
Efficient Cleansing in Coercion-Resistant Voting

Rosario Giustolisi1 and Maryam Sheikhi Garjan2

1 IT University of Copenhagen, Copenhagen, Denmark
rosg@itu.dk

2 Brandenburg University of Technology, Cottbus, Germany
sheikhig@b-tu.de

Abstract. Coercion resistance is a strong security property of electronic
voting that prevents adversaries from forcing voters to vote in a specific
way by using threats or rewards. There exist clever techniques aimed at
preventing voter coercion based on fake credentials, but they are either
inefficient or cannot support features such as revoting without leaking
more information than necessary to coercers. One of the reasons is that
invalid ballots cast due to revoting or coercion need to be removed before
the tallying. In this paper, we propose a coercion-resistant Internet voting
scheme that does not require the removal of invalid ballots, hence avoids
the leakage of information, but still supports revoting. The scheme is
very efficient and achieves linear tallying.

1 Introduction

The utilization of ICT solutions is becoming more prevalent, particularly within
electoral processes. The EU Commission has recently acknowledged [12] that
Internet voting facilitates elections and encourages the digitalization of many
sectors and activities in society. However, Internet voting is risky. A shift towards
Internet voting would introduce unprecedented challenges to election correctness.
The most obvious one is voter coercion, in which a coercer forces a voter to cast
a ballot in a particular way.

Most cryptographic schemes achieve coercion resistance by either deniable
revoting or fake credentials. In deniable revoting, voters update or nullify previ-
ously cast votes while being under coercion. Schemes based on deniable revoting
normally assume over-the-shoulder coercion and that the voter has always a
chance to revote after being coerced. These assumptions are not needed in fake
credentials as coercers cast ballots using fake credentials. Such ballots are re-
moved from the tally during the so-called cleansing phase. Cleansing is a critical
process that traditionally follows voting and precedes tallying, in which the tal-
liers verifiably remove the ballots that should not be counted due to revoting
or coercion. Efficient coercion-resistant voting schemes based on fake credentials
have been proposed in the literature, but they publicly leak more information
than necessary to coercers during cleansing. For example, information about bal-
lots with the same credentials and those with invalid credentials is leaked out in
JCJ [18]. A recent attempt [8] aimed at preventing information leakage during

2 R. Giustolisi and M. Sheikhi Garjan

cleansing achieves quasi-linear tallying, yet it is inefficient. Inefficiency originates
from the fact that the the scheme rely on the multiparty computation (MPC)
technique called CGate [27] and on mixnets [2] to prevent information leakage.
CGate introduces heavy costs due to computations on bit-wise encryptions in
the cleansing phase.

In this paper, we propose an Internet voting scheme that offers a new trade-
off between coercion-resistance and efficiency. Assuming that the tally servers
are trusted for coercion-resistance, we can avoid the leaking of any information
during cleansing very efficiently and achieve linear tallying. Our scheme is based
on noise ballots that obfuscate the ballots cast by voters, and on a cleansing
procedure that excludes invalid and noise ballots without the need to remove
ballots, therefore without leaking any information during cleansing publicly. The
scheme guarantees a version of coercion-resistance that accounts for revoting and
noise ballots. Our definition is based on a recent one by Cortier et al. [8]. The
scheme is also very efficient as it provides linear tallying, and does not require
MPC or mixnets. It relies on exponential ElGamal [11] and (disjunctive) non-
interactive zero-knowledge proofs (NIZKP) of knowledge [10].

Contributions. The main contribution of this paper is a new Internet voting
scheme that provides coercion-resistance without leaking any information during
cleansing efficiently. We prove that our scheme satisfies coercion resistance under
the DDH assumption in the random oracle model. Cleansing in our scheme
is particularly efficient, and the complexity of tallying is linear. We provide a
prototype implementation of our scheme in Python to demonstrate that the
scheme provides fast cleansing and tallying.

2 Related work

The concept of the fake credential paradigm, introduced in JCJ [19], has been
widely acknowledged as an effective method to achieve coercion resistance. In
JCJ, tallying has a quadratic complexity in the number of votes. This is due to
the cleansing steps required to eliminate invalid and revote ballots. Efforts have
been made to enhance the efficiency of JCJ. Civitas [7] groups voters into blocks
to reduce the tallying time. Weber et al. [31] use hash tables instead of plaintext
equivalence tests (PET). Other approaches [16, 28–30] use a mix of hash tables
and PET to remove ballots due to revoting and invalid credentials in linear time.
Rønne et al. [26] advance a version of JCJ with linear-time tallying based on fully
homomorphic encryption. Araújo et al. [3] use different cryptographic primitives
than JCJ to achive tallying in linear time. However, all the schemes outlined
above have the same cleansing leakage as JCJ [8].

To avoid information leakage at cleansing, Cortier et al. [8] propose CHide,
a cleansing-hiding scheme that uses MPC and mixnets. Tallying is quasi-linear
but MPC introduces several exponentiations and computations with bit-wise en-
cryptions inducing a heavy cost for CHide. Differently from CHide, our work re-
quires noise ballots and that the tally servers are trusted for coercion-resistance.

3. OVERVIEW 3

However, even considering a large number of noise ballots, our scheme is faster
than CHide since it has no MPC or mixnets and it is fully parallelizable while
guaranteeing publicly cleansing-hiding.

Schemes based on deniable vote updating [1,4,6,13,17,20–22,24,25] add noise
ballots to mitigate information leakage to coercers. They require either that the
voter can cast a ballot after being coerced or inalienable authentication at voting
(i.e. over-the-shoulder coercion). Our scheme is based on fake credentials and
does not have such assumptions.

The first formal definition of coercion-resistance [19] sets the coercer’s advan-
tage to distinguish between a real and an ideal game that simulates the voting
scheme. Later, various definitions based on a real-ideal games have been pro-
posed [18]. A general approach that defines quantitative coercion-resistance has
been proposed in [21] as δ-coercion resistance. In this approach, the coerced
voter has a specific strategy to evade coercion. Coercion resistance is ensured
if the adversary cannot distinguish whether the coerced voter evades coercion
with an advantage greater than δ. Grewal et al. [15] introduced a relaxed version
of coercion-resistance in which voters can signal coercion attempts. We aim to
a non-relaxed versions of coercion-resistance instead. More recently, Cortier et
al. [8] proposed a definition of coercion resistance based on the one introduced
in JCJ that captures revoting and the addition of noise ballots. We use this
definition to prove that our scheme is coercion-resistant.

0 1 2 3 4 5 6 7 8 9

β
V2,[0]
0 β

V0,[0]
1 β

V1,[c1]
2 β

V2,[0]
3 β

V0,[c1]
4 β

V0,[0]
5 β

V0,[0]
6 β

V2,[0]
7 β

V1,[0]
8 β

V1,[0]
9

10 11 12 13 . . . l . . . m . . . n

β
V1,[c2]
10 β

V1,[c1]
11 β

V2,[0]
12 β

V0,[0]
13 . . . β

V2,[0]
l . . . β

V1,[0]
m . . . β

V0,[c2]
n

Fig. 1: In the voting phase, the bulletin board is filled with ballots. Ballots cast
by a voter under coercion are in diamond, while coercion-free cast ballots are
in circle. Noise ballots are in square. Inside each square bracket is the chosen
candidate. In this example, the last ballot on the bulletin board is a coerced one
and is for candidate [c2].

3 Overview

In the voting phase, the bulletin board receives ballots from voters and coercers,
as well as, noise ballots from voting authorities. It is important that the distri-
butions used to sample the number of noise ballots and to determine the time to

4 R. Giustolisi and M. Sheikhi Garjan

LV0 β
V0,[0]
1 β

V0,[c1]
4 β

V0,[0]
5 β

V0,[0]
6 β

V0,[0]
13 . . . β

Vn,[c2]
n

LV̂0
β[0] βV0

0
oo βV0

1

OO

βV0
2

oo βV0
3

oo βV0
4

oo βV0
n

oo

LV1
β
V1,[c1]
2 β

V1,[0]
8 β

V1,[0]
9 β

V1,[c2]
10 β

V1,[c1]
11 . . . β

V1,[0]
m

LV̂1
β[0] βV1

0
oo βV1

1
oo βV1

2
oo βV1

3

OO

βV1
4

oo βV1
m

oo

LV2 β
V0,[0]
0 β

V2,[0]
3 β

V2,[0]
7 β

V2,[0]
12 β

V2,[0]
l

LV̂2
β[0] βV2

0
oo βV2

1
oo βV2

2
oo βV2

3
oo βV2

l
oo

Fig. 2: Our cleansing technique in practice. Each voter list contains the bal-
lots with the public identity of voter Vi. Arrows indicate which ballots are re-
randomized to generate the cleansing lists. V2 captures a voter who abstains from
voting. The last ballots in the cleansing lists are those considered for tallying.

cast each of them are unpredictable [21] otherwise a coercer can learn the voting
cast behaviour of voters and significantly distinguish the amout of noise ballots
from the real ones. Voters can also generate and cast noise ballots to mitigate
forced-abstention attacks and the extent to which the effectiveness of coercion
resistance is dependent on authorities controlling noise ballot generation. In each
ballot, it is indicated in clear to which voter the ballot should be assigned. Figure
1 shows an example of a bulletin board filled with some ballots.

In the cleansing phase, the tally servers associate each ballot to the assigned
voter according to their cast time, generating public voter lists of ballots. For
example, in Figure 2, the voter list for voter V0 is LV0 . The goal is that at the
end of cleansing, the last ballot of each voter list encrypts the last vote cast with
the valid credential, if any, or an encryption of zero. To do so, for each voter,
the tally servers generates a cleansed list that will contain the same number
of ballots of the voter list. In Figure 2 the cleansed list for voter V0 is LV̂0

.
The tally servers populate the cleansed list by checking, in order, the credential
encrypted in each ballot from the corresponding voter list. If the ballot has
the correct credential, the tally servers add to the cleansed list a new ballot
that is the re-randomization of the ballot with the correct credential. Otherwise,
the new ballot is the re-randomization of the previous ballot in the cleansed
list. The tally servers re-randomize tha ballots using ElGamal re-encryption and

3. OVERVIEW 5

prove in zero-knowledge (i.e. using disjunctive NIZKP) the correctness of the
re-randomization. The last ballots in the cleansing lists can homomorphically
added to obtain the final tally.

3.1 Threat model

The list of participants is the same as JCJ. We consider voters, a registration
authority, a bulletin board, and tally servers. Differently from JCJ, we require
an authority (e.g. the tally servers) generating noise ballots. Voters may be
dishonest and collude with the attacker. The attacker may attempt to coerce
honest voters. The registration authority provides credentials to voters therefore
is assumed to be honest. The bulletin board is assumed to present the same
content to all readers therefore is an honest, append-only list of data that is
publicly accessible. Therefore, it is susceptible to denial of service attacks as it
receives anonymous ballots. The tally servers are responsible for tallying and
publishing the final election results on the bulletin board. These servers form
an honest majority t-out-of-n threshold encryption system and are trusted for
coercion resistance. The communication channels between the voters and the
registrar are untappable, and the voters send their ballots to the bulletin board
via anonymous channels. Civitas [7] is an example of techniques that implement
distributed participants with the related trust assumptions outlined above. Fi-
nally, we consider a computationally bounded adversary whose aim is to break
ballot privacy, verifiability, deniable revoting, and coercion resistance.

3.2 Cryptographic primitives

The only two cryptographic primitives required in our scheme are ElGamal en-
cryption and NIZKP.

Let λ and κ be the security parameters. Let G be a cyclic group of prime
order p and generators g, g1, g2 ∈ G. We denote the integers modulo p with Zp

and write r
$←− Zp for r being chosen uniformly from Zp. The encryption scheme

is the modified ElGamal encryption scheme [19] for group G, with generators
g1, g2 of order p and message space M = g1

b, where b = {0, 1} consisting of the
following algorithms:

- TKeyGen(1λ), which, on input of security parameter 1λ, outputs a pair of El-
Gamal decryption and encryption keys (sk, pk) where sk = (x1, x2), x1, x2

$←−
Zp, and pk = gx1

1 gx2
2 .

- Enc(pk,m; r), which, given a public key pk, a message m ∈ M, and some
randomness r

$←− Zp, outputs a ciphertext (c1, c2, c3) = (gr1, g
r
2,m · pkr).

- Dec(sk, ct = (c1, c2, c3)), which outputs m = (c1)
−x1 · (c2)−x2 · c3.

- ReEnc(pk, ct = (c1, c2, c3); r), which, using randomness r
$←− Zp, outputs the

reencryption of ct namely (c1 · gr1, c2 · gr2, c3 · pk
r).

- CKeyGen(1κ) which, on input security parameter 1κ, outputs the credential
σ, where σ

$←− G.

6 R. Giustolisi and M. Sheikhi Garjan

For verifiability, we use NIZKP of knowledge based on the Fiat-Shamir trans-
forma to prove relations. We define the following relations to verify the proper
construction of a voter’s ballot and the computation of the tally.

The proof of well-formed encryption assures the verifier that ct is an ac-
curate encryption of a message m and randomness r known to the prover,
using the public encryption key pk. The corresponding relation is defined as
Renc = {((ct, pk), (r,m)) ∈ Renc iff ct = Enc(pk,m; r)} to compute NIZKP of
knowledge πenc. We also prove that m ∈ M, where M denotes the range of the
messages.

The proof of correct decryption assures the verifier that ct is decrypted to
m by applying the knowledge of secret encryption key sk on ciphertext ct.
The decryption relation is defined as Rdec = {((pk,m, ct), sk) ∈ Rdec iff m =
Dec(sk, ct) ∧ pk = gsk} to compute the NIZKP of knowledge πdec.

The proof of correct re-encryption assures the verifier that ct′ is a valid
re-encryption of ciphertext ct using randomness r with respect to a public
encryption key pk. The corresponding relation Rrenc

is defined as Rrenc
=

{((pk, ct, ct′), r) ∈ Rrenc
iff ct′ = ReEnc(pk, ct; r)} to compute a NIZKP of knowl-

edge πrenc
.

We use disjunctive NIZKP of knowledge as introduced by Cramer et al. [9]
for verifiable cleansing in the tally phase. Let Rd = R1 ∨R2 and x = (x1, x2), a
disjunctive NIZKP relation R is defined as follows:

{((x1, x2), ω) ∈ Rd iff (x1, ω) ∈ R1 ∨ (x2, ω) ∈ R2}
To generate a proof for a defined relation, we use the function Proof(x, ω), which
takes a public statement x and a secret witness ω of the defined relation, and
outputs the corresponding proof. We assume that the function Proof takes the
corresponding relation as implicit input. For disjunctive NIZKP of knowledge,
we use the function DisjProof(x, ω) to compute the related proof.

4 Formal description

The algorithms defining the schemes are as follow.

– Setup(1λ, (t, n), I,C) → ((pkT , skT), (pkR, skR)): on input of the security pa-
rameter 1λ, threshold parameter (t, n) electoral roll I, and candidate list C
computes (pkT , skT)

$←− TKeyGen(1λ) and (pkR, skR)
$←− SKeyGen(1λ).

– Register(1κ, I, (skR, pkR), pkT) → (L, {(id, σ, ĉt)}id∈I: on input of the security
parameter 1κ, skR, pkR, pkT , and I do the following.

- Compute σ
$←− CKeyGen(1κ) to create a voting credential for voter id.

- Compute ĉt
$←− Enc(pkT , σ; rid)

- Add the tuple (id, ĉt) to the registered voter roll L.
- Append the signed voter roll L, to the public bulletin board, BB.
- Return (id, σ, ĉt) to the voter id.

– Vote(ĉt, σ, c)→ β: on implicit input the tallier public key pkT , secret credential
σ, candidate option c ∈ C, do the following.

4. FORMAL DESCRIPTION 7

- Compute ctσ
$←− Enc(pkT , σ; r) and ctc

$←− Enc(pkT , c; rc).
- Run π

$←−Proof(x, ω), where x=(pkT , ĉt, ctσ, ctc) and ω=(rc, c, r, σ):

(x, ω) ∈ Rβ iff ctc = Enc(pkT , c; rc) ∧ ctσ = Enc(pkT , σ; r).

- Return the ballot β = (ctc, ctσ, ĉt, π) on BB.

– Validate(BB, β) → ⊤/⊥: on input a ballot β = (ctv, ctσ, ĉt, π) and implicit
input (pkT , L) checks that i) ĉt ∈ L, ii) β does not already appear in BB, and
iii) ⊤ ← Verify(x, π). If any of the checks fail, it returns ⊥ otherwise ⊤.

– Append(BB, β) → BB: on input a ballot β = (ctc, ctσ, ĉt, π) updates BB by
appending the ballot β.

– VerifyVote(BB, ĉt, σ, c, β)→ ⊥/⊤: on input a ballot β = (ctc, ctσ, ĉt, π), secret
credential σ, public credential ĉt, and vote option c checks that β is on BB
and that Validate(BB, β) = ⊤. If any of the checks fail return ⊥ otherwise ⊤.

– Tally(BB, skT) → (R,Π): on input BB and the decryption key skT apply
cleansing and compute the election result as follows: Let N = |L|, where L
is the set of public credentials of registered voters on BB. Let Lĉt be a voter
list of ordered ballots based on the submission time such that ĉt ∈ L, where
βi = (ctci , ctσi , ĉt, πi) and βi ∈ Lĉt. Filter the ballots as follows:

- Arrange the ballots with public credential ĉt in the order they appear on
BB and store them in Lĉt.

- Initialise the cleansed list LĉtT
= [ĉt, ct0] for each ĉt ∈ L, where ct0 =

Enc(pkT , 0; 0) denotes a null vote ballot.

- Run Append(BB, Lĉt)→ BB and Append(BB, LĉtT
)→ BB.

- If Dec(skT ,
ctσi

ĉt
) = 1, given ctσi

∈ βi and ĉt ∈ LĉtT
, then compute

ctTi

$←− ReEnc(pkT , ctci ; rTi
) and run πi

$←− DisjProof(x, ω), where x =
(Lĉt, LĉtT

, pkT , ctTi
) and ω = (skT , rTi

)

(x, ω) ∈ Req iff ctTi
= ReEnc(pkT , ctci ; rTi

) ∧ Dec(skT ,
ctσi

ĉt
) = 1

- Else compute ctTi

$←− ReEnc(pkT , ctTi−1
; rTi

) and run π
$←− DisjProof(x, ω),

where x = (Lĉt, LĉtT
, pkT , ctTi

) and ω = (skT , rTi
)

(x, ω) ∈ RUneq iff ctTi = ReEnc(pk, ctTi−1 ; rTi) ∧ Dec(skT ,
ctσi

ĉt
) ̸= 1

where RT = Req ∨RUneq and i ≥ 1.

- Set (ctTi
, πi) as a last vote ballot in LĉtT

and run Append(BB, LĉtT
)→ BB.

Compute Ti =
∏N

k=1 ct
i
k, where ctk ∈ LĉtT

denotes the last vote ciphertext.
The tally ti for candidate ci is produced by decrypting Ti with the key skT .
Compute the result R = (t1, . . . , t|C|) and Π, i.e. all Fiat-Shamir proofs in-
cluding the proof for correct decryption of the result. Output (R,Π).

– VerifyTally(BB, (R,Π)) → ⊥/⊤: on input BB, result (R,Π), verifies the cor-
rectness of (R,Π) on BB. If any of the checks fail return ⊥ otherwise ⊤.

8 R. Giustolisi and M. Sheikhi Garjan

The scheme is organized in the following four phases.

Setup phase: The algorithm Setup(1λ, (t, n), I,C) → ((pkT , skT), (pkR, skR))
allows, respectively, tallying servers and registrars to generate the key pairs
(pkT , skT)

3 and (pkR, skR). The bulletin board BB is initialized with the lists of
candidates C, eligible voters identities I, pkR, and pkT .

Registration phase: The registration authority registers the voter with id ∈ I to
the election by running Register(1κ, I, skR, pkR, pkT) → (L, {(σid, ĉtσid

)}id∈I)),
which returns to each voter id, a secret credential σid ∈ G, and a public credential
ĉtσid

. Then it sets a voting roll L of the voters’ public credential (e.g. (id, ĉtσid
)).

Finally, it executes Append(BB,L)), which appends the signed L on BB.

Voting phase: A voter makes a choice of a candidate from C, selects a pub-
lic credential ĉtσid

from L on BB, encrypts and generates the proof for their
ballots. The voter then submits their ballot to BB through an anonymous chan-
nel. The voters use NIZKP to prove the relation Rβ . The voter proves in zero-
knowledge that they know the vote and their choice is well-formed. The voter
runs VerifyVote(BB, ĉt, σ, c, β)→ ⊥/⊤ to verify their ballot and check that it is
included in the bulletin board.

Trustees generate noise ballots identical to the voters’ ballots to provide
re-voting deniability and participation privacy. To generate a noise ballot, the
trustee computes Vote(pkT , σ

′, ĉt, c′) → β′ using a fake credential σ′ generated
by the trustees and a random candidate c′ ∈ C. Both voters and trustees can
generate these noise ballots.

Tallying phase: The tallying servers execute Tally(BB, skT)→(R,Π). Anyone can
verify the process of tallying and result R of tallying by executing VerifyTally(BB, R,Π),
which checks Π w.r.t. BB and R. The tally servers use disjunctive NIZKP of
knowledge π to prove that (x, ω) ∈ RT , where RT = Req ∨ RUneq. The tally
phase proceeds as follows.

- The tallying servers eliminate ballots that contain invalid proofs or unregis-
tered public credentials.

- The tallying servers arrange the ballots based on their public credentials. The
ballots with credential ĉt are stored in the list Lĉt.

- The tallying servers initiate a list called LĉtT
= [ct0, ĉt] corresponds to the

original list Lĉt.
- The tallying servers generate a new vote ballot ctT corresponding with βĉt =

(ctv, ctσ, π) ∈ Lĉt. If Dec(skT ,
ctσi

ĉt
) = 1, then ctT is a re-randomiztion of

ctc ∈ β. The tally servers prove (x, ω) ∈ Req and simulate the relation RUneq.
Otherwise, they re-randomize the last vote ciphertext in LĉtT

. In this case,
the they prove (x, ω) ∈ RUneq and simulate the Req.

3 The secret key is generated in a distributed way, thus no single server learns the key.

4. FORMAL DESCRIPTION 9

- In homomorphic tallying, the final ballots of each tally list LĉtT
are multi-

plied, and the resulting ciphertext is decrypted. The tally servers provide proof
of correct decryption. Furthermore, the steps of tallying with corresponding
proofs are added to BB to ensure universal verifiability.

Algorithm 1 RealCR
Require: A, 1λ, 1κ, nA, I,C,B
1: BB ← ∅
2: ((pkT , skT), (pkR, skR))← Setup(1λ, 1κ, I,C)
3: {σi; i ∈ I},L← Register(1κ, I, (skR, pkR), pkT)
4: A← A(L) ▷ corrupt voters
5: (j, cα)← A({σi; i ∈ A}) ▷ coerce a voter j who has vote intention cα
6: if |A| ≠ nA ∨ j /∈ I\A ∨ cα /∈ C ∪ {ϕ} then Return 0
7: end if
8: B ← B(I\A,C)
9: ▷ samples a sequence of pairs (i, ci) with i ∈ I\A) ∪ {−i ∈ Z|i > 0} and

ci ∈ C
10: for (−i, ∗) ∈ B, i ∈ I do σf

i ← Fakecred() ▷ ballots sent for the voter i
with invalid creds

11: end for
12: b

$←− {0, 1}
13: σf

j ← σj

14: if b == 1 then
15: Remove all (j, ∗) ∈ B
16: else
17: Remove all (j, ∗) ∈ B but the last, which is replaced by (j, cα) if cα ̸= ϕ

and removed otherwise
18: σf

j ← Fakecred (σj)
19: end if
20: A(σf

j) ▷ A learns σf
j

21: for (i, ci) ∈ B (in this order) do
22: M ← A(BB) ▷ cast ballots
23: BB ← BB ∪ {m ∈M |Validate(m,BB) = 1}
24: BB ← BB ∪ {Vote(i, σi, ci)} ∪ {Vote(i, σf

i , ci)}
25: end for
26: M ← A(BB,"last honest ballot sent")
27: BB ← BB ∪ {m ∈M |Validate(m,BB) = 1}
28: (R,Π)← Tally(BB, skT)
29: b′ ← A()

10 R. Giustolisi and M. Sheikhi Garjan

5 Security

We prove that our scheme ensures coercion resistance under the DDH assumption
in the random oracle model. We informally argue that our scheme provides
ballot privacy and universal verifiability. Our scheme satisfies ballot privacy if
the underlying ballot encryption scheme is non-malleable under chosen plaintext
attack (NM-CPA) secure under the DDH assumption in the random oracle model
[5]. Universal verifiability means that anyone can refer to the public bulletin
board to verify the correctness of the tally result produced by tally servers.

Algorithm 2 IdealCR
Require: A, 1λ, 1κ, nA, I,C,B
1: A← A(1λ, 1κ) ▷ corrupt voters
2: (j, cα)← A() ▷ coerce a voter j who has vote intention cα
3: if |A| ≠ nA ∨ j /∈ I\A ∨ cα /∈ C ∪ {ϕ} then Return 0
4: end if
5: B ← B(I\A,C) ▷ sample a sequence of pairs (i, ci) with

i ∈ I\A) ∪ {i ∈ Z|i < 0} and ci ∈ C
6: b

$←− {0, 1}
7: if b == 1 then
8: Remove all (j, ∗) ∈ B
9: else

10: Remove all (j, ∗) ∈ B but the last, which is replaced by (j, cα) if cα ̸= ϕ
and removed otherwise

11: end if
12: (ci)i∈A, cβ ← A(|Bi|)i∈I) ▷ |Bi| is a number of pairs (i, ci) ∈ B and

(−i, ci) ∈ B for voter i.
13: if (b == 1) ∧ (cβ ∈ C) then ▷ cβ is the coercer vote for the voter j
14: B ← B ∪ {(j, cβ)}
15: B ← B ∪ {(i, ci)|i ∈ A, ci ∈ C}
16: end if
17: X ← result(cleanse(B))
18: b′ ← A(X)
19: Return 1 if b′ == b else 0

5.1 Coercion Resistance

Our scheme ensures coercion resistance, meaning that a coercer should not be
able to determine the validity of a voter’s credential based on the election result.
Additionally, the data published on the bulletin board during the voting and
tally phases should not reveal whether a registered voter abstained from voting
or revoted. It is assumed that the bulletin board is honest and that the commu-
nication channels between the voters and the public board are anonymous. The

5. SECURITY 11

registration is untappable and the registration authority and the tally servers are
trusted for coercion resistance. We adapt the definition of coercion-resistance by
Cortier et al. [8] that takes into account revoting and the addition of noise bal-
lots by tally servers. The main modification is in the ideal experiment in which,
instead of giving the total number of ballots, we give to the adversary AI in
the ideal experiment each voter’s number of ballots (including noise ballots).
In doing so, the adversary AR in the real experiment and AI have the same
knowledge about the number of ballots regarding a public credential, and not
about the number of ballots cast by a voter. For simplification, we consider a
single honest tallier. For a quantitative analysis of the effectiveness of coercion
resistance depending on noise generation we refer to the one done in [25].

Theorem 1. Our scheme provides coercion resistance under the DDH assump-
tion in the random oracle model.

Proof. We construct a probabilistic polynomial time algorithm S which is given
a DDH test instance to simulate the election protocol process for AR (Algorithm
1). Our goal is to prove that the advantage of AR in the real experiment is only
negligibly higher than that of AI (Algorithm 2). This is important because if
there is a non-negligible advantage AR over AI , then the simulator S can solve
the DDH problem with a non-negligible probability.

The group of voters who have been corrupted is denoted by A, while the vot-
ers who have valid credentials are denoted by S = I \A. B denotes a distribution
of pairs (i, c) where c ∈ C and i represents a voter with valid credentials. A voter
with fake credentials or noise ballots, is represented by (−i, c). The distribution
B models a voter’s abstention with (i, ∗), revoting with i appears in several pairs,
and (−i, c) as a ballot with a fake credential for the voter i. The ballots with
fake credentials can be added either by any participant. Note that both the real
and ideal experiments assume that there are noise ballots in B regardless of how
many ballots a voter casts.

The challenger of DDH problem constructs the test quadruple (g1, g2, h1, h2)
based on the coin d. If d = 1, the simulator S receives a DDH instance; otherwise,
a random instance is given. The simulator S, which is given (g1, g2, h1, h2) and
a distribution B ∈ B, simulates the election process for AR. If the test instance
is DDH instance, AR’s view will be the same as their view in the real coercion-
resistance experiment. Otherwise, AR’s view will be the same as AI ’s in the ideal
coercion-resistance experiment. The election process is simulated as follows:

1. Setup. Given the test quadruple (g1, g2, h1, h2), the simulator S who con-
trols the tally servers and registrar simulates the setup phase for AR. The
simulator S, who knows the secret key of the tally server skT = (x1, x2) and
the secret key of the registrar skR outputs the electoral roll I, the candidate
list C, the register keys (pkR, skR), and tally server keys (pkT , skT), where
pkT = (gx1

1 gx2
2 , (g1, g2)).

2. Registration. The simulator S generates credentials {σi ∈ G}i∈I , encrypts
them using pkT , stores them in L, and publishes the registration list L.

3. Adversarial corruption. AR selects a set A of nA voters to corrupt.

12 R. Giustolisi and M. Sheikhi Garjan

4. Adversarial coercion. AR selects the voter that they want to coerce and
also chooses the vote cα as the coerced voter’s vote.

5. Validity check The simulation terminates if any of the following happens:
|A| ≠ nA, j /∈ I \A, or cα /∈ C∪{∅} where ∅ denotes the choice to abstain.

6. Bit flip. Given a distribution B, S flips a random bit b ∈ {0, 1}. If b = 0 and
cα ̸= ∅, S eliminates all valid pairs of voter j except the last one, replaces
the last pair (j, c) ∈ B with (j, cα), and gives a fake credential σf to AR. On
the other hand, if b = 1, S removes all valid pairs (j, c) ∈ B and gives the
coerced voter’s credential σ to AR.

7. Adversarial ballot casting. AR casts some of the ballots with credentials
of the corrupted voters, as well as that of the coerced voter j.

8. Honest voter simulation. S generates a ballot for all pairs in B, namely
the honest voters and their noise ballots as follows:

- S selects the public credential ĉt from the registered voting roll L corre-
sponding with voter i.

- S computes Dec(skT , ĉt) = σi. For a noise ballot, it generates a random
fake credential σf

i . Note that S knows the encryption secret key skT .
- Given test quadruple (g1, g2, h1, h2) and the encryption secret key skT =
(x1, x2), S computes new public key p̄kT = (hx1

1 hx2
2) where (h1, h2)

denotes corresponding the new generators.
- Given the vote ciphertext c̄tci = (h

rci
1 , h

rci
2 , ci(p̄kT)

rci) and credential ci-
phertext c̄t = (hri

1 , hri
2 , σi(p̄kT)

ri), S simulates the zero-knowledge proof
πi using programmable random oracle, and returns β̄i = (c̄tci , c̄tσi

, ĉt, πi).
Note that the simulated honest voter ballot, denoted by β̄i, is different from
the actual ballot βi, which is generated by an honest voter i using a public
key pkT = (gx1

1 gx2
2 , (g1, g2)). We will demonstrate the advantage of AR to

distinguish this difference is equivalent to determining whether (g1, g2, h1, h2)
is a Decisional Diffie-Hellman (DDH) instance (i.e., d = 1) or not.

9. Adversarial last ballot casting Adversary AR casts the final set of ballots
corresponding with the corrupted voters and the coerced voter j.

10. Tallying S simulates an honest tallier using the secret key skT . The cor-
rectness of each step in this phase can be verified publicly.
a. Proof checking S verifies the proof of the ballot cast by AR. It then

initialises the lists (Lĉt, LĉtT
) for each ĉt ∈ L and for the all cast ballots.

b. Checking credentials and generating tally ballots S generates
cleansed ballots for LĉtT

. It uses skT to decrypt the comparison result
of credentials. Then S generates a voting ciphertext corresponding with
each ballot β ∈ Lĉt and the relation RT . It then simulates a NIZKP of
knowledge for the relation RT . Note that S re-randomizes the adversary
ballots using public key pkT and honest voters using public key p̄kT .

c. Decryption S homomorphically adds the last ballots from {LĉtT
}ĉt∈I\A

and decrypts the result using secret key skT . Similarly, the last ballots
of {LĉtT

}ĉt∈A are added and decrypted. S computes the final result R
and simulates the decrypting proof Π.

12. Adversarial output. Adversary AR outputs a bit b′. S returns d′ = b′ for
the test instance of DDH problem.

5. SECURITY 13

If d = d′ = 2, namely, (g1, g2, h1, h2) = (g, ga, gb, gab), the view of AR from
the simulation of the election process is indistinguishable from the real coercion
resistance experiment Expcr−real. Additionally, if d = d′ = 0, the view of AR

from the simulation of the election is equal to the AI in the ideal coercion
resistance experiment Expcr−ideal. The adversary AI in experiment Expcr−ideal

is given a list of numbers corresponding to the number of ballots per voter i
and the final result. This means that the advantage of S in distinguishing the
test (g1, g2, h1, h2) in DDH problem can be reduced to the advantage of AR in
Expcr−real over AI in Expcr−ideal. Formally,

AdvDDH
S = AdvAR(Expcr−real)−AdvAI (Expcr−ideal).

We now show that if d = 1 i.e. (g1, g2, h1, h2) = (g, ga, gb, gab). The view of
AR in the simulation process of Expcr−real is indistinguishable from the view
of AR in Expcr−real. Let p̄kT = (hx1

1 hx2
2 , (h1, h2)) be the encryption public key

used by S, c̄tc = Enc(p̄kT , c; r), c ∈ C. Since d = 1 we have h1 = gb1, h2 = gb2,

Enc(p̄kT , c; r) = (hr
1, h

r
2, c(p̄kT)

r) = (gbr1 , gbr2 , c(gx1
1 gx2

2)br) = Enc(pkT , c; br)

The equation above shows that Enc(p̄kT , c; r) and Enc(pkT , c; br) are different
in the randomness. Enc(pkT , c; br) and Enc(pkT , c; t) have the same distribution
of randomness for t

$←− Zp, hence Pr[S = 1|d = 1] = AdvAR(Expcr−real), where
AdvAR is defined as |Pr[Expcr−real

ES,AR (1λ, 1κ, I,C, nc) = 1]− 1
2 |.

We also prove that if d = 0 then (g1, g2, h1, h2) = (g, ga, gb, gz) where z $←− Zp.
The view of AR in the simulation process of Expcr−real can be presented by the
view of AI in Expcr−ideal. Let az′ = z and b+ b′ = z′,

Enc(p̄kT , c; r) = (hr
1, h

r
2, c(p̄kT)

r)

= (gbr1 , gzr2 , c(gbx1
1 gzx2

2)r)

= (gbr1 , gzr+br−br
2 , c(gbx1

1 grzx2−rbx2+rbx2
2)

= (gt1, g
t
2g

zr−br
2 , c(pkT)

tgrzx2−rbx2
2)

= (gt1, g
t
2g

t′

2 , c(pkT)
tgt

′

2))

The random group element gt
′

3 completely hides vote c, and the adversary AR

does not learn anything from Enc(p̄kT , c; r). In this case, the view of AR in
the simulation process of Expcr−real can be compared to the view of AI in
Expcr−ideal where in the latter AI is given a list containing the total number of
ballots of each voter as Pr[S = 1|d = 0] = AdvAI (Expcr−ideal).

5.2 Ballot privacy

A voting scheme ensures ballot privacy if the information published during the
election does not reveal how a voter voted. We informally show that our scheme
achieves ballot privacy based on the following assumptions:

– the ballot encryption scheme with the NIZKP of knowledge is NM-CPA secure
– the registrar and the public bulletin board are honest

14 R. Giustolisi and M. Sheikhi Garjan

– up to t talliers and a subset of voters can be corrupted

A voting system can be vulnerable to replay attacks if an attacker can copy a
voter’s ballot from the bulletin board and then submit it as their own legitimate
ballot, violating ballot privacy. Our ballot encryption scheme includes NIZKPoK,
which prevents malleability during the voting phase. Since the registrar and the
majority of talliers are honest, no legitimate ballot can be generated with honest
voter credentials. In the tally phase, the manipulation of the voting ballot beyond
re-randomization and nullifying defined in the relation RT is prevented, as the
talliers generate NIZKPoK for each ballot during the tally phase.

6 Verifiability

For verifiability, we consider the voting device being trusted and an adversary
that can corrupt a subset of voters. First, we show that the final result is ac-
curate and computed on the last ballots on the bulletin board. Assume that
the adversary outputs a set of final ballots, the result R, and the correspond-
ing proof Π at the tally phase. The last ballots from the tally processed lists
namely {LĉtT

}ĉt∈L form a set i.e., T = {ctT1
, ctT2

, . . . , ctTn
}. The set T , the

result R, and the proof of valid decryption are published on the BB. The ho-
momorphic property of ElGamal and the soundness of proof of valid decryption
verifies that the result R is obtained from the decryption of Πn

i=1ctTi . We can
conclude that VerifyTally(R,Π) only returns ⊤, when R is the correct result of
T = {ctT1

, ctT2
, . . . , ctTn

} on BB.
We show that each ballot β = (ctc, ctσ, ĉt, π) on BB corresponds to one of the

following sets: i) the ballots of the honest voters who have checked their ballots;
ii) the ballots with fake credential σf ; iii) the ballots of the corrupted voters.

The knowledge soundness of the proof π on the ballot β ensures that β is well-
formed and valid. Thus, one can verify that the ballot β on BB is either a well-
formed ballot with real or fake credential. Given that i) the registration authority
is honest, ii) up to the threshold of tallier are dishonest, iii) DDH problem
assumption holds, and iv) the knowledge-soundness of NIZKP proves that if
β ∈ BB has a valid credential, it is cast by either honest voters or corrupted
voter. In addition, the adversary cannot generate a new ballot with a legitimate
credential except by using the corrupted voter’s credential. The cleansing process
on the tuples (ctc, ctσ) ∈ Lĉt result in either a vote c ∈ C or c = 0. The tally
servers generate a new pair (ctT , πT) corresponding to (ctc, ctσ) ∈ Lĉt based on
the relation RT = Req∨RUneq. The knowledge soundness of the proof πT ensures
that ctT is either a re-randomized version of ctc or the null vote with deterministic
randomness ct0. According to relation RT , ctT is a re-randomization of ctc if the
decryption of ctσ and ĉt are equal, or ct0 otherwise.

7 Performance and conclusion

Our prototype is written in Python [14]. We use the zksk library [23] for the im-
plementation of the disjunctive zero-knowledge proofs. We run our experiments

7. PERFORMANCE AND CONCLUSION 15

Table 1: Tallying times (including cleansing) in our scheme.
nr. of ballots 1000 10000 100000 1000000

nr. of candidates 2 4 10 2 4 10 2 4 10 2 4 10
tallying time 2s 3s 5s 18s 30s 50s 3m 5m 8m 30m 50m 1.3h

in a M2 MacBook Pro laptop with 16GB of RAM. Table 1 shows the average
times to tally the results according to different numbers of ballots and candi-
dates. The prototype implementation confirms that the tallying time is linear to
the number of the ballots, which also includes the noise ballots. Since each voter
list can be cleansed independently from the others, cleansing is fully paralleliz-
able in our scheme. This means that our scheme can accommodate a very large
number of noise ballots and still provide fast tallying. Better performance can
be achieved by implementing the scheme in a more efficient language.

In conclusion, we presented a scheme that provides an efficient cleansing pro-
cedure for coercion-resistant voting. Since any participant can cast a ballot for
any candidate, the scheme is subject to ballot flooding attacks. This is mitigated
by fast cleansing and can be further mitigated by using slot times for casting bal-
lots. With this work, we introduce a new trade-off between coercion-resistance
and efficiency, and aim at stimulating the voting community to further investi-
gate the implications of publicly cleansing-hiding in coercion-resistant voting.

References

1. Achenbach, D., Kempka, C., Löwe, B., Müller-Quade, J.: Improved coercion-
resistant electronic elections through deniable re-voting. {USENIX} Journal of
Election Technology and Systems ({JETS}) 3, 26–45 (2015)

2. Aranha, D.F., Battagliola, M., Roy, L.: Faster coercion-resistant e-voting by en-
crypted sorting. Cryptology ePrint Archive (2023)

3. Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant scheme
for remote elections. In: Dagstuhl Seminar Proceedings (2008)

4. Bernhard, D., Kulyk, O., Volkamer, M.: Security proofs for participation privacy
and stronger verifiability for helios. Tech. rep., TU Darmstadt (2016)

5. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of
the fiat-shamir heuristic and applications to helios. In: ASIACRYPT 2012. pp.
626–643. Springer (2012)

6. Clark, J., Hengartner, U.: Selections: Internet voting with over-the-shoulder
coercion-resistance. In: Danezis, G. (ed.) Financial Cryptography and Data Se-
curity. pp. 47–61. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

7. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: 2008 IEEE Symposium on Security and Privacy (sp 2008). pp. 354–368 (2008)

8. Cortier, V., Gaudry, P., Yang, Q.: Is the jcj voting system really coercion-resistant?
Cryptology ePrint Archive (2022)

9. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: CRYPTO ’94 (1994)

10. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. European transactions on Telecommunications (1997)

16 R. Giustolisi and M. Sheikhi Garjan

11. Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. Information Theory, IEEE Transactions on (1985)

12. EU Commission: Compendium of e-voting and other ICT
practices. https://commission.europa.eu/publications/
compendium-e-voting-and-other-ict-practices_en, 2023-12-06

13. Giustolisi, R., Garjan, M.S., Schuermann, C.: Thwarting last-minute voter coer-
cion. In: 2024 IEEE Symposium on Security and Privacy (SP) (2024)

14. Giustolisi, R., Sheikhi, M.: Scheme prototype. https://github.com/fgiustol/
Evoteid24 (2024)

15. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.: Caveat coercitor: Coercion-
evidence in electronic voting. In: IEEE Symposium on Security and Privacy (2013)

16. Haghighat, A.T., Dousti, M.S., Jalili, R.: An efficient and provably-secure coercion-
resistant e-voting protocol. In: Privacy, Security and Trust (2013)

17. Haines, T., Mueller, J., Querejeta-Azurmendi, I.: Scalable coercion-resistant e-
voting under weaker trust assumptions. In: ACM SAC’23 (2023)

18. Haines, T., Smyth, B.: Surveying definitions of coercion resistance. IACR Cryptol.
ePrint Arch. p. 822 (2019)

19. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
ACM Workshop on Privacy in the Electronic Society (2005)

20. Kulyk, O., Teague, V., Volkamer, M.: Extending helios towards private eligibility
verifiability. In: E-Voting and Identity - VoteID 2015 (2015)

21. Kusters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-
resistance and its applications. In: IEEE Computer Security Foundations (2010)

22. Locher, P., Haenni, R., Koenig, R.E.: Coercion-resistant internet voting with ever-
lasting privacy. In: Financial Cryptography and Data Security: FC 2016 Interna-
tional Workshops. pp. 161–175. Springer (2016)

23. Lueks, W., Kulynych, B., Fasquelle, J., Le Bail-Collet, S., Troncoso, C.: Zksk: A
library for composable zero-knowledge proofs. In: WPES (2019)

24. Lueks, W., Querejeta-Azurmendi, I., Troncoso, C.: VoteAgain: A scalable coercion-
resistant voting system. In: USENIX Security (2020)

25. Müller, J., Pejó, B., Pryvalov, I.: Devos: Deniable yet verifiable vote updating.
Proceedings on Privacy Enhancing Technologies (2024)

26. Rønne, P.B., Atashpendar, A., Gjøsteen, K., Ryan, P.Y.A.: Coercion-resistant vot-
ing in linear time via fully homomorphic encryption: Towards a quantum-safe
scheme. CoRR abs/1901.02560 (2019)

27. Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the condi-
tional gate. In: International conference on the theory and application of cryptology
and information security. pp. 119–136. Springer (2004)

28. Smyth, B.: Athena: A verifiable, coercion-resistant voting system with linear com-
plexity. Cryptology ePrint Archive (2019)

29. Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: Achieving meaningful effi-
ciency in coercion-resistant, verifiable internet voting. Gesellschaft für Informatik
eV (2012)

30. Spycher, O., Koenig, R., Haenni, R., Schläpfer, M.: A new approach towards
coercion-resistant remote e-voting in linear time. In: Financial Cryptography and
Data Security. pp. 182–189. Springer (2012)

31. Weber, S.G., Araujo, R., Buchmann, J.: On coercion-resistant electronic elections
with linear work. In: ARES. pp. 908–916. IEEE (2007)

https://commission.europa.eu/publications/compendium-e-voting-and-other-ict-practices_en
https://commission.europa.eu/publications/compendium-e-voting-and-other-ict-practices_en
https://github.com/fgiustol/Evoteid24
https://github.com/fgiustol/Evoteid24

	Efficient Cleansing in Coercion-Resistant Voting

