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Abstract. A recent trend in the construction of security protocols such
as voting and certificate management systems is to make principals
accountable for their actions. Whenever some principals deviate from
the protocol’s prescription and cause the failure of a goal of the sys-
tem, accountability ensures that the system can detect the misbehaving
parties who caused that failure. Accountability is an intuitively stronger
property than verifiability as the latter only rests on the possibility of
detecting the failure of a goal. A plethora of accountability and verifia-
bility definitions have been proposed in the literature. Those definitions
are either very specific to the protocols in question, hence not applicable
in other scenarios, or too general and widely applicable but requiring
complicated and hard to follow manual proofs.

In this paper, we advance formal definitions of verifiability and
accountability that are amenable to automated verification. Our defi-
nitions are general enough to be applied to different classes of proto-
cols and different automated security verification tools. Furthermore, we
point out formally the relation between verifiability and accountability.
We validate our definitions with the automatic verification of three pro-
tocols: a secure exam protocol, Google’s Certificate Transparency, and
an improved version of Bingo Voting. We find through automated ver-
ification that all three protocols satisfy verifiability while only the first
two protocols meet accountability.

1 Introduction

In the real world, disputes among principals can be resolved with trials. A judge
or jury will decide on a trial according to the evidence presented by the parties.
In the digital world, even if the design of a security protocol is sound, dishon-
est principals may still attempt attacks that cause protocol functional failures.
Similarly to real-world protocols, principals should be able to raise disputes in
which a judge blames principals who caused the failure according to the evi-
dence. This notion is known as accountability and ensures that (i) failures are
detectable and (ii) misbehaving principals can be blamed. Accountability is a
stronger notion than verifiability as the latter only requires that the failure of a
protocol’s goal can be detectable [1]. Thus, security protocols should be designed
to provide adequate evidence to enable accountability. In so doing, principals are
discouraged to misbehave, fostering minimal intentional protocol failures.
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Contribution. The goal of this paper is to fully mechanise the analysis of verifi-
ability and accountability in security protocols. We propose definitions based on
the existence of an accountability test that decides whether a principal should
be blamed for the failure of a protocol’s goal. We conveniently adapt a generic
definition of protocol advanced by Küsters et al. [2] to specify the soundness
and completeness conditions for accountability tests that can be checked by
automated security protocol tools. We show that verifiability is a necessary con-
dition for accountability and our treatment of accountability is general enough to
apply to different tools and protocols. Then, we validate our definitions in three
different case studies with two different tools. The first case study is about a
secure exam protocol, and we check accountability with ProVerif [3]. The second
case study concerns Google’s Certificate Transparency, and we prove account-
ability with AIF-ω [4]. The third case study considers an improved version of
Bingo Voting, which is analysed again with ProVerif.

Outline. The paper is organised as follows. Section 2 discusses some related
work. Section 3 details our definitions of verifiability and accountability. Section 4
validates the definitions in a secure exam protocol. Section 5 details the formal
analysis of Google’s Certificate Transparency. Section 6 analyses verifiability and
accountability in Bingo Voting. Finally, Sect. 7 concludes the paper.

2 Related Work

In this paper we define an accountability test, which can be used to decide if a
protocol is accountable, meaning if it has the capability to single out reliably the
parties (if any) that are compromised and behaving dishonestly. A precondition
for our accountability test is verifiability that is designed to detect if something
went wrong in the first place. The hallmark characteristic of our accountability
and verifiability definitions is that they are mechanizable in the symbolic model.
The definition of our criterion is formalism and tool independent, which sets it
apart from related projects, which we discuss briefly below.

Our work builds on the work by Küsters et al. [2] who define notions of
accountability and verifiability in the symbolic and computational models. The
symbolic definitions aim at precisely describing the assessment of the level of
accountability that a protocol provides. This comes at the cost of definitions that
may not be amenable to automated analysis as the verification approach would
heavily depend on the accountability property under consideration. Differently,
our definitions are explicitly adapted for checking accountability with automated
security protocol tools. To aid the reader familiar with Küsters et al. work in
comparing our work to theirs, we revisit in this paper the example of Bingo
Voting, whose analysis was supported with manual proofs in Küsters et al.’s
work.

Milner et al. [5] focus on a provably sound detection of misuse of secrets.
Their work has yielded new insights into detecting the misuse of a Certification
Authorities key on the Internet and contributed to the broader area of Certificate
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Transparency. Again, to aid the reader familiar with this work to compare their
results to ours, we demonstrate how to mechanise this argument in AIF-ω [4].

Jagadessan et al. [6] proposed a framework that deals with the general notion
of accountability but cannot deal with cryptography. Bella and Paulson [7]
advanced a computer-assisted analysis of accountability of the Zhou-Gollman
non-repudiation protocol [8]. Similarly, Abadi and Blanchet [9] analysed account-
ability for a certified email protocol. The definitions proposed in these works are
not general but specific to the protocols in question.

The notion of verifiability has been extensively studied in voting [1,10]. The
notion of individual verifiability signifies that voters can verify that their votes
have been handled correctly, namely “cast as intended”, “recorded as cast”, and
“counted as recorded” [11,12]. The notion of universal verifiability has been
introduced to express the concept in which auditors can verify the correctness of
the tally using only public information [11,13,14]. Kremer et al. [10] formalised
both individual and universal verifiability in the applied pi-calculus. They also
introduced the requirement of eligibility verifiability, which expresses that audi-
tors can verify that each vote in the election result was cast by a registered voter,
and there is at most one vote per voter. Smyth et al. [15] used ProVerif to check
verifiability in three voting protocols. They express the requirements as reacha-
bility properties. Similarly, Dreier et al. [16] checked in ProVerif soundness and
completeness conditions for verifiability-tests in three auction protocols. In this
paper, we also analyse two security protocols in ProVerif. However, our defin-
itions of verifiability and accountability are constrained neither to the applied
pi-calculus nor ProVerif.

Guts et al. [17] defined auditability as the quality of a protocol, which stores a
sufficient number of pieces of evidence, to convince an honest judge that specific
properties are satisfied. Auditability is a weaker notion of accountability and
expresses the same concept of universal verifiability: anyone, even an outsider
without a private knowledge about the protocol execution, can verify that the
system relies only on the available pieces of evidence.

3 Definitions

We begin our formal treatment with the formal definition of a protocol, following
roughly the exposition of Küsters et al. [2]. Our definitions differ from theirs to
support better the mechanisation effort discussed below.

Definition 1 (Protocol). A protocol is a tuple P = 〈Ch,A,Π,G〉 such that:

– Ch = {ch1, . . . , chn} is a set of channels;
– A = {α1, . . . , αn} is a set of principals;
– Π is the set of programs run by the principals;
– G is the set of goals that the protocol aims to meet.

Given a set of primitive operations, for example, for sending and receiving
messages on channels, encrypting and decrypting messages using keys, etc. we
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refer to sequences of such operations as programs. The set of all such programs is
denoted by Π, with the intention that for each run of the protocol each principal
αi ∈ A is expected to running one and only one such program παi

∈ Π. We write
r for a run of the protocol. Each run produces a trace. A witness trace, which we
denote with t, is a run of the protocol from the point of the view of a principal
and serves as input and evidence for the verifiability and accountability tests.
We do not distinguish between input and output channels. Instead, we introduce
predicates g ∈ G that range over traces and distinguish the traces that achieve
the goal of a protocol from those that do not. As we shall see later, verifiability
and accountability definitions are pivoted on protocol’s goal. Thus, we detail its
treatment here to obtain clearer definitions later.

For each set of goals G, we define ΠG as the set of all tuples {παi
}αi∈A, where

each such tuple defines one program for each respective principal, that converge
towards satisfying all the goal defined within G, when running in parallel, as
(πα1 |πα2 | . . . |παn

). For instance, let us consider two principals, Alice and Bob,
who will communicate over some channel. The goal g of this protocol is that
Bob eventually receives some message. Let us consider the protocol consisting
of two programs (π1

Alice, π
1
Bob) that Alice and Bob are expected to run. The first

program consists of π1
Alice that sends one message while the other π1

Bob expects
to receive some message. Now, let us assume that Alice runs a different program
π2
Alice that sends two messages. Although Alice runs a program that deviates

from the original protocol prescription, the tuple of programs (π2
Alice, π

1
Bob) still

clearly converges towards the goal. Consequently, (π1
Alice, π

1
Bob) ∈ Πg as well as

(π2
Alice, π

1
Bob) ∈ Πg. We say that both programs π1

Alice, π
2
Alice are goal-convergent.

The specification of goals is left to the specific formalism adopted by the chosen
tool.

The introduction of the set ΠG is useful to clarify the notion of misbehav-
iour. A principal may run a program that deviates from the original protocol
prescription, but if such deviation is irrelevant for the purpose of achieving the
goal, the principal should not be considered as a misbehaving entity. This notion
of misbehaviour contrasts from the usual interpretation that a principal misbe-
haves if she runs any program that differs from the expected one. However, our
interpretation is necessary for accountability as in a dispute a judge should never
blame a principal who runs a goal-convergent program.

Having seen the definition of a protocol, we can specify the definition of
verifiability test as follows.

Definition 2 (Verifiability Test). A verifiability test vt(T , g) : bool is an
efficient and terminating algorithm such that:

– T is a set of witness traces;
– g is a goal in G.

The verifiability test should return true if, according to the evidence, a
protocol run met the goal. It should return false otherwise. In other words, the
verifiability test returns true if it accepts the set of witness traces, and false
otherwise. Definition 3 formalises the concept of verifiability.
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Definition 3 (g-verifiability). A Protocol P is g-verifiable if P admits a ver-
ifiability test vt that meets the following conditions:

1. (soundness) vt(T , g) : true =⇒ g holds in r(P );
2. (completeness) g holds in r(P ) =⇒ vt(T , g) : true;

for any run r(P ).

The soundness condition guarantees that the verifiability test returns true
only if the goal holds in a run. However, this condition alone is not sufficient:
a verifiability test that always returns false is sound but useless. Such kind of
possibilities is ruled out with the completeness condition. Completeness implic-
itly states that the verifiability test cannot fail if all principals execute programs
that converge towards the goal. It follows that P is correct as it meets the goal
when all principals behave honestly.

Both soundness and completeness conditions can be checked automatically
with cryptographic tools as reachability properties. For soundness, we check
that there exists no trace in which we reach a state where the verifiability test
returns true while the goal does not hold. For completeness, we check that there
exists no trace in which we reach a state where the verifiability test returns
false assuming all principals being honest. The analysis of three case studies
considered later in this paper demonstrates that such mechanisation is possible.

Next, we focus on accountability, more precisely on a test that can be used
to identify those principals who are responsible in the case a goal is not reached.

Definition 4 (Accountability Test). An accountability test atαy(T , g,A) :
bool is an efficient and terminating algorithm such that:

– T is a set of witness traces;
– g is a goal in G;
– αy is an indicted principal over the set of principals A.

The definition of the accountability test is methodologically close to the def-
inition of verifiability. The test should return true if according to the witness
traces the indicted principal αy did not run a goal-convergent program, namely
παi

/∈ Πg
αy

. The test should return false otherwise.
Now, we can advance a definition of accountability that is centred around a

principal and a protocol’s goal.

Definition 5 ((αy, g)-accountability). A Protocol P is (αy, g)-accountable if
given an indicted principal αy ∈ A, a goal g, and the set of its goal-convergent
programs Πg

αy
, P meets the following conditions

1. P is g-verifiable;

and P admits an accountability test atαy that meets the following conditions:

2. (soundness) atαy(T , g) : false =⇒ παy ∈ Πg
αy

;
3. (completeness) παy ∈ Πg

αy
=⇒ atαy(T , g) : false.

for any run r(P).
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Condition 1 guarantees that the event that triggers the failure can be identi-
fied, namely anyone can be convinced that a run of P failed to ensure the goal.
The relation between verifiability and accountability becomes clear here. If a goal
is not verifiable, then we cannot account any principal because we cannot state
whether the protocol run met the goal or not. Hence, verifiability is a precon-
dition for accountability. Note that condition 1 is goal-centred and independent
from the indicted principal αy.

Conditions 2 and 3 are defined similarly to the corresponding conditions for
verifiability: the accountability test returns true if it accepts the set of wit-
ness traces, and false otherwise. Soundness guarantees that the accountability
test returns false only if the indicted principal runs a goal-convergent pro-
gram. Completeness states that the accountability test cannot return true if
the indicted principal runs a goal-convergent program.

Remark. Verifiability is essential to have a meaningfulness definition of account-
ability. For example, let us assume a protocol P with three principals α1, α2,
and α3 of which only α1 is partially g-accountable (i.e. P is partially (α1, g)-
accountable) according to conditions 2 and 3 only. If α1 is not guilty (i.e. the
accountability test fails), then we cannot say anything else about accountability
in P without condition 1 since α1 is the only culpable principal. In particular,
we cannot say whether P failed because either or both α1 and α2 misbehaved or
due to an external attacker. We cannot even say if the protocol meets the goal.
If we can rule out the possibility for an external attacker, thanks to Condition 1,
we know that at least either or both α1 and α2 misbehaved although P is nei-
ther (α1, g)-accountable nor (α2, g)-accountable, something that we would miss
without Condition 1.

Finally, we propose the definition of full g-accountability. It states that a
protocol is fully accountable for a goal if the protocol is accountable for each
principal on that goal.

Definition 6 (Full g-accountability). A Protocol P is fully g-accountable if
∀α ∈ A, P is (α, g)-accountable for any run r(P).

It is easy to see that all three conditions in our definition of accountabil-
ity can be checked automatically. Condition 1 regards verifiability, and we have
already seen that soundness and completeness conditions of g-verifiability can
be modelled as reachability properties to be automatically checked by crypto-
graphic tools. Conditions 2 and 3 can also be modelled as reachability properties.
In particular, soundness can be checked by showing that there exists no trace
in which we reach a state where the accountability test returns false when all
principals but the indicted are honest, and the verifiability test fails. For com-
pleteness, we check that there exists no trace in which we reach a state where
the accountability test returns true when all principals but the indicted are
dishonest.

Table 1 describes the systematic approach that can be used to check verifi-
ability and accountability as reachability properties. This approach is validated
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Table 1. Strategies to model verifiability and accountability as reachability properties.

Property Condition Principals controlled
by the attacker

Strategy

Verifiability Soundness All (modulo the
goal)

vt(T , g) : true �
g holds

Completeness None vt(T , g) : true

Accountability Soundness Indicted vt(T , g) : false �
atαy(T , g) : true

Completeness All but the indicted atαy(T , g) : false

with two different tools and three different security protocols in the following
sections.

4 Case Study I: Secure Exam Protocol

Bella et al. [18] propose a secure exam protocol that does not rely on any trusted
party. Hence it can resist to corrupted candidates and authorities. The protocol
involves four roles (i.e. candidate, administrator, examiner, and invigilator), and
runs in four phases (i.e. preparation, testing, marking, and notification). The
most interesting aspect of the protocol regards the outcome of preparation, in
which candidate and administrator jointly generate the candidate’s pseudonym
as a pair of visual cryptography shares using an oblivious transfer scheme. One
visual crypto share is held by the candidate, who prints it on a paper sheet
together with signatures generated by the administrator. The other visual crypto
share is printed by the administrator as a transparency printout and handed to
the candidate at testing. Each share alone does not reveal the pseudonym, which
the candidate learns only when the two shares are overlapped at testing. Thus,
the goal of preparation is to distribute the generation of the two visual cryptog-
raphy shares that, when overlapped, reveal an intelligible code. We consider this
goal to analyse accountability, hence we leave testing, marking, and notification
phases and focus only on the outcome of preparation in our analysis.

The idea underlying the preparation phase is that the candidate provides a
commitment to an index into an array while the administrator fills the array
with a secret permutation of the characters, and only when the two secrets
are brought together is the selection of a character determined. Notably, no
one learns anything about the code without the knowledge of both shares. The
outcome of preparation is two sheets jointly generated by candidate and admin-
istrator using a combination of visual cryptography, commitment, and oblivious
transfer schemes. The commitment scheme comes with a function commit(·, ·)
that takes in a random value and a secret, and outputs the commitment. The
oblivious transfer schemes consists of (i) the function obf(·, ·), which takes a com-
mitment and a set of secrets, and returns a set of obfuscated values; and (ii) the
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function deobf(·, ·), which takes in a set of obfuscated values and a commitment,
and returns the corresponding set of secrets.

The authors prove in ProVerif that the protocol meets a set of authentication,
privacy, and verifiability properties. They also prove a form of accountability,
but their definitions are specific to the protocol in question. Differently, we prove
accountability using our general approach that can be applied to other protocols.

As we shall see later, our accountability tests take in the content of the paper
and transparency sheets. The paper sheet contains the candidate visual share
β, the set of candidate’s chosen indexes I, the random commitment value c,
and two signatures sign1 and sign2 both generated by the administrator and
encoded as QR codes. The first signature contains the commitment comA of the
administrator on α. The second signature contains the commitment comC of
the candidate chosen indexes I, and the set of obfuscated values Ω due to the
oblivious transfer scheme. The transparency printout contains the visual share α,
and the random commitment value a on the administrator’s commitment comA.
A succinct representation of the contents of the sheets is outlined in Table 2.

Table 2. The content of the paper and transparency sheets

Sheet Content Description

Paper (candidate) β Visual cryptography share

c Random commitment value on
comc

I Set of indexes chosen by the
candidate

sign1 comA Administrator’s commitment

sign2 comC Candidate’s commitment on I

Ω Set of obfuscated values

Transparency
(administrator)

α Visual cryptography share

a Random commitment value on
coma

4.1 Analysis

Our analysis focuses on the goal of generating two correct visual shares. If
so, an intelligible code should appear when the candidate overlaps paper and
transparency sheets. We propose two distinct dispute resolution procedures (i.e.
accountability tests) — one for the candidate and the other for the administrator
— for which we can have formal guarantees of correctness. Our accountability
tests can be used with the same sheets generated at preparation of the origi-
nal protocol. We use ProVerif, an automatic protocol analyser that can prove
reachability and equivalence-based properties in the Dolev-Yao model.



Automated Analysis of Accountability 425

Verifiability. First, we demonstrate that the protocol is g-verifiable. Namely,
there exists a verifiability test that is sound and complete according to Defini-
tion 3 for the goal of generating an intelligible pseudonym. We specify verifiability
in ProVerif as a reachability property and use correspondence assertions to prove
soundness. The verification scenario consists of checking that, for any execution
of the protocol, all traces in which the verifiability test returns true, there is
another event, earlier in the trace, that signals that the goal holds. In this case,
the goal holds if both candidate and administrator print the correct visual shares
on the respective sheets. The attacker may control either the administrator or
the candidate, but we force two events to be emitted by candidate and adminis-
trator processes only when they print the correct visual shares. ProVerif proves
that there exists no trace in which the attacker can input the verifiability test
with false data so that the test returns true without that the goal holds.

The verification scenario to prove completeness consists of checking that,
for any execution of the protocol in which the goal holds, the verifiability test
returns true. In this case, the ProVerif model enforces only honest principals
and prevents the attacker to manipulate the input data of the verifiability-tests.
In fact, a complete verifiability-test must succeed if its input data is correct.
Specifically, the overlapping of the two visual shares should always produce an
intelligible code. ProVerif proves that there exists no trace in which the veri-
fiability test returns false when its input data is correct. Since the proposed
verifiability test is sound and complete, the protocol is g-verifiable.

Algorithm 1. The accountability test for the Candidate
Data:

- paper = β, c, I, sign1 , sign2 where
- sign1 = SignA{comA}.
- sign2 = SignA{comC , Ω}.

- transp = α, a.

if sign1 = ⊥ or sign2 = ⊥ or comc �= commit(c, I) or β �= deobf(Ω, c) then
return true

else
return false

Accountability. We propose Algorithms 1 and 2 as accountability tests for can-
didate and administrator respectively. In the following, we show that both algo-
rithms enable the protocol to meet soundness and completeness according Defi-
nition 5.

Accountability can be specified as reachability property, but the verification
scenario to check the soundness of the accountability test differs from the one
we have seen for verifiability. To check soundness, we leave the indicted principal
under the control of the attacker (i.e., we force all principals but the indicted
one to be honest). Then, if the protocol fails (i.e. the verifiability test returns
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Algorithm 2. The accountability test for the Administrator
Data:

- paper = β, c, I, sign1 , sign2 where
- sign1 = SignA{comA}.
- sign2 = SignA{comC , Ω}.

- transp = α, a.

if sign1 �= ⊥ and sign2 �= ⊥ and comA �= commit(a, α) then
return true

else
return false

false, we expect that the accountability test returns true, namely it blames
the indicted principal for all traces and protocol runs. ProVerif proves that Algo-
rithms 1 and 2 are sound since there exists no trace in which the accountability
tests return false in such scenario.

The verification scenario to prove completeness is complementary to the sce-
nario outlined above. We assume the indicted principal to be honest and leave
all the others principals under the control of the attacker. We expect that the
accountability test does not blame the indicted principal, hence it returns false
for all traces and protocol run. ProVerif proves that Algorithms 1 and 2 are com-
plete since there exists no trace in which the accountability test returns true
in this verification scenario. Thus, we conclude that the secure exam protocol is
verifiable and accountable for the goal of correctly generating and distributing
the visual cryptography shares.

5 Case Study II: Certificate Transparency

Public Key Infrastructures (PKI) are the source of accountability for a very
common use case: a client C – who wants to establish a secure connection to
a server S – receives and checks a certificate issued by a certificate authority
CA. A certificate essentially binds an identity S with a public key PKS , along
with other information such as the expiration date and a chain of certificates
leading to a root CA, which we denote as certS = signCA(PKS , S, info). The
strongest limitation of PKI is that the client should maintain a list of all trusted
CAs (usually hundreds) and if even one of them becomes compromised and
misbehaves, then the whole system is compromised. In fact, a dishonest server
colluding with a compromised CA can obtain a signed certificate for another
server identity and impersonate them, and this behaviour can go undetected
since the dishonest server can show the certificate only to the targeted users.
Moreover, the PKI standard does not require a CA to show which certificates it
has issued.
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5.1 Certificate Transparency

To solve the accountability problem of PKIs, Google proposed Certificate Trans-
parency (CT) [19], an extension of standard PKIs that allows the servers to check
that the CAs behave properly. It does so by maintaining a public, append-only,
cryptographic log of issued certificates that anybody can check. When a client
C wants to connect to S, she first receives from S their certificate certS , along
with a cryptographic proof that certS is included the log L. Conversely, the log
can be audited either as a whole in a heavy-weight fashion, or in small parts by
piggy backing a chatter protocol on top of the handshake between C and S, as
shown with by the “cloud” in the communication diagram of Fig. 1.

S

C

LogAdmin

CertAuth

Fig. 1. Certificate Transparency, communication diagram

If a CA misbehaves then their misconduct will appear publicly in the log and
will be revealed by auditing. On the other side, a log administrator colluding
with a CA could produce two different histories for the client and the server: it
could, for example, give S a log where there appears no fake certificate for S,
and give C a log where such fake certificate appears, in order to convince her to
connect to a rouge server. However, the log signs all histories presented to the
various stakeholders, so if the log gives incompatible histories to different entities,
their misbehaviour will eventually be detected, by comparing two incompatible
histories. All these operations can be implemented efficiently by the use of Merkle
trees [20], i.e. they require time and space O(log(n)) for n certificates in the log.

It is important to note that CT does not prevent attacks against clients:
a CT-enabled client C checks validity and the presence of a certificate in a
log, but nothing prevents C from accessing a compromised server SD if both
the validity check and the presence check succeed. CT ensures instead that—as
long as the Log Administrators are honest—eventually the presence of a fake
certificate is revealed to the legitimate owner of a certain domain, who can then
take appropriate actions to contain the breach. Furthermore, it claims to support
accountability for both the CA and the log administrator, in that if an attack
happens there is evidence that they misbehaved: for the CA, this is the presence
of a signed certificate without a proper proof of identity given by the legitimate
owner, while for the Log Administrator, it is the presence of two incompatible
histories, eventually revealed by two different parties exchanging them.
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5.2 Analysis

We construct a symbolic model of the Certificate Transparency protocol and
show that it satisfies both verifiability and accountability for the Certificate
Authorities and the Log Administrators. We model the protocol with AIF-
ω [4], which allows to encode stateful protocols by tracking the membership
of values in a number of sets, indexed by agent names and other parame-
ters. For example, the logs in our model are represented by a family of sets
log(LogAdmin,Server ,Cert ,Auth,User) of public keys, logged by a LogAdmin,
issued for a Server by a CertAuth, and presented to an User , where each camel-
case word defines the respective role in the protocol. Therefore we allow an
la ∈ LogAdmin to present two different stories to two different users and treat a
log as a database of signed public keys, related to the CAs that produced them
and the servers that they represent. We abstract away from the implementation
details using Merkle trees and enforce that their properties–efficient querying for
the presence of a certificate, and efficient proofs of extension–are maintained in
the database.

Verifiability. We show first that the protocol is g-verifiable according to Defin-
ition 3 for the goal of producing a valid certificate for a server. The soundness
result specifies that, for all execution traces where the verifiability test succeeds,
then the protocol has been executed only by an honest and behaving certificate
authority and log administrator; in other words, there has not been a trace where
a misbehaving CA or LA manage to pass the verifiability test. In this case, the
goal holds if there is no scenario where a malicious certificate is produced that
does not come with a proof of identity for its server and does not show two
incompatible logs (i.e. one with the certificate and one missing it). Algorithms 3
and 4 check these conditions. That is, Algorithm3 returns true if and only if the
Certificate Authority lacks a valid proof of identity for the given combination
of server and public key, and Algorithm4 returns true iff there is evidence that
the Log Administrator produces two logs log1 and log2 that are incompatible
extensions of one another. It is important to stress that in this model we assume
that there is a direct connection between the interested Server and Client com-
paring the two logs, whereas in reality there is an indirect channel realised by
the chatter network, as shown in Fig. 1. Hence in the model, the check of Algo-
rithm4 is quantified over all possible pairs of logs, and this is not a problem for
soundness, but for completeness it requires further justification.

Completeness requires that if a certificate is produced by a dishonest CA
and logged only for the client by a dishonest LA, then the client and the server,
communicating through the chatter network, will be able to discover the misbe-
haviour. In this case it is important to stress that this is a reachability property,
in that eventually the client and server will be able to discover the misbehav-
iour through the chatter log, but that might be after the client has suffered a
man-in-the-middle attack.

Accountability. The accountability test for the Certificate Authority and the Log
Administrator coincide with Algorithms 3 and 4 considered singularly. From our
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Algorithm 3. The accountability test for the Certificate Authority
Data:

- cert = signCA(PK , S, info)
- poi = proofOfID(PK ′, S′)

if poi = ⊥ or PK �= PK ′ or S �= S′ then
return true

else
return false

Algorithm 4. The accountability test for the Log Administrator
Data:

- log1

- log2.

if log1 � log2 and log2 � log1 then
return false

else
return true

model, we prove that both algorithms are sound and complete: they do no blame
any honest CA/LA, while in any case of a misbehaving CA/LA, there is a proof
that they misbehaved.

It is interesting to note that the accountability test amounts to splitting the
two checks of the verifiability test, which are aimed at indicting the Certificate
Authority and the Log Administrator, respectively. In fact, if a protocol is fully
accountable, i.e. if for every principal the accountability test is both sound and
complete, we can produce a verifiability test by composing the accountability
tests of each principal, therefore obtaining a verifiability test that is also both
sound and complete.

6 Case Study III: Bingo Voting

Bingo Voting is a cryptographic voting scheme proposed by Bohli, Müller-Quade
and Röhrich in 2007 [21]. It provides individual verifiability based on a trusted
random number generator. Each voter receives a receipt that enables the voter
to verify that the corresponding vote was counted correctly. But the receipt does
not provide any information about how the voter voted to any third party. The
original version of Bingo Voting does not include any dispute resolution proce-
dure that enables voters to prove that some manipulation took place and their
vote was altered. Küsters et al. [2] demonstrated that the original version also
allows dishonest voters to spoil an election by wrongly complaining that the elec-
tion was manipulated even if this is not the case. Bohli et al. [22] then proposed
some improvements to the original scheme that enable dispute resolution proce-
dures during the voting and the tallying phases. In this paper, we consider the
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improved version of Bingo Voting and focus on the dispute resolution procedure
during the voting phase concerning the cast-as-intended goal.

The underlying idea of Bingo Voting is that the voting machine encodes
the voter’s choice in the receipt using random numbers. Each receipt in this
election contains each candidate and one random number assigned to it. There
are two types of random numbers, dummy random numbers generated by the
voting authority before the voting phase, and fresh random numbers that are
generated during the voting phase by the trusted random number generator. The
random number used to denote the voter’s choice is the fresh random number
generated and displayed by the trusted random number generator inside the
voting booth. All other random numbers associated to the rest of candidates are
dummy random numbers.

At preparation phase, the voting authority generates and publish the set of
dummy votes. A dummy vote consists of a pair of Pedersen commitments that
hide a dummy random number and the corresponding candidate. The voting
authority generates a number of dummy votes equal to the product of the number
of candidates and the number of the voters. In addition to the set of dummy
votes, the voting machine generates a proof using randomized partial checking
[23] to show that each candidate has received the same number of dummy votes.
At voting, the voter enters the voting booth and records her choice on a paper
ballot that is then fed into the scanner of the voting machine. The scanner
prints a random barcode onto one margin of the paper ballot. The barcode is
used as alignment information in case of a dispute as the receipt contains an
identical barcode. The trusted random number generator generates one fresh
random number that is sent to the voting machine and displayed on a screen
inside the voting booth so that the voter sees the number. The voting machine
generates a receipt such that the fresh random number generated by the trusted
random generator is printed next to the candidate chosen by the voter, while
unused dummy random numbers are printed next to the other candidates. If the
voter thinks that the receipt is correct, she destroys the paper ballot and leaves
the voting booth keeping the receipt. The paper ballot needs to be destroyed to
prevent vote-buying and coercion.

In the case of a dispute, the voter can put paper ballot and receipt inside
privacy sleeves. The privacy sleeves aim at solving a dispute without revealing
how a voter voted. There are two types of privacy sleeves. The first type leaves
uncovered the barcodes and the candidate names (see Fig. 2). This would allow
the voter to prove that the candidates are not placed identically with respect
to the barcode on the receipt and the paper ballot. The second type of sleeve
uncovers the barcodes and one row of the marking area on the paper ballot and
of random numbers on the receipt (see Fig. 3). This would allow the voter to
prove a mismatch between her choice and the random numbers that appear on
the receipt and on the screen.

The next phase of Bingo Voting is the tallying phase, which we do not cover
here since our focus is on the dispute resolution procedure during the voting
phase.
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Fig. 2. The type of privacy sleeve to check the correctness of the alignment of candi-
dates

Fig. 3. The type of privacy sleeve to check the correctness of the encoding of the voter’s
choice

6.1 Analysis

We analyse verifiability and accountability of the improved version of Bingo
Voting in ProVerif. We assume two candidates are competing for the election
and, as we shall see later, prove that the improved version of Bingo Voting
meets verifiability but not accountability.

Verifiability. Our analysis strategy to check verifiability of Bingo Voting is simi-
lar to the one adopted to check verifiability of the secure exam protocol in Sect. 4.
We prove soundness using correspondence assertions and checking that, for any
execution of the protocol, all traces in which the test returns true, the vote was
cast as intended. Since either the voting authority/machine or the candidate
can be malicious, we prove the soundness of the verifiability test in each of these
scenarios. The verifiability test is as in Algorithm 5. It takes in the paper ballot,
the receipt and the random number displayed in the screen, and checks whether
the barcodes of paper ballot and receipt match. It also checks that the choice
on the paper ballot is associated to the correct random number, which matches
with the one displayed in the screen. ProVerif proves that the verifiability test
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is sound. To prove completeness, we check in ProVerif that when the input data
of the test is correct, the test never returns false. Since the verifiability test is
sound and complete, Bingo Voting allows any one to verify that a vote has been
cast as intended.

Accountability. The accountability test for the dispute resolution coincides with
the verifiability test. In fact, the failure of the verifiability test (i.e., it returns
false) is a sufficient condition to blame the Voting Authority since the random
generator is trusted by assumption. Hence, the soundness of the accountability
test can be trivially checked by proving that if the verifiability test fails, then
the accountability test never returns false when the indicted principal is the
Voting Authority and it is controlled by the attacker. Since the accountability
test and the verifiability test coincide, ProVerif trivially proves the soundness
of the accountability test. To check completeness, we set the Voting Authority
honest and the voter controlled by the attacker. We aim at showing in ProVerif
that the accountability test never returns true, namely it does not blame the
honest Voting Authority. ProVerif fails to prove completeness and shows an
attack trace in which two corrupted voters can collaborate to falsely blame an
honest Voting Authority. The attack consists of a voter who hands his receipt to
the next voter. The latter, on the isolation assumption of the voting booth, swaps
the fresh receipt printed by the Voting Machine with the one handed previously
by the colluding voter. Then, he puts the fresh paper ballot and the old receipt in
the privacy sleeves so that the two barcodes mismatch. The attack is meaningful
unless voters are searched before entering the voting booth. We believe this is
unlikely to happen as it would decrease the applicability and acceptance of the
voting system. Thus, the improved version of Bingo Voting still fails in that of
allowing dishonest voters to spoil an election by wrongly complaining that the
election was manipulated even if this is not the case.

Algorithm 5. The verifiability test for Bingo Voting
Data:

- screen = r.
- paper = choice, barcode p.
- receipt = r1, r2, barcode r.

if (choice = c1 and r = r1 and barcode p = barcode r) or (choice = c2 and
r = r2 and barcode p = barcode r) then

return true

else
return false

7 Conclusion

Accountability is an essential property for critical systems. Although it has been
studied in several security protocols, it has never been defined in a way that



Automated Analysis of Accountability 433

fully enables its automated analysis with cryptographic tools. To the best of our
knowledge, we advance the first approach that enables the accountability analysis
of security protocols automatically. Soundness and completeness conditions are
tailored so that verifiability and accountability can be specified as reachability,
a property that many cryptographic tools can check automatically nowadays.
We validate our approach by applying our definitions to the analysis of three
different protocols: a secure exam protocol, Certificate Transparency, and Bingo
Voting. We propose the accountability tests that make exam administrators
and candidates accountable for the failure of the exam. We show in ProVerif
that our accountability tests are sound and complete. We prove in AIF-ω that
Certificate Transparency meets its goal of blaming Certificate Authorities and
Log administrators if they misbehave. Finally, we find that the improved version
of Bingo Voting does not satisfy accountability, although we consider a trusted
random generator.

Extending the applicability of automated verification methods to security
protocols is a major direction for future work. Manual proofs are complicated
and hard to follow as they may involve reasoning about probability and computa-
tional complexity, hence prone to human errors. We believe that our mechanised
approach will favour the adoption of automated formal verification techniques
for the analysis of accountability.
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