
  

TECHNICAL DEBT
Likely not what you think it is...



  

TERMINOLOGY
What are we talking about?



  

Early 1990s: Development of WyCash



  

“Shipping first time code is like going into debt. 
A little debt speeds development so long as it is 
paid back promptly with a rewrite. [...] The 
danger occurs when the debt is not repaid. Every 
minute spent on not-quite-right code counts as 
interest on that debt.”[1]

The Metaphor is Born



  

Object-oriented incremental development

Second Law of Software Evolution: “As a large program is continuously changed, its complexity, 
which reflects deteriorating structure, increases unless work is done to maintain or reduce it.” [2]



  

Since then: Babylonian confusion of the metaphor

“The concept of TD contextualizes problems faced during 
software evolution considering the tasks that are not 
carried out adequately during software development.” [3]

“a metaphor for the accumulation of unresolved 
issues in a software project” [5]

“the invisible results of past decisions about software 
that affect its future” [6]

“those internal software development tasks chosen to be 
delayed, but that run a risk of causing future problems if 
not done eventually” [4]

“the eventual financial consequences of trade-offs between shrinking 
product time to market and poorly specifying, or implementing a 
software product, throughout all development phases” [7]

“TD is a collection of design or implementation constructs that are expedient 
in the short term, but set up a technical context that can make future 
changes more costly or impossible. TD presents an actual or contingent 
liability whose impact is limited to internal system qualities, primarily 
maintainability and evolvability.” [8]



  

What is the problem?

based on assumptionsAmbigous definitions 

subjective 
& mostly not measurable

I can only find TD in 
the sense of Cunningham [9]



  

TOOLS
What do they assess?



  



  

A Tool Example: SonarQube [10,11,12]
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https://sonarcloud.io/project/issues?impactSoftwareQualities=MAINTAINABILITY&resolved=false&id=apache_cloudstack&open=AYCKgHE8t3-78BLMbmYZ


  

TECHNICAL DEBT
Something more than “technical”...



  

“Technical debt” in case of a content management system [13]
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The “technical debt landscape” [14]
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WHAT NOW???
Can’t I use the concept for anything?



  

Software Quality: The Elusive Target [15]
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CONCLUSION 
& 

RECOMMENDATIONS



  

A metaphor should not be basis for IT project 
management.

● Technical Debt is neither a well-defined term nor a well-
understood concept. Therefore, use precise software qualities for 
assessment and communication.

● Be aware: incremental software development creates always 
technical debt.

● Plan, budget, and schedule refactoring work.



  

If interested in assessment of software quality:

● Precisely define software quality and its assessment so that all 
involved stakeholders share a common understanding of quality.

● This is inline with what for example the ISO/IEC 25000 series of 
standards state about comprehensive specification and evaluation 
of software quality:

“... can be achieved by defining the necessary and desired quality characteristics 
associated with the stakeholders’ goals and objectives for the system. This includes 

quality characteristics related to the software system and data as well as the impact 
the system has on its stakeholders. It is important that the quality characteristics are 

specified, measured, and evaluated whenever possible using validated or widely 
accepted measures and measurement methods.” [16]



  

Tool-based automatic assessment of software 
quality and technical debt

● Technical debt “is generally not detectable by static analysis 
[since] thoughts are stubbornly hidden from static analysis tools” 
[17]

● Be aware of what tools measure and if that aligns with your 
conception of software quality.

● Do not rely on automatic assessment results at face value. 
● Be aware of Goodhart’s Law: “When a measure becomes a target, 

it ceases to be a good measure.” [18]
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