

TECHNICAL DEBT
Likely not what you think it is...

TERMINOLOGY
What are we talking about?

Early 1990s: Development of WyCash

“Shipping first time code is like going into debt.
A little debt speeds development so long as it is
paid back promptly with a rewrite. [...] The
danger occurs when the debt is not repaid. Every
minute spent on not-quite-right code counts as
interest on that debt.”[1]

The Metaphor is Born

Object-oriented incremental development

Second Law of Software Evolution: “As a large program is continuously changed, its complexity,
which reflects deteriorating structure, increases unless work is done to maintain or reduce it.” [2]

Since then: Babylonian confusion of the metaphor

“The concept of TD contextualizes problems faced during
software evolution considering the tasks that are not
carried out adequately during software development.” [3]

“a metaphor for the accumulation of unresolved
issues in a software project” [5]

“the invisible results of past decisions about software
that affect its future” [6]

“those internal software development tasks chosen to be
delayed, but that run a risk of causing future problems if
not done eventually” [4]

“the eventual financial consequences of trade-offs between shrinking
product time to market and poorly specifying, or implementing a
software product, throughout all development phases” [7]

“TD is a collection of design or implementation constructs that are expedient
in the short term, but set up a technical context that can make future
changes more costly or impossible. TD presents an actual or contingent
liability whose impact is limited to internal system qualities, primarily
maintainability and evolvability.” [8]

What is the problem?

based on assumptionsAmbigous definitions

subjective
& mostly not measurable

I can only find TD in
the sense of Cunningham [9]

TOOLS
What do they assess?

A Tool Example: SonarQube [10,11,12]

crem = 5min

 crem

cline * LOC
Technical Debt

Ratio
=

Maintainability
Rating

 ... 0 < TD <= 0.05
 ... 0.06 < TD <= 0.1
 ... 0.1 < TD <= 0.2
 ... 0.21 < TD <= 0.5
 ... 0.51 < TD <= 1

A
B
C
D
E

=

https://sonarcloud.io/project/issues?impactSoftwareQualities=MAINTAINABILITY&resolved=false&id=apache_cloudstack&open=AYCKgHE8t3-78BLMbmYZ

TECHNICAL DEBT
Something more than “technical”...

“Technical debt” in case of a content management system [13]

42

115

116

42
115116
42

42

Dear
Citizen,

Dear
Car
Owner,

Election
ballot

Dear
Citizen,
Election
ballot

Dear Citizen,
License plate
renewal

CMS
DB

License
plate
renewal

Documentation Debt
Process Debt
People Debt
...

The “technical debt landscape” [14]

People Debt

Process Debt

Documentation Debt

Defect
Debt

Usability
Debt

Architecture Debt
Design Debt

Code Debt
Test Debt

Service
Debt

Build Debt

Versioning
Debt

Requirements Debt

Infrastructure Debt

Automation
Test Debt

WHAT NOW???
Can’t I use the concept for anything?

Software Quality: The Elusive Target [15]

User View

Product View

Transcendental
View

Manufacturing
View Value-based

View

CONCLUSION
&

RECOMMENDATIONS

A metaphor should not be basis for IT project
management.

● Technical Debt is neither a well-defined term nor a well-
understood concept. Therefore, use precise software qualities for
assessment and communication.

● Be aware: incremental software development creates always
technical debt.

● Plan, budget, and schedule refactoring work.

If interested in assessment of software quality:

● Precisely define software quality and its assessment so that all
involved stakeholders share a common understanding of quality.

● This is inline with what for example the ISO/IEC 25000 series of
standards state about comprehensive specification and evaluation
of software quality:

“... can be achieved by defining the necessary and desired quality characteristics
associated with the stakeholders’ goals and objectives for the system. This includes

quality characteristics related to the software system and data as well as the impact
the system has on its stakeholders. It is important that the quality characteristics are

specified, measured, and evaluated whenever possible using validated or widely
accepted measures and measurement methods.” [16]

Tool-based automatic assessment of software
quality and technical debt

● Technical debt “is generally not detectable by static analysis
[since] thoughts are stubbornly hidden from static analysis tools”
[17]

● Be aware of what tools measure and if that aligns with your
conception of software quality.

● Do not rely on automatic assessment results at face value.
● Be aware of Goodhart’s Law: “When a measure becomes a target,

it ceases to be a good measure.” [18]

Thank you for your attention!

Helge Pfeiffer, Associate Professor

Research Center for Government IT

ropf@itu.dk
+45-7218 5102

http://itu.dk/~ropf/

mailto:ropf@itu.dk
http://itu.dk/~ropf/

REFERENCES

[1] Cunningham, Ward. "The WyCash portfolio management system." ACM Sigplan Oops Messenger 4.2 (1992): 29-30. (link)
[2] Lehman, Meir M. "Laws of program evolution-rules and tools for programming management." Proc. of the Infotech State of the Art Conf.,

Why Software Projects Fail? Program Press, 1978. Vol. 11. 1978.
[3] Rios, Nicolli, Manoel Gomes de Mendonça Neto, and Rodrigo Oliveira Spínola. "A tertiary study on technical debt: Types, management

strategies, research trends, and base information for practitioners." Information and Software Technology 102 (2018): 117-145. (link)
[4] Alves, Nicolli SR, et al. "Identification and management of technical debt: A systematic mapping study." Information and Software

Technology 70 (2016): 100-121. (link)
[5] Birchall, Chris. Re-engineering legacy software. Simon and Schuster, 2016.
[6] Kruchten, Philippe, et al. "Technical debt: towards a crisper definition report on the 4th international workshop on managing technical debt."

ACM SIGSOFT Software Engineering Notes 38.5 (2013): 51-54. (link)
[7] Ampatzoglou, Areti, et al. "The financial aspect of managing technical debt: A systematic literature review." Information and Software

Technology 64 (2015): 52-73. (link)
[8] Avgeriou, Paris, et al. "Managing technical debt in software engineering (dagstuhl seminar 16162)." (2016). (link)
[9] Pfeiffer, Rolf-Helge. "Searching for Technical Debt-An Empirical, Exploratory, and Descriptive Case Study." 2022 IEEE International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2022. (link)
[10] Pfeiffer, Rolf-Helge, and Mircea Lungu. "Technical Debt and Maintainability: How do tools measure it?." arXiv preprint arXiv:2202.13464

(2022). (link)
[11] Pfeiffer, Rolf-Helge, and Jon Aaen. "Tools for monitoring software quality in information systems development and maintenance: five key

challenges and a design proposal." International Journal of Information Systems and Project Management 12.1 (2024): 19-40. (link)
[12] Letouzey, Jean-Louis, and Michel Ilkiewicz. "Managing technical debt with the sqale method." IEEE software 29.6 (2012): 44-51. (link)
[13] Nielsen, Mille Edith, and Christian Østergaard Madsen. "Stakeholder influence on technical debt management in the public sector: An

embedded case study." Government Information Quarterly 39.3 (2022): 101706. (link)
[14] Rios, Nicolli, Manoel Gomes de Mendonça Neto, and Rodrigo Oliveira Spínola. "A tertiary study on technical debt: Types, management

strategies, research trends, and base information for practitioners." Information and Software Technology 102 (2018): 117-145. (link)
[15] Kitchenham, Barbara, and Shari Lawrence Pfleeger. "Software quality: the elusive target [special issues section]." IEEE software 13.1

(1996): 12-21. (link)
[16] “Systems and software engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) – Guide to SquaRE,”

International Organization for Standardization, Geneva, CH, Standard, Mar. 2014.
[17] Fairbanks, George. "Ur-technical debt." IEEE Software 37.4 (2020): 95-98. (link)
[18] Strathern, Marilyn. "‘Improving ratings’: audit in the British University system." European review 5.3 (1997): 305-321.

https://dl.acm.org/doi/pdf/10.1145/157710.157715
https://www.sciencedirect.com/science/article/pii/S0950584918300946
https://www.sciencedirect.com/science/article/am/pii/S0950584915001743
https://apps.dtic.mil/sti/pdfs/AD1015409.pdf
https://www.sciencedirect.com/science/article/pii/S0950584915000762
https://drops.dagstuhl.de/storage/04dagstuhl-reports/volume06/issue04/16162/DagRep.6.4.110/DagRep.6.4.110.pdf
https://pure.itu.dk/ws/portalfiles/portal/91458509/saner2022_pfeiffer.pdf
https://arxiv.org/pdf/2202.13464
https://pure.itu.dk/files/103580697/ijispm-120102.pdf
https://www.researchgate.net/profile/Jean-Louis-Letouzey-2/publication/303144515_Managing_technical_debt_with_the_SQALE_method/links/64404999e881690c4be5b3e6/Managing-technical-debt-with-the-SQALE-method.pdf
https://www.sciencedirect.com/science/article/pii/S0740624X22000399
https://www.sciencedirect.com/science/article/pii/S0950584918300946
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d7a45bdd09e59dde273da90448232ddbc7287f70
https://ieeexplore.ieee.org/iel7/52/9121610/09121630.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

