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Abstract. Interpreted programming languages, like Python, are amongst
the most popular programming languages. This, combined with high
developer efficiency leads to many web-application backends and web-
services that are written in Python. While it is known that interpreted
languages like Python are way less energy efficient compared to compiled
languages like C++, Rust, etc., little is known about the energy efficiency
of various versions of Python interpreters. In this paper, we study via
a controlled lab experiment the energy consumption of various versions
of the Python interpreter CPython when running a server-side rendered
web-application. Our results indicate that currently the most energy ef-
ficient version is CPython 3.12. Energy consumption of CPython 3.12 can
drop by more than 8% compared to previous versions.

Keywords: Software engineering · Energy consumption · CPython.

1 Introduction

Interpreted languages are amongst the most popular programming languages.
Python is ranked to be the most popular programming language1,2 in the early
2020s. The Python programming language is used in almost all domains of soft-
ware development ranging from small scripts of “glue code”, over scientific com-
puting to development of web-applications.

Big corporations and projects use Python due to its ease of use and under-
standability which allows for short development times3 [21, 25]. For example,
Airbnb created and relies on the Python-based workflow management platform
Apache Airflow,4 Google’s YouTube is powered by Python [27], circa 20% of Face-
book’s infrastructure is written in Python,5 Instagram is a Python application us-
ing the Django web-framework,6 or circa 80% of Spotify’s backend services are
written in Python.7 Since such big projects and in general evermore software is
1 https://www.tiobe.com/tiobe-index/
2 https://spectrum.ieee.org/the-top-programming-languages-2023
3 https://computerhistory.org/profile/guido-van-rossum/
4 https://airflow.apache.org/
5 https://engineering.fb.com/2016/05/27/production-engineering/python-in-production-enginee

ring/
6 https://instagram-engineering.com/web-service-efficiency-at-instagram-with-python-4976d07

8e366
7 https://engineering.atspotify.com/2013/03/how-we-use-python-at-spotify/

https://www.tiobe.com/tiobe-index/
https://spectrum.ieee.org/the-top-programming-languages-2023
https://computerhistory.org/profile/guido-van-rossum/
https://airflow.apache.org/
https://engineering.fb.com/2016/05/27/production-engineering/python-in-production-engineering/
https://engineering.fb.com/2016/05/27/production-engineering/python-in-production-engineering/
https://instagram-engineering.com/web-service-efficiency-at-instagram-with-python-4976d078e366
https://instagram-engineering.com/web-service-efficiency-at-instagram-with-python-4976d078e366
https://engineering.atspotify.com/2013/03/how-we-use-python-at-spotify/
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written in high-level interpreted languages like Python and since we as software
engineers have to contribute to reducing the carbon footprint of our sector [1],
software qualities like sustainability in the sense of energy efficiency become more
important.

Usually, interpreted programming languages are slower than programming
languages that are compiled to native code. Therefore, the authors of CPython
started to focus on improving performance of the interpreter,8 e.g., by intro-
duction of Just-In-Time compilation, removal of the so-called global-interpreter
lock,9 etc. CPython is the open-source reference implementation of the Python10

programming language originally implemented by Guido van Rossum, which is
now maintained and improved by a team of developers.11

Besides being less performant, interpreted programming languages are re-
ported to be of low energy efficiency, see e.g., [2, 6, 19, 20]. But it seems that
energy efficiency is of secondary interest for language designers and maintain-
ers so far. For example, none of the current Python Enhancement Proposals
(PEPs)12 is about energy efficiency.

Additionally, it is unclear how current performance improvements of CPython13

impact energy efficiency. Furthermore, there is little knowledge on how to assess
energy efficiency of various versions of language interpreters like CPython.

In this paper, we investigate the energy consumption of various versions of
CPython. Our research question is: What is the energy consumption of different
versions of the Python interpreter CPython? To answer this question, we design
and conduct a controlled lab experiment. Before executing our experiment, we
assume that newer versions of Python are less energy efficient due to increasing
language features and internal extensions. Our assumption is loosely inspired by
“Wirth’s law” [28] which states that “software manages to outgrow hardware in
size and sluggishnes” [23].

To investigate our research question, we conduct a controlled lab experiment
in which we measure energy consumption of a server running a web-application.
Three clients execute long-running scenarios against the server, where a scenario
is an automated sequence of actions that a potential user could perform, like re-
questing a page, registering a user, etc. The only variable in our experiment is
the version of CPython running the application. The web-application, its depen-
dencies, the operating system (FreeBSD), webserver (Gunicorn), etc. are all fixed
to the same versions.

Contrary to our initial assumption, our results indicate that newer versions
of CPython (versions CPython 3.11, 3.12, and 3.13) are not only more performant,
they are also more energy efficient than previous versions. In particular, CPython
3.12 appears to be currently the most energy efficient CPython interpreter. On

8 https://github.com/markshannon/faster-cpython/blob/master/plan.md
9 https://peps.python.org/pep-0703/

10 https://www.python.org/
11 https://devguide.python.org/core-developers/developer-log/#developers
12 https://peps.python.org/
13 https://www.python.org/downloads/release/python-3110/

https://github.com/markshannon/faster-cpython/blob/master/plan.md
https://peps.python.org/pep-0703/
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https://devguide.python.org/core-developers/developer-log/#developers
https://peps.python.org/
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Fig. 1: Illustration of our experiment design. Highlighted in orange, is the web-
server for which we study energy consumption.

average it consumes 8.41% less energy than the most energy consuming version
3.10. Consequently, software developers or maintainers can make their CPython-
based products more sustainable plainly by updating to CPython 3.12.

Our contributions are:

– We present an experiment design to directly measure energy consumption of
a server in a networked client-server architecture. Our design can serve as a
blueprint for similar sustainability experiments.

– We demonstrate that recent versions of CPython are more energy efficient
than older versions.

– We provide a complete replication kit with automated experiment together
with this paper.14

2 Experiment Design

In this section, we describe how we measure and evaluate the energy consumption
of various versions of CPython in a controlled lab experiment.

Fig. 1 illustrates our experiment setup with one webserver (center in Fig. 1)
and three clients (bottom center in Fig. 1). The three clients and the webserver
are all Raspberry Pis (Model B+ V1.2) that are connected via ethernet to a

14 https://github.com/HelgeCPH/cpython_energy

https://github.com/HelgeCPH/cpython_energy
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Wi-Fi router in a network. The webserver is powered by an Otii Arc Pro.15 This
is a power supply with integrated meter that allows to accurately profile and
analyze voltage, current, power, etc. That is, we collect power draw of the server
directly compared to indirect estimation of energy consumption, e.g., via Intel’s
Running Average Power Limit [7] or similar.

The power supply is connected to a computer which we call controller via
USB (bottom right in Fig. 1). On that computer runs the Otii software suite16

that allows us to collect measurement data about power draw, current, voltage,
etc. Besides used as data collector, the controller orchestrates single runs of the
experiment.

The webserver and clients are provisioned with FreeBSD 13.3. On the web-
server, we install CPython 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13. These are the versions
of CPython for which we measure energy consumption in our experiment. CPython
3.8, 3.9, 3.10, and 3.11 are installed via their respective packages with the pkg
tool.17 These contain pre-compiled distributions of the latest versions of the re-
spective CPython interpreter for the ARM architecture of the Raspberry Pi. Since
no pre-compiled packages exist yet for CPython 3.12 and 3.13, we install these via
pyenv.18

Previous work on assessment of energy consumption of software often relies
on exemplary implementations of certain algorithms, see e.g. [2,6,10,17,19,20,26].
However, we decide that we want to conduct our experiment in an environment
that resembles a more realistic software product, similar to [6, 9]. Therefore,
the server will run a server-side rendered web-application called MiniTwit. It is a
Twitter-like minimal micro-blogging web-application. The MiniTwit application
is originally written in Python 2 by Armin Ronacher. It used to be an example
application for his Python web-framework Flask.19 Python 2 and 3 are incompatible
versions of the programming language. Therefore, we update the original MiniTwit
application to be compatible with Python 3 and contemporary versions of the
Flask framework.

The MiniTwit Flask application is served via the WSGI HTTP server Guni-
corn,20 which is a Python application too. For this experiment, we do not serve
the MiniTwit web-application via a reverse proxy server like nginx21 or the Apache
HTTP Server22 as likely done in a production setup. The main reason is that we
want to prevent caching of responses, so that the effect of the Python interpreters
on energy consumption is better represented.

Consequently, to be operational, the MiniTwit application requires Flask and
Gunicorn to be installed on the server. Both of these are distributed as Python

15 https://www.qoitech.com/otii-arc-pro/
16 https://www.qoitech.com/software/
17 https://man.freebsd.org/cgi/man.cgi?query=pkg&sektion=8&format=html
18 https://github.com/pyenv/pyenv
19 https://github.com/pallets/flask/tree/1592c53a664c82d9badac81fa0104af226cce5a7/examples/mi

nitwit
20 https://gunicorn.org/
21 https://nginx.org/
22 https://httpd.apache.org/

https://www.qoitech.com/otii-arc-pro/
https://www.qoitech.com/software/
https://man.freebsd.org/cgi/man.cgi?query=pkg&sektion=8&format=html
https://github.com/pyenv/pyenv
https://github.com/pallets/flask/tree/1592c53a664c82d9badac81fa0104af226cce5a7/examples/minitwit
https://github.com/pallets/flask/tree/1592c53a664c82d9badac81fa0104af226cce5a7/examples/minitwit
https://gunicorn.org/
https://nginx.org/
https://httpd.apache.org/
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Fig. 2: Illustration of ten experiment runs (left) and a scenario (right).

packages on the Python Packaging Index (PyPI).23 We manually download the
latest versions of these packages, together with their transitive dependencies,
from PyPI. We do that so that we can vendor pinned versions of dependencies
with our experiment setup to facilitate reproduction and replication. Note, a
replication kit is provided online.14 It contains complete descriptions on how to
prepare the experiment computers, provisioner scripts for the server and clients,
etc. To sum up, we make sure that the experiment variable in our experiment is
the precise version of CPython running the web-application.

The technical setup described above, see Fig. 1, provides the environment
for experiment execution. The experiment consists of so-called scenarios. In
a scenario, a client performs a sequence of actions against the MiniTwit web-

23 https://pypi.org/

https://pypi.org/
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application on the server. These are actions like loading the application’s front-
page (which lists latest tweets), registering a new user, sending tweets, following
other users, and requesting a user’s private timeline (which displays only a se-
lection of tweets). Fig. 2b sketches such a scenario as UML sequence diagram.
The exact scenario can be inspected in the replication kit.

Per version of CPython (3.8 to 3.13), we execute ten iterations of the same
scenario in parallel from the three clients, as illustrated in Fig. 2a. That is, each
of the three clients executes ten times the same scenario against the server. We
execute ten iterations of the same scenario per version of CPython to minimize
the effect of potentially running other processes on the multi-tasking operating
system FreeBSD.

Note, before the ten parallel scenarios are executed for a version of CPython,
the controller resets the server’s web-application. That is, the database of users,
their tweets, and their follower structure is reset to a predefined state so that the
MiniTwit application operates in the completely same environment for each ver-
sion of CPython. Once that step is completed, the controller starts the execution
of the scenario on each of the three clients. We call the execution of a scenario
in parallel over three clients an experiment run. Per experiment run, we record
the power draw of the server (in Watt) with 10000 samples per seconds and the
time it took to execute. That is, the reset of the web-application is not recorded
in our measurements. Only the energy consumption of the body of the loop in
Fig. 2a is recorded. All measurement data is stored automatically in CSV files,
which are also distributed in our replication kit.

The experiment runs per version of CPython are completely automated us-
ing the Otii Automation Toolbox.24,25 After recording energy consumption of one
version of CPython, we manually log to the server from the controller, stop the
web-application, and switch to the next version of CPython.

3 Results

The results of our measurements of the server’s power draw for a single exper-
iment run look as illustrated in Fig. 3. This plots the power draw of the first
experiment run in which the MiniTwit web-application runs on CPython 3.10. It
illustrates power draw over time with 10000 samples per second (x-axis). On
the y-axis power draw in Watt (W) is plotted. It can be seen that this ex-
periment run lasts for ca. 2min23s. On average, the server’s power draw is
µ ≈ 1.286W (σ ≈ 0.034 and q2 ≈ 1.282W). Minimum and maximum power
draw are q0 ≈ 1.133W and q4 ≈ 1.685W respectively.

Note, for reporting we use the following notation: q0 denotes the minimum,
q1 the 25th quartile, q2 the median, q3 the 75th quartile, q4 the maximum, µ is
the arithmetic mean (we use average and arithmetic mean synonymously), and
the standard deviation is denoted by σ.

24 https://www.qoitech.com/docs/advanced/scripting-with-python
25 https://github.com/HelgeCPH/otii-tcp-client-python

https://www.qoitech.com/docs/advanced/scripting-with-python
https://github.com/HelgeCPH/otii-tcp-client-python
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Fig. 3: Power draw of the first experiment run in which the MiniTwit web-
application runs on CPython 3.10.

To facilitate statistical analysis and visual inspection, we compute the average
power draw per experiment run and plot these in a box plot, see Fig. 4a. It
shows that, CPython 3.11 has the highest power draw for all ten experiment runs
(q0 = 1.286579W, q1 = 1.287268W, q2 = 1.287694W, q3 = 1.288286W, q4 =
1.288864W, µ = 1.287683W, σ = 0.000770) and CPython 3.13 the lowest power
draw per experiment run (q0 = 1.283466W, q1 = 1.283782W, q2 = 1.284120W,
q3 = 1.284786W, q4 = 1.285268W, µ = 1.284268W, σ = 0.000667). The other
versions of CPython have power draws in between these respective maximum and
minimum.

(a) Average power draw in Watt (W). (b) Runtimes in seconds.

Fig. 4: Power draw and runtimes of the experiment runs per version of CPython.

Note, the y-axis of Fig. 4a. It shows that differences between power draw of
the various versions of CPython are small, in the range of milliWatts (mW). The
difference between the highest and lowest power draw of all experiment runs is
ca. 4.13mW.
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Besides power draw of the server, we record the runtimes per experiment
run. Fig. 4b illustrates these in seconds (s) per version of CPython. This box plot
shows that, in general, runtimes for CPython 3.12 are the lowest (q0 ≈ 127.84s,
q1 ≈ 128.39s, q2 ≈ 128.89s, q3 ≈ 129.75s, q4 ≈ 131.25s, µ ≈ 129.09s, σ ≈ 1.06)
and runtimes for CPython 3.10 are the highest (q0 ≈ 139.63s, q1 ≈ 140.11s,
q2 ≈ 140.68s, q3 ≈ 141.61s, q4 ≈ 143.48s, µ ≈ 140.94s, σ ≈ 1.20). That is, the
difference between the fastest and slowest experiment run over all versions of
CPython is ca. 15.64s. All other runtimes are between these extremes.

Fig. 5: Energy consumption in Joule (J) of all experiment runs per version of
CPython.

Based on these measurements for power draw and runtimes, we compute
energy consumptions of the experiment runs via Energy[J] = Power[W]× time[s].
Fig. 5 illustrates energy consumption of the experiment runs. It shows that
CPython 3.10 consumes most energy (q0 ≈ 179.77J, q1 ≈ 180.40J, q2 ≈ 181.03J,
q3 ≈ 182.04J, q4 ≈ 184.54J, µ ≈ 181.35J, σ ≈ 1.47) and that CPython 3.12
consumes the least energy (q0 ≈ 164.60J, q1 ≈ 165.23J, q2 ≈ 165.84J, q3 ≈
166.90J, q4 ≈ 168.80J, µ ≈ 166.10J, σ ≈ 1.30). Energy consumption of CPython
3.8 and 3.9 are all between ca. 177.51J and ca. 184.54J, whereas newer versions
of CPython (3.11 to 3.13) generally consume less energy (between ca. 164.60J and
174.42J respectively). For completeness, Tab. 1 lists the descriptive statistics for
the energy consumption of all versions of CPython.

Visual inspection of all experiment runs’ energy consumptions (Fig. 5) in
combination with the descriptive statistics in Tab. 1 show that CPython 3.10 and
3.12 have the biggest difference in energy consumption. In general, CPython 3.10
consumes the most and 3.12 consumes the least.
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Tab. 1: Descriptive statistics of energy consumption in Joule (J) rounded to two
digits.

CPython 3.8 CPython 3.9 CPython 3.10 CPython 3.11 CPython 3.12 CPython 3.13

min (q0) 177.51J 179.64J 179.77J 168.61J 164.60J 169.35J
q1 178.09J 180.23J 180.40J 168.96J 165.23J 169.90J
median (q2) 178.90J 180.98J 181.03J 169.34J 165.84J 171.14J
q3 179.60J 181.29J 182.04J 170.37J 166.90J 172.23J
max (q4) 182.87J 182.13J 184.54J 170.84J 168.80J 174.42J
µ mean 179.12J 180.84J 181.35J 169.58J 166.10J 171.21J
σ 1.52 0.84 1.47 0.83 1.30 1.60

4 Analysis & Discussion

We conduct a Kruskal-Wallis test [11] to analyze if energy consumption differs
significantly across versions of CPython. Unlike an ANOVA test, a Kruskal-Wallis
test has fewer preconditions, such as, that our recorded energy consumptions
come from a normally distributed population or that the standard deviations of
the groups are all equal (homoscedasticity). Since we only conduct ten experi-
ment runs per version of CPython, we have too few samples to test for these two
preconditions. Visual inspection of the histograms of energy consumptions per
version of CPython suggest they are not from a normal distribution. Therefore,
we settle on a Kruskal-Wallis test, for which we formulate the following null and
alternative hypotheses.

Null Hypothesis (H0) There is no significant difference in energy consump-
tion depending on the version of CPython. In other words, energy consump-
tion of the server is more or less equal no matter which version of CPython
is used to run the web-application.

Alternative Hypothesis (Ha) At least one of the group means differs signif-
icantly from at least one other group mean. That is, at least one version
of CPython interpreter consumes considerably less or more energy than the
others.

For our recorded energy consumptions, the Kruskal-Wallis H statistics is
≈ 53.07 (p-value ≈ 3.25 × 10−10). Since the value of the H statistics is quite
large and the p-value is below 0.05, we have to reject the null hypothesis and
settle on the alternative hypothesis. That is, the energy consumption of at least
one version of CPython is significantly different than the others. This result is
supported by visual inspection of Fig. 5.

In general, one can observe a drop in energy consumption between CPython
versions 3.8, 3.9, and 3.10 compared to CPython versions 3.11, 3.12, and 3.13, see
Fig. 5. The biggest difference is between CPython 3.10 and 3.12. The median
energy consumption of CPython 3.12 is ≈ 8.39% lower than the one of CPython
3.10. The average energy consumption drops by ≈ 8.41%.
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Remember, our initial assumption was that newer versions of Python are less
energy-efficient. The results above (and as plotted in Fig. 5) suggest that this is
generally not the case. To the contrary, newer versions of CPython are actually
more energy efficient than older versions. If only considered for CPython 3.8 to
3.10, our initial assumption seems to be true as there is a continuous increase in
energy consumption across these three versions of CPython. However, the more
recent versions CPython 3.11, 3.12, and 3.13 consume all less energy than the
previous versions in our experiment. Only the energy consumption of CPython
3.13 appears to increase again compared to the previous two versions. Notably,
the maximum energy consumption of CPython 3.13 (q4 ≈ 174.42J) is still circa
3.09J lower than the minimal energy consumption of CPython 3.8 (q0 ≈ 177.51J).

CPython 3.11 was the first in a series of releases in which the language devel-
opers focused on improving performance of the Python interpreter. The release
notes state: “The Faster CPython Project is already yielding some exciting re-
sults. Python 3.11 is up to 10-60% faster than Python 3.10. On average, we
measured a 1.22x speedup on the standard benchmark suite.”13

A performance improvement is visible in our experiment too, see Fig. 4b,
though to a lower degree than stated by the language developers. On average,
in our scenario, CPython 3.11 performs 6.56% faster than 3.10 and CPython 3.12
is 8.41% faster than 3.10.

Interestingly, the power draw of CPython 3.11 is the highest of all investigated
versions of CPython, where CPython 3.12 is comparable to 3.10, and 3.13 sports the
lowest. That is, it seems that the implemented performance improvements come
at the cost of slightly higher power draw. However, the relative difference between
the versions of CPython with highest and lowest power draw are marginal. The
average power draw drops by only 0.26% between CPython 3.11 and 3.13 (q2 drops
ca. 0.28%).

Consequently, there is a sweet spot between performance optimizations and
how they are implemented. In future, the Python language developers might
face the situation, in which further performance improvements decrease energy
efficiency in case power draw becomes more dominating. While some researchers
describe that performance improvements suffice to decrease energy consumption,
see e.g., Yuki et al. [29], others find that in certain cases power draw has an
impact too, see e.g., Koedijk et al. [10]. Since the increases in power draw are
comparably small, it seems however that a focus on performance optimizations
is advisable for the Python project.

4.1 Threats to Validity

Conclusion Validity: Since we cannot conclusively test for normal distribu-
tion or homoscedasticity due to small sample size of energy consumptions, we
can only conduct the less powerful Kruskal-Wallis test instead of the more pow-
erful one-way ANOVA test. However, the results of Kruskal-Wallis test together
with the plots that we provide in this paper, make us confident that the energy
consumption of the various versions of CPython actually differ in a statistically
significant way.
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Internal Validity: To minimize the influence of other running processes, garbage
collector runs, etc., we execute ten iterations of the same experiment per version
of CPython. A higher number of experiment runs could increase the confidence
in our results.

We chose to conduct our experiment on the FreeBSD operating system, since
the amount of processes and daemons running in a default installation is quite
small compared to modern Linux, MacOS, or Windows setups. Besides controlling
the amount of running processes, one could opt to replicate our experiment on a
unikernel operating system like Unikraft [12]. We are confident that our reported
results are caused by the version of CPython and that similar patterns of energy
consumption would occur in such a setup.
Construct Validity: At the time of setting up our experiment, FreeBSD does
not have pre-compiled packages for CPython 3.12 and 3.13. We install them via
pyenv. Thereby, CPython gets build from sources on the experiment server before
installation. We install these two versions of CPython with pyenv’s defaults. We
did not inspect how precisely the pre-compiled FreeBSD packages are built. There
might be a risk that different optimization switches are used to build FreeBSD
CPython packages compared to pyenv. In case pyenv optimizes more aggressively
for performance, then our results might overemphasize the more favorable energy
efficiency especially of CPython 3.12.
External Validity: We conduct our experiment only on one platform, the Rasp-
berry Pi 1 Model B+ V1.2, which sports a single core Broadcom BCM2835 ARM
6 CPU. Currently, we do not know to which degree our results can be generalized
to other or multi-core (ARM) processors.

5 Related Work

With the increased availability of mobile applications, researching the energy
impact of various aspects of software became more relevant to larger parts of
the software engineering community. On mobile devices, power hungry software
is directly perceivable by end-users via quick battery drain. Consequently, re-
searchers focused attention on energy impact of mobile applications on Android
or iOS, see e.g., [3, 4, 8, 14,16].

Olivera et al. [16] compare the energy consumption of applications using the
three mobile application development frameworks Flutter, React Native, and
Ionic to native Java applications. They find that generally, Flutter imposes the
least energy overhead. We believe that our work, can provide the backend counter
part to Olivera et al.’s work. Even though possible,26 CPython applications are
rarely deployed to mobile platforms but more often as backend software to data
centers in “the cloud”. In such environments, software engineers “rarely have
requirements or goals about energy usage” [15]. That might explain why high-
level interpreted languages like Python have been of lower priority for the green
software engineering community, which we attempt to change with this work.

26 https://beeware.org/

https://beeware.org/
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In general, software engineers care about the energy impact of their code [15].
However, they lack knowledge and support on how to improve energy efficiency
of their applications [15, 18, 22]. The results of our experiment yield an easy to
apply high-level solution to increase energy efficiency of CPython applications by
just executing them on the “right” version of the interpreter. This differentiates
our work from previous work, see e.g., [3, 4, 13, 14, 24] which usually focuses on
application-level modifications to improve energy efficiency. Our experiment is
more coarse-grained. We consider the application a black-box and investigate
the impact of the execution environment, the CPython interpreter. To the best
of our knowledge, we report the first results of an experiment of such kind.

A common experiment design to investigate energy efficiency of software,
is that a set of benchmarks (often the Computer Language Benchmark Game27 or
Rosetta Code,28) which implement certain algorithms in various programming
languages, are executed. Then energy consumption is measured indirectly via
power profiling tools like Intel’s Power Gadget,29 Running Average Power Limit [7],
Performance Counter Monitor,30 PowerJoular,31 or similar estimation tools.32 Sub-
sequently, programming languages are compared to each other with regards to
energy consumption, see, e.g., [2,6,10,17,19,20,26]. In all of these experiments,
only a single language version, i.e., interpreter or compiler is considered. Our
experiment design differs in that we investigate only one case application, the
MiniTwit web-application, where the experiment variable is the version of CPython,
the language interpreter.

More rare are experiments that meter power draw or energy consumption
directly via a physical power meter, see, e.g., [5, 6, 9]. Our experiment design is
similar to these works. However, we conduct our direct measurements via the
Otii Arc Pro, which we are not aware of as reported in similar experiments.

Kirkeby et al. [9] suggest to investigate energy consumption of the live soft-
ware system, Edora A/S’s Work Force Planner. Admittedly, our software is not
a production grade system and our three clients are executing predefined sce-
narios. However, our case application (MiniTwit) is a complete web-application
that resembles a more production ready application than the more “artificial”
benchmarks used in previous research [2, 6, 10,17,19,20,26].

Kwon et al. [14] investigate the effect of various distributed programming
abstractions like sockets, remote-procedure calls, messages, etc. They experiment
with a client-server setup with two separate computers. However, they only have
a single client and they measure energy consumption indirectly on the server via
the process-level power profiling tool pTopW for a single version of Java. Their
experiment variable are the respective distributed programming abstractions.

27 https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
28 https://rosettacode.org/wiki/Rosetta_Code
29 https://www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html
30 https://github.com/intel/pcm
31 https://github.com/joular/powerjoular
32 https://luiscruz.github.io/2021/07/20/measuring-energy.html

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://rosettacode.org/wiki/Rosetta_Code
https://www.intel.com/content/www/us/en/developer/articles/tool/power-gadget.html
https://github.com/intel/pcm
https://github.com/joular/powerjoular
https://luiscruz.github.io/2021/07/20/measuring-energy.html
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We are not aware of any experiment that reports assessment of energy effi-
ciency of multiple versions of the same programming language. Wagner et al.’s
experiment [26] is most similar to ours in that they compare two web-assembly
runtimes (Wasmer and Wasmtime) against each other. These runtimes could be
compared to the versions of CPython in our experiment. Unlike in our results, the
authors do not find a statistically significant difference in energy consumption
when running the same programs on different web-assembly runtimes.

Currently, research results on the impact of runtime to energy efficiency are
mixed. For example, Yuki et al. [29] confirm that programs that are optimized
for performance are also more energy efficient. On the other hand, e.g., Koedijk
et al. [10] identify certain cases where slower programs are more energy efficient
compared to faster ones. The results of our experiment show that runtime has
the most impact on energy consumption. However, our results also illustrate
that runtime optimizations come at the cost of power draw. Future work has to
identify the sweet-spot between these two.

6 Future Work

In this paper, we report the first of a planned series of experiments. We will
extend this experiment by executing the Python Performance Benchmark Suite.33
We want to investigate more thoroughly the relation between performance im-
provements and power draw. Additionally, we plan to conduct these measures
not only on one model of the Raspberry Pi but on various newer models and
other architectures too. The purpose is to increase confidence in that our results
are generalizable over different versions of the ARM processor architecture and
over other architectures like Intel/AMD x86.

In the farther future, we plan to substantially extend this work by imple-
menting the same MiniTwit web-application in various programming languages
and with different web-frameworks. Our goal is to create more nuanced and more
directly applicable results that support practitioners in choosing the “right tool
for the job” when implementing sustainable web-applications.

7 Conclusions

In this paper, we investigate the research question: What is the energy con-
sumption of different versions of the Python interpreter CPython? Initially, we
assume that more recent versions of Python are less energy efficient than older
ones. To investigate our research question, we conduct a controlled lab exper-
iment in which we determine the energy consumption of a webserver sporting
various versions of CPython. Three clients execute parallel scenarios against a
web-application running on a server. Contrary to our initial assumption, our re-
sults show that recent versions of CPython are actually more energy efficient than
older versions. Currently, the most energy efficient, i.e., sustainable, version is
33 https://pyperformance.readthedocs.io/

https://pyperformance.readthedocs.io/
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CPython 3.12. Energy consumption of a web-application can drop by more than
8%, only by exchanging older versions of CPython with CPython 3.12.
Impact for practitioners: For developers and maintainers, we recommend to
switch to CPython 3.12 since our results indicate that it is currently the most en-
ergy efficient CPython interpreter. In our experiment, energy consumption drops
by more than 8% compared to the most energy consuming CPython 3.10.

For the developers of CPython, our results indicate that the performance
improvements that were implemented in recent versions of CPython are not only
beneficial from a performance point of view, they also render CPython more
sustainable compared to previous versions. We suggest to execute the Python
Performance Benchmark Suite33 in a setup similar to ours to continuously monitor
also energy efficiency of future CPython versions.
Impact for researchers: Our work raises multiple questions for researchers
to address. Unanswered by our current work, but relevant for future language
improvements are questions like a) Which implementation details cause a Python
interpreter to draw more power or to become faster and thereby impact energy
consumption? or b) What is the precise reason for that power draw increases for
certain versions of CPython that are optimized for performance? We hope that
our work inspires other researchers to investigate such questions and thereby
help to increase energy efficiency of the reference implementation of the currently
most popular programming language.
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