <

We can now define the Minimum Lid Overstow Problem:

Definition 6 (Minimum Lid Overstow Problem) The Minimum Lid Overstow Problem is given by the following:
Instance (P, L, LD, o, M, k').

Question Does there exist an assignmexite that causes’ or less lid overstows, i.e. whetLO e < k'?

3  Minimum Set Cover

In the following the NP-completeness of the MLO-problem will be proven. For this meed another knowhP-

complete problem that can be reduced to MLO. A version of tl@fum Set Cover Problem (MSC) will be used for
this purpose.

Definition 7 (Minimum Set Cover Problem) The Minimum Set Cover Problem is given as follows:

Instance (S, C, k).



e Sis afinite set,
e CC25isasetofsubsets o, i.e.C' €C = C'C S, and
e k € Nisanumber with < |C].

Question DoesC contain a cover fof of size less or equal th?

I.e. we consider the existence of a &t C, such that
IK|<k and VseS.3C"eK.sel'.

Example8 LetS = {51,52783,84755}, and letC = {Cl,CQ,Cg}, WhereC1 = {51,82753}, Cy = {52785} and
Cs = {ss, 54, s5} (see Figure 5) and ldét = 2.

Figure 5:S andC = {Cy,Cs,Cs}

There is no cover of sizg, since neithe€;, C» nor C3 contains all elementg’; andCs is a cover forS of size2 and
is the only cover of size.
We can conclude tha is a

”e ”

yes™-instance. O

This decision problem is known to BéP-complete [7].

We will use a variation of this problem, MS@o show theNP-completeness of MLO. The only difference between
MSC and MSC is that we for MSC require that each instance of the probldoes have a cover, i.e. thatin it self
is a cover ofS. Since it can be determined in polynomial time whether tlexists a cover of any size or not, we can
make a polynomial reduction of MSC to MSC

An instances of MS@iith a cover is an MSCinstance and is simply mapped into itself, while an instaxfddSC
without a cover is mapped into a generic "no”-instance o8, e.g. (S = {s1, 2}, C = {{s1},{s2}}, k = 1).
From this it follows that MSC is NP-complete as well.

4 Reducing MSC to MLO

The key idea of the reduction from MS@ MLO is to associate each elemeni®With alocal element transport of

a single container and associate each subsgwith an over deck location with a capacity of one containee ¢&n

now define the preplaced containers such that they occuphealipace under deck and are loaded and unloaded in
such a way that a local transportgfe S only lid overstows a preplaced container in the over dec&tioo associated
with C; € Cif s; ¢ C;. In this way, if local transports are placed such that theyadiolid overstow any containers, it
must be the case that the set of subsetsdénrresponding to over deck locations holding some contgimist cover

S. This cover, however, is not guaranteed to be minimal. Tolenthis, we introducelsocker transport. The blocker
transport goes from the first to the last port. The number ofker containers equal the number of subsets, iand

we arrange the preplaced containers such that the blockesgort induces fewest lid overstows if placed in the over
deck locations associated with the subsets.ifror each of these, however, we introduce a new bay, whereckédn



transport can be placed with a slight overhead in the numbkd overstows. This construction ensures that local
transports try to use as few over deck locations as possitnlé¢rais form a minimum set cover. A small example of
the reduction is shown in Figure 8.

In order to make a reduction from MSQGo MLO, we introduce a corresponding MLO instance for eachQ¥1S
instance. For this purpose, we need to order the elemerdssfch that each elemestof S is uniquely determined
by its indexi. In order to do this we just make a set isomorphism f®rf: {1,2,...,|S|} and use the notatios) for
the element—! (7). Likewise we assume that any eleménif C is uniquely determined by its indeix

Definition 9 (Corresponding MLO) Let A be an MSC instance and define the corresponding MLO instance by
specifyingP, L, LD, o, M andk’ as follows:

P =6|S| + 2.
L =2|C|.
The non-zero entries df D are:
ldip =|C]

and
ld3i72’3i+1 =1 forallie {1,,|S|}

We therefore have that
Tree = {(3i—2,3i+1) | 1<i< S|} U {(1,P)}.

We will distinguish between the free transports andblet (1, P) € 7 be called the blocker transport and
foralli € {1,...,|S|} lete; = (3i —2,3i + 1) € T be called an element transport; we create an element
transport for each element € S and the transpo#; is therefore associated with the element S.

Preplaced containers will only be placed in under deck lonat o™ is defined in terms of;, where

0, = {{31— 1,3i} ‘ ie{l,...,|S|y ands; ¢ cj}
U
{{3i—1+3|5\,3z’+3|8|} ‘ ie{l,...,|S|} ands; ecj}
U
{1, P}
for j <|C|, and
0, = “&fL&}iGUWWWH}
U
{1,P-1,P}
forj > |C|.
A visualization ofO; is made in Figure 6.
We then have:
1 ifl=1%se€O;\{P}ande =min{o € O, | s < o}
pre _ ]7 J J
(s, €)1 _{ 0 otherwise ©)

We define the maximal capacity simply as

Vie L. .M =1.

K = 2(C||S| + .



1<j<|C] ICl+1<j<2[C]|

p=1 1 @ 1 @

3i—2 () ifsi¢gC | 3i-20)
1<p<s) [si-1(0 0 351 @
3i () 3i @

3i—2 () ifsiec; | 3i—2()

sl +1<1<6ls| Bi-1(0) 3i-1(0)

3¢Q 3 ()

P-10) r-1@
r@ r@

Figure 6: The figure shows how the elementghfare distributed according to the indg»and the porp. A filled
(black) circle means that the corresponding pois in O; for the corresponding. As the figure suggests, some of
the circles are filled depending on the element§,ofvhile others are filled under any circumstances.

It is an easy exercise to show that (1) and (2) are fulfilled thad7 = 7 w 77", i.e. the set of free transports
and the set of preplaced transports are disjoint (see Lenfnaad Lemma 11). It should likewise be easy to see that
the "capacity constraints™, i.e. (3) and (4), are met,cgrthere are at mo§f| + 1 containers from free transports on
board at any time, while there per construction is at mostpeelaced container per under deck location at a time,
see Lemma 10.

Lemma 10 The corresponding MLO is an MLO.

Proof: (1) is obvious since ifds. # 0, then eitheKs, e¢) = (1, P) or (s,e) = (3i—2,3i+1), and in either case < e.

(2) is just as obvious, since:

aP®(s,e) #0 = Jj.aP(s,e)p =1
= Jdj.e€{o€0;|s<o} = s<e
(4) is true per construction since the preplaced transmoesdefined as transports between 2 consecutive ports in
the setQ;; if p andl are given and the transpalit,e) € 7P N 77" is placed (partly) in/, i.e. s < p < e and

aP’(s,e); # 0, theq no other preplaced transpony’,n') € 7PN 7" is placed in locatiori. Each preplaced
transport only contains one container, so

Zapre(&e)l = Zapre(87e)l < apre(sl7€/)l = 1

(s,e)ETEn (s,e)€TNTPre

10



foran(s’,e’) € TP, xis true sincex(s,e) = 0 for all (s,e) ¢ TP,

(3) also follows easily. Lep € P be given. If(s,e) € 7" N Tfree thens < p < e and we must have that
(s,e) € {erzq,b}. Hereby we get

D ldse < ldsppi_asppier +1dip = 1+1C|.
(S’E)G'T;nm'ffree

If (s,e) € 7" N TP we have as argued above, that

g gap'esel—g Eaprese

lEL (s,e)eTorNTPre leLy (s,e)eTenNTrre
< E 1=L=2[C|,
leLv

wherex is true sincex”"*(t),e = Oforall¢ € 7 and allj. Since7"" and7 free are disjoint we have that s, ¢) € 7,

then(s,e) ¢ 7P and herebyr’™(s,e) = 0. Likewise if (s,e) € TP, then(s,e) ¢ 77 anda'™¢(s,e) = 0. This
finally gives us:

> (doe + " a"(s,e):)

(s,e)eTen leL

= Z ldge + Z Z aP(s,e);

(s,e)eTennT e (s,e)€TenNTPelel
=1+1C|+2|C| < 4]C],
i.e. (3)is true. O
Lemma 11 For a corresponding MLO the following is true:
o TfreenPe =),
e TheO; given in the definition of the corresponding MLO equals ¢hegiven in the definition of lid overstows.

Proof: Notice that the first element of a free transport belongssalree clasd modulo3, while the only elements in
any O, with this property ard andP — 1 = 6|S| + 1. From this we gather:
(s,e) e TP = Fj.seO;\{P}ande=min{p € O; | s < p}
[s]s = [1]3 or [s]3 # [1]3
(s=1andle]3 =[2]s)or(s=P—1andd = P)or[s|]s #1
(s;e) ¢ T,

4y

hencezPre N 7 free — (),

Last we show that th€; given in the definition of the corresponding MLO does equal @y given in the defi-
nition of lid overstows. To be able to distinguish betweea tiho we will in the following letO’; denote the set given
in the definition of the corresponding MLO, whi8; denotes the set given in the definition of lid overstow. For a
givenj we then get

p€0; = 3Jq.algpe #00rdq.a(p,q)y #0

8 p,q € 0},

11



i.e. 0; C O}. On the other hand,

p # P and3g € O . aP(p, q)l; =1
pe0;= or
p=Panddg e (’); ) ap'e(q,p)l; =1

:’Z (g, p) + alp, ¢ ) >0

q'=1
=peE Oj,

i.e. O; - Oj. That iS,Oj = O; U

Example 12 LetS = {s1, s2, 3, 54, S5}, and letC = {Cy,Cs, C3} andk = 2, whereC; = {s1, $2, 83}, Co = {2,585}
andCs = {ss, s4, S5} as in Example 8.

The corresponding MLO is visualized in Figure 7.

Since all preplaced transports are placed in under deckitosa the figure only shows those locations to simplify the
drawing. As in Figure 4 a circle that corresponds to a locatjcand a porp is filled (black) ifp € O;.

The free transportgs,e) € 7 are shown as arrows from the level of perto the level of porte, since we
yet have no assignment to place them. They are labeled wéih thme followed by the number of containers in
the transport. Only the load- and discharge ports for thglpoed transports are shown, thisis The preplaced
transports go from a filled circle in a column to the next fillgictle below in the same column all containing one
container.

To make the drawing more clear, the number of the ports atelgf but starts with in the top and ends witB2
in the bottom.

k' = 32. The capacity is as mentioned 1 for all locations. &

In order to show théVP-completeness of MLO, we will show that an MS@stance is a "yes™ instance if and only
if the corresponding MLO instance is a "yes™ instance. Tottiat we introduce the corresponding MLO assignment
for an MSC cover.

Definition 13 (Corresponding assignment)Let A = (S, C, k) be an MSC instance, and leB be the correspond-
ing MLO instance. LefC be a cover fosS.
We then define the corresponding assignmgit : P x P — N2 for B as follows:

) ree 1 if j=min{j' <|C||s; € Cj andCy € K
viedl,....|sl}. af (e); :{ 0 Ot%eI’WISE {] ‘ | } (10)

1 ifj<|ClandC; ¢ K

afe(b); =4 1 ifjc[+1<j < el + K| (11)
0 otherwise
and
V(s,e) ¢ T . af(s,e) = 0. (12)

The corresponding assignment places as seen an elemespdran in an over deck locatiotf where the correspond-
ing C; is in K and contains the associated elemgntf there are more sets in the cover that contains the element
then the assignments places the element transport in tagdocorresponding to the first of those sets.

The blocker transpott is placed with one container in each of the fijiét over deck locations where the corre-
spondingC;’s arenot in the cover (i.e. that are not already occupied by an eletnansport). The remaining part of
the blocker transport is then placed with one container lireobver deck locations (as many as needed, starting with
lie)1 and continuing consecutively).

The following proposition shows that{* is a legal assignment:
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Figure 7: An MSC instance and the corresponding MLO instance.

Proposition 14 Let A be an MSC instance with a covelC, and letB be the corresponding MLO instance.
Then the corresponding assignme¢® is a legal assignment fds.

Proof: We will show thataf fulfills (5), (6) and (7) since the requirement in Definitiomlviously is fulfilled.

(5) is true by definition.

(6): First we will consider the element transports. Let #ierei be given. By inspecting the definition affe
we see that the only element@f*(e;) that is non-zero ig (e;) ;, wherej = min{j’ <|C| | s; € C;s andC;, € K}.

The mentioned set is non-empty sin€es a cover forS, which means that there exists a seKinthat contains; .
Since the set is finite as well there exists exactly one minimthis means that exactly one elemennﬁgfe is 1 while
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the others are zero, i.e.

f
E a(ei) =1 =ldsi—23i+1,
les

as required.
If we instead consider the blocker transplarive see that the elementsdffee(b) that equals 1 arer¢(b),’s with

je{i<lellcy g kyu{i Icl+1 < <[c|+IKl},
while the rest of the elements equals zero. However
7' <lcl ¢y ¢ K} =1lcl— K| and |{5' | [c| +1 <4 < [c|+|K|} = |K],

SO
D afE(bh = [¢] — K| + |K| = [¢] = ldip,
lel

again as required.

Finally we will show (7). Let therefore and! be given. First we will consider the case whére £". We have
(by inspection) thatre(¢), = 0 for all t € 7, which gives:

Z (0P (t), Jra;éee(t)l) = Z aP"(t); % M,

tET;" tET;"

wherex is true since the corresponding MLO is an MLO and therefollfthe capacity criteria (4).
If on the other hand = [ € L° thena®™(t), = O forall t € 7. If an element transpow; is placed in/, i.e.
afee(e;); = 1, thenC; € K and themfre(b); # 1. Likewise

afeb), =1 = C¢K = af(e;) #1.

Since two element transports are not on board the ship aathe §me, we gather that

Z (apre(t)l _'_afree(t)l) _ Z Cvfree(t)l <1.

tETpo" te'f;”
That is, (7) is true in this case too. |

Example 15 Consider the MSC instanceA defined in Example 8 and the corresponding MLO, as presented i
Example 12.
Let the covelC be K = {C;,C3}. Then the corresponding assignmejt® is the function

afe {132} x {1,...,32} — Ny?

where the function values dfi"¢ are given by:

afite(er) =af*e(1,4)  =(1,0,0,0,0,0,0,0,0,0,0,0)
offee(es) = al*e(4,7) =(1,0,0,0,0,0,0,0,0,0,0,0)
afft(es) = af(7.10)  =(1,0,0,0,0,0,0,0,0,0,0,0)
af(es) = af(10,13) =(0,0,1,0,0,0,0,0,0,0,0,0)
of=(e5) =af(13,16) =(0,0,1,0,0,0,0,0,0,0,0,0)

offe(b) = af*e(1,32)  =(0,1,0,1,1,0,0,0,0,0,0,0)

aﬁgee is visualized in Figure 8. The figure only shows one locatiohimn for each bay. This should cause no confusion
since the preplaced transports are placed in under dectidasanly, while the free transports are placed in over deck
locations only. O
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For a corresponding MLO, the following facts are easily dastlifrom the definition.

Proposition 16 Let A be an MSC instance and leB be the corresponding MLO instance. L€t be an arbitrary,
legal assignment foB.
The following is then true:

1. ofree places free transportsc 7 in over deck locations only. If part of the blocker transgerplaced in an
over deck locatior#? then no other transport is placedlin

2. Each element transpatt is placed in exactly one location. The blocker transpoit placed in exactlyC|
locations with one container in each location.

3. The number of lid overstows caused by the blocker trariggier
#HLO e (b) = 2|CI|S] + T yiee

where
Tore = [{§ > |C| | a™(b)is # O}].

Therefore any assignment causes at I8E5{S| + =, lid overstows.

4. If ofree places the element transpetin an over deck locatioff, then the number of lid overstows caused by
this element transport is
BLO (i) = { 0 if1<j<|C|lands; €C;

2 otherwise

Due to 3.) and 4.), the locatioifsfor j < |C| are referred to as cheap™ locations whereas the locatjdir j > |C|
are referred to as ™expensive™ locations. It is therefeeen thatr . is the number of expensive locations that
places parts of the blocker transport in.

The above statements follows as mentioned easily from tfiaitilen of a corresponding assignment and the
definition of a legal assignment. Understanding how theesponding MLO is defined, especially tig's (see
Figure 6) should give an intuition of why they are true. Thetetents are nevertheless proved below.

Proof:
1.): The statement follows from the fact that the set of meetl containers has been constructed to fill up the capacity
of the under deck locations:

Take an arbitraryi € {1,...,[S|} and letly € L£" be an arbitrairy under deck location. L&t = max{p €
Oj| p < 3i}. s exists sincel € {p € O;| p < 3i}. Sincep < P there exists ar’, such that(s’, ¢’) € 7°* and
(s'¢) € T3

Using equation (7) witth = I} andp = 3i we get that

1= Ml; > Z (Oéfree(t)l_‘;. + apre(t)l;>

teTgy
A f fi
2 apre(m N )l; +a ree(ei)l; + ree(b)l;
=1+ O(i’ree(ei)l; _|_Oéfree(b)l;’
i.e. af'ee(ei)l; + afree(b)l; = 0. Hence the free transporfise, , . . ., ¢|5 are not placed in an under deck location.

Next we will show that ifafe(b); # 0 thenaf™e(e;); = 0 for all i. Let thereforel € L be given and take an
i€ {1,...,|S|}. Assume that™¢(b); # 0. Using equation (7) witlp = 3i we get that

1= Ml > Z (afree(t)l + Zapre(t)l) > Oéfree(el_) +O[free(b) >1+ CYfree(ei)l,
teTer leL
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i.e. afree(ei)l =0.
2.): Lete; = (3i — 2,3¢ + 1) be an element transport. Per definitibfy;_2 341 = 1, SO sincea™e is a legal

assignment,
Zafree(ei)l (:6) 1.
leL

Since all addends in the sum are non-negative, we must havéhttre is only one positive addend and that it equals
1, i.e. there exists exactly oec £ such that™(e;); = 1 while the rest is zero.

Since we have that

L= M2 Y (a0 Yo" (1)) = a"(b):

teTe leL

afree(b); < 1forall I. Since

S afee(b), Qidip = Ic],
lel

we therefore must have thais placed in exaclyC| locations with one container in each location.

3.): Assume thatf placesb in 15 € L° ie. afre¢(b);. = 1. Assume furthermore thdf is an expensive loca-
tion, i.e.j > |C|. Then
0,Nn]1,P|= {{3i— 1,3i} |i e {1,...,|5|}} U{P -1},

and|0; N] 1, P[|=2|8| + 1.
If j < |C| we likewise get:

0,N]1,P| = {{31’ —1,3i} [i € {1,...,|S|} ands; ¢ cj}
U {{3¢ —1+3[8],3i + 38|} | i € {1,...,|S[} ands; € cj}.
The size of0; N] 1, P [ is therefore
|0; N1, P[| =2[S\ G| +2IC;| = 2|8].

Since the blocker transport according to 2). will be plageéxactly|C| locations out of whiche .. are expensive
locations, we have that

L
#LOqee(b) = Y |0; 0] 1, P[[ - ™ (b)ss
j=1
= Zonee (2|S] + 1) + (|C] — e - 2[S]
= 2(C||S| + T gee.

4.): Leti € {1,...,|S|} be given. TherD; N 3i —2,3i+ 1[C {3¢ — 1, 3¢}.

Assume first that; is placed byn"¢ in 19 € L°with j < |C]| (e; is placed in exactly one location according to 2.)
and this is an over deck location according to 1). ).
According to the definition o0; we have that ifs; € C; then

0;N]3i—2,3i+1[=0
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i.e. e; causes zero lid overstows.
If j <|C|ands; ¢ C; we get that

0;N]3i—2,3i+1[={3i —1,3¢},
i.e. e; cause? lid overstows. Likewise if; is placed in inl;? with 7 > |C| we have that
0;N]3i—2,3i+1[={3i — 1, 3i},

i.e. e; causes 2 lid overstows if it is placed in an expensive logatio
Hencee; causes 2 lid overstows df is not placed in a Iocatiot? with j < |C| ands; € C;. O

”e

We can now show the correspondence between the two decigibtems, i.e. that an MSGinstance is a "'yes™-
instance if and only if the corresponding MLO is a "yes”sitance. This is done in the following two propositions.

Proposition 17 Let A = (S, C, k) be an MSC instance and leB be the corresponding MLO instance.
Assume there exists a covigrfor S with || < k. Then there exists a legal assignmefit® for B with #LO jree < K'.

Proof: We will show that the assignmeaf’* corresponding to the provided cover has the required ptpper
Lete; € T be an arbitrary element transport. According to the detinitf afr (Definition 13),e; is placed in a
location/? wherej < |C|, s; € C; andC; € K. According to Proposition 16(4},; does not contribute with any lid
overstows. Sinceis arbitrairy, this is true for all local transports.
We have by definition of{* that the number of expensive locations in which the blockerdport is placed is
x4 = |K|. According to Proposition 16(3), the lid overstows causgdthe blocker transport is

#LOa;rCee(b) - 2‘0”8‘ + .Tafree = 2|CHS| + ‘IC|

Sincea®"(t);; = 0 forall ¢ € 7P we have thatLO, () = 0 for all t € 77" The total number of lid overstows
is therefore:

#LOyee = > #LO, e (1)
teT
B
= #LO0 g (b) + Y #LO e (e)
=1

=2|C||S| + K|+ 0 < 2|C||S| + k def. of k'

k,
which is what we wanted to show. O

Proposition 18 Let A = (S, C, k) be an MSC instance and leB = ( P, L, LD, oP, M, k') be the correspond-
ing MLO instance.

Assume there exists a legal assignmeff® for B with #LO . < k’. Then there exists a covét for A with
K| <.

Proof: Let i be the smallest integer such that there exists a legal assir for B with #L0sz = 2|C||S| + p.
Sincea'™e exists and hagtLO . < k' = 2|C||S| + k, we must have|C||S| + u < 2|C||S| + &, i.e. u < k, and
according to Proposition 16(3) must be larger or equal teg, i.exg < p.

To a start we will show that any element transpgris placed in a locatioff wherej < |C| and the corresponding
elements; € C,.

Assume therefore on the contrary that there exists an eletramsporte;, that is placed by3 in a location/$
wherej > |C|orj < |C| ands; ¢ C,. According to 16(4) we must have th#tLOg(e;s) = 2. We want to reach
a contradiction. Since thempes exist a cover forS (A is an MSC instance) there must beja < |C| such that
S € Cj/.
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We must have that places a part of the blocker transport in the correspondireg deck location/?,, because
otherwisee;: could be moved to the locatialj, where it would cause no lid overstows. l.e. we can consider th
following assignmeng’ : P x P — N2 defined or7 e as follows:

Wt # e B () = B(t)
3 (er) = (0,...,0, 1,0,...,0)

5!

It is easy to see, that' is a legal assignment and th&t.Og = #LOs — 2. l.e. 3’ causes fewer lid overstows than
3, which contradicts the choice gfas the assignment causing the fewest lid overstows.
l.e. 3 places a part of the blocker transportifn However, we can still find another assignment that causesrfe
lid overstows thars: We will move a part of the blocker transport from the locati to a vacant expensive location.
Hereby we only get one extra lid overstow due to the bloclargport while we can save two lid overstow due 0
since we can move this to the cheap location where part ofltedér transport was moved from.
That is, we consider the assignmetitgiven on7 e by the following:
vt ¢ {e,b} . B'(t) = B(t),
ooy 1 ifl=18
Blew = { 0 otherwise ’
1 if 3(b), = Landl # 13,
Loifl=100 B(b)e =0}
0 otherwise

B(b) =

(3’ places local transports different frogp in the same locations & while e;: is placed in2,. The blocker transport

is placed wherej places it, except that the part of the blocker transport ihataced byg in the mentioned?, is
moved to an expensive location (the last vacant one).

According to 16(3) and (4) we have that

#LOg (b) = #LOp(b) + 1,
#LOg (e;) = #LOg(eyr) — 2,
#LOg (e;) = #LOg(e;) forall i # i’
Therefore we have that’ causes fewer lid overstows:

S|
#LOg = #LOg (b) + Y _ #LOg (e;)
i=1
S|
= #LOs(b) + 1+ Y  #LOg(e;) —2 = #LOs — 1,

i=1

which again contradicts the choice @fas the assignment causing the least number of lid overstows.

Ergo we must have that for all e; is placed by3 in a location/$ where;j < |C| and the corresponding element
S; € Cj. l.e.

K=A{CjeC|3i. pBlei) =1}

is a cover ofS. A seen, is the set of subsets ¢f corresponding to the cheap locations where at least onecalem
transport is placed by.

According to 16(2)} is placed in|C| locations out of whichzs are expensive locations, which means thé
placed in|C| — =3 cheap location. Since g can be placed in a location where parba$ placed (16(1)), the element
transports are placed in at mast — (|C| — z3) = x locations. Hence

IK| <2 <p <k,

i.e. K is the needed cover & of size at mosk. O
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Now we are finally ready to prove théP-completeness of MLO:

Proposition 19 Let ® : MSC* — MLO be the function that maps an MS@nstance to its corresponding MLO
instance.
We then have thatl € MSC* is a "yes™-instance’ if and only if®(A) € M LO is a "yes”-instance.

Proof: Follows from Proposition 17 and Proposition 18. |
Theorem 20 MLO is NP-complete.

Proof: Since the length of the parameters of an MLO instance is anpofyal in the length of the parameters of
an MSC instance, the corresponding MLO instance can be calculat@dlynomial time. To show that MLO is
NP-complete we therefore only need to argue, that MLO i&lF) then the result follows from Proposition 19.

However, MLO€ NP is true since the number of lid overstows for the MLO instacae be calculated in polyno-
mial time for a given assignment: By definition we have that

L
#LO e = Z Z (s, € - |0;N]s,e[].

j=1(s,e)eT

Both sums are over finite sets whose sizes are polynomiatisi#e of the MSCinstance o™ (s, e)is andaP'(s, )

can be accessed in polynomial timedfe andaf™ are implemented e.g. as arrays.
O; can be found in polynomial time since a pprtan be added to the set if

i (a(%p)l; + a(p, q)z;) £ 0.

q=1

Again the sum is oveP whose size is polynomial in the length of the MSi@stance, and the addends of the sum can
be accessed in polynomial time. The element®g¢that are in the open interval fromto e can further be found in
linear time. Thus the number of lid overstows can be caledlat polynomial time and MLO i8&lP-complete. O

5 Conclusion

The currently most successful approaches to containeelstavage decompose the problem hierarchically and first
generates a master plan that distribute containers toaastiorage areas of the vessel called locations. Overgtowa
between containers within locations can normally be igdpbeit overstowage of containers between locations sepa-
rated by a hatch-lid must be taken into account. In this fepae have shown that it is aNP-complete problem to
generate master plans which minimize the number of these/édstows.

Since master plans most likely will be central to any sudcgsgpproach to container vessel stowage, this result
show that future research should focus on finding efficienirisics for generating master plans or decompose the
problem further.
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