Journal of Computer Security 0 (0) 1 1
10S Press

Invalid Certificates in Modern Browsers:
A Socio-Technical Analysis

Rosario Giustolisi® Giampaolo Bella® Gabriele Lenzini®

&[T University of Copenhagen, Denmark
b Universita di Catania, Italy
°SnT, University of Luxembourg

Abstract. The authentication of a web server is a crucial procedure in the security of web browsing. It relies on certificate
validation, a process that may require the participation of the user. Thus, the security of certificate validation is socio-technical
as it depends on traditional security technology as well as on social elements such as cultural values, trust and human-computer
interaction.

This manuscript analyzes extensively the socio-technical security of certificate validation as carried out through today’s most
popular browsers. First, we model processes, protocols and ceremonies that browsers run with servers and users as UML activity
diagrams. We consider both classic and private browsing modes and focus on the certificate validation. We then translate each
UML activity diagram to a CSP# model. The model is expanded with the LTL formalization of five socio-technical properties
pivoted on user involvement with certificate validation. We automatically check whether the CSP# models are socio-technically
secure against Man-in-the-Middle attacks using the PAT model checker. The findings turn out to be far from straightforward.
From them, we state best-practice recommendations to browser vendors.

1. Introduction

Although the Web has not been conceived to be a secure platform, nowadays most of the popular
websites can be accessed via TLS and are authenticated via certificates. While we can reasonably as-
sume that TLS provides confidentiality and integrity as it uses robust cryptographic schemes, we should
be more careful in assuming the same for authentication. The authentication of a website depends, to
various degrees, on trust. One element of trust comes either from the web-of-trust concept or from the
public-key infrastructure (PKI). Either way, the authentication of a website works through the issuing of
certificates. A certificate binds an identity with a public key, and contains other pieces of information that
the verifier, also known as authenticator or trustor, needs to check to accept the certificate. The verifier
is a software, normally the browser of the user who accesses a website. The browser verifies that the
identity on the certificate corresponds to the identity on the website, and that the certificate is signed by
a trusted authority. Thus an authentication that succeeds seems to depend mostly on the browser rather
than on the user. But when the validation fails, browsers usually resort on the choices of users. In this
case, the user is the ultimate responsible for the website’s authentication.

0926-227X/0-1900/$27.50 (© 0 — IOS Press and the authors. All rights reserved

Invalid certificates are not rare. For example, to cut on costs, institutions often self-issue their own
certificates rather than purchase them from accredited certification authorities. While the deployment of
a private PKI for a large organization also bears costs, self-issuing a certificate comes at no expense.
But, even if institutions purchase their certificates from a recognized authority, they may still use the
certificate beyond its expiration date or abuse it to certify different domains and sub-domains that are
not actually provided for the certificate. With a security take, an invalid certificate may originate from
a network attacker who attempts a Man-in-the-Middle attack, namely the attacker replaces the server’s
certificate with his own.

We do not intend to contribute to the long-established debate on the interpretation of the technical
meaning of authentication [35]] but, rather, we expect to substantiate our observation that server authen-
tication with modern browsers goes beyond the technical certification path validation algorithm as de-
scribed in the X.509 standard [21]. The validation of a certificate is in fact socio-technical to the extent
in which modern browsers consider user’s choices and support the validation with novel technologies,
such as the HTTP Strict Tranport Security (HSTS). Thus, with certificate validation we refer to the prop-
erty of the extended protocol that browsers customize with user’s involvement and additional security
mechanisms.

We note that the way the certificate validation is accomplished varies considerably among browsers.
This variety motivates a number of research questions. What are the differences in terms of user in-
volvement in how modern browsers implement server authentication? Which browsers reduce the se-
curity risks for users when a certificate is invalid? Can browsers improve their security by involving
the user more profitably than they do at present? This list of questions, purposely truncated to length
three here, arises when server authentication, and certificate validation in particular, is assessed from a
socio-technical standpoint.

Contribution. Our work complements traditional studies in human-computer interaction by advancing
what seems to be the first formal analysis of browser’s certificate validation that is not only logically
conditioned on the technology but also on user actions. This formal analysis was not carried out using
a known approach. By contrast, it was not obvious how to represent (portions of) the functioning of a
browser in order for the security analyst to quickly get confidence with its properties without reading
long prose. Various graphical notations were tried out, and finally we found Unified Modelling Lan-
guage (UML) activity diagrams [57]] to bear the necessary flexibility. Building these diagrams is a major
hallmark in our understanding of the technicalities of the browsers. However, they are only semi-formal
and not directly executable; a formal model is needed for a fully automatic analysis. We therefore trans-
late our UML diagram models to models in the Communicating Sequential Processes (CSP) process al-
gebra [38]]. The models are extended with a Linear Temporal Logic (LTL) specification of the properties
of interest. Each extended model forms the input to the Process Analysis Toolkit (PAT) model checker
[[64]], which yields the findings reported below.

This manuscript extends our earlier conference paper [[12] with various contributions: (i) it considers
expired and revoked certificates as causes that lead to the failure of certification path validation; (ii) it
analyzes a new desktop browser, Safari, in addition to Chrome, Internet Explorer, Firefox, and the cross-
platform browser Opera Mini; (iii) it considers the analysis of private browsing mode, and the interleav-
ing of classic and private browsing; (iv) it includes a novel security property that concerns browser’s
certificate validation, so that overall the manuscript considers five socio-technical properties. Finally, (v)
it analyzes Safe Exam Browser (SEB), a kiosk browser conceived for Internet-based exams. Although
SEB is not as popular as the other browsers considered in this manuscript, its particular purpose is to
minimize the involvement of users; it is then interesting to evaluate how this feature affects certificate

validation. The mix of new browsers, modes, and properties increases the 16 scenarios analyzed in the
previous paper to this manuscript’s 60 scenarios. A disclaimer is in order that the proposed list of prop-
erties is not meant to be complete; however, our browser models are fairly well detailed, for example by
allowing for the reception of a newly issued certificate to replace the older, expired one.

The intellectual value that this manuscript gains is at least twofold: (i) it makes three best-practice
recommendations to browsers upon the basis of the additional findings on the new set of browsers and
modes; (i) it finds two bugs in Safari, respectively one in Safari for OS X and one in Safari for i0S,
which (we reported to Apple getting a reply that a fix would be available in the upcoming versions of
the browser, and) are now filed with the vulnerability identifier CVE-2015-5859 [6,56]. It is also worth
noting that, after our conference paper observed that Opera Mini fails to prompt the user in case of invalid
certificate [12]], a new version of the browser fixed this issue.

Socio-technical analysis. Ellison coined the concept of a ceremony extending “the concept of network
protocol by including human beings as nodes in the network™ [25]]; therefore, a ceremony is a technical
system extended with its human users and the possible interactions between the system and its users . A
ceremony extends the notion of protocol to include interactions, messages, and behaviours of the social
components. Similarly, the term socio-technical system refers to the system including its social compo-
nents [29]]. Therefore, analyzing a ceremony means to conduct a socio-technical analysis focusing on
socio-technical properties. It is somewhat understood that a socio-technical property pertains to how user
choices affect a traditional property of a technical system such as a security protocol; for example, we
mentioned above that certificate validation is a socio-technical property. However, there seems to exist no
standard approach to analyzing socio-technical properties and, in particular, to effectively modelling the
user in support of that analysis. While this is subject of significant international effort, as demonstrated
by the vast related work (Section [2), we base our work upon the recent ceremony concertina traversal
methodology [[11]]. It prescribes selective focus on the layers that interpose between society and each
technical system, and leverages on a previously identified layering of a ceremony [[10]. In particular, layer
IV is about the user expression of personas, each embodying a different attitude towards a technical sys-
tem, such as a careful or a distracted one; layer III is about the interaction of the given persona with the
user interface of the given technical system, normally executed on a computing device; the management
of the user interface on the device, and the potential communication of the latter with another remote
device are captured by the lower layers.

Following the ceremony concertina traversal methodology, our work focuses on layer III of the TLS
certificate validation ceremony. In consequence, this article is, in particular, not about user studies: these
traditionally assess layer IV, namely how people approach and express themselves in front of a technical
system. By contrast, this article shall inspect how the particular choices of a user, namely a user persona,
can affect the crucial property of certificate validation. We found out that this can be done elegantly
in CSP by appealing to non-deterministic operators that allow us to account for all possible personas
that can play at layer IIl — again, leaving aside an assessment on how and why such personas manifest
themselves, which would stand on layer IV. While layer IV is the traditional playground for researchers
from the Humanities, and the lower layers for researchers from Computer Science and Engineering,
layer III is the meeting point for the trans-disciplinary discourse at the basis of inherently socio-technical
analysis. It is therefore considered particularly challenging at present [11].

Article outline. After the related work discussed in Section 2] we position our work and detail the dif-
ferent aspects of certificate validation in Section 3] We introduce a description of the browsers concerned
in this manuscript in Section 4] and detail their certificate validation ceremonies in Section [5|using UML

activity diagrams. We then analyze five socio-technical properties on the browser’s ceremonies with the
PAT model checker in Section[6] We discuss the results in Section[7]and provide three recommendations.
Section [§| discusses some implications and concludes the manuscript.

2. Related Work

A few works have developed formal verification techniques to model and analyze web browsers
[[1441701647U8030]]. Akhawe et al. [S]] introduce a formal model of web security. They define the main
components of the web, namely Non-Linear Time, Browser, Servers, and the Network as Web Concepts.
They consider a spectrum of threats that span from a malicious web server to a more advanced attacker
who is able to inject contents into an honest web server. Finally, they analyze two security properties,
i.e., security invariants and session integrity, in five web security mechanisms. The considered mecha-
nisms include neither TLS nor certificate validation, and the formal model assumes that the user cor-
rectly interprets the browser’s security indicators. Our work focuses on certificate validation and consid-
ers users who may not correctly understand security indicators. GroB3 et al. [37]] propose a formal frame-
work to model a web browser and the behaviour of a user who interacts with the browser. They validate
their framework by analyzing the security of password-based user authentication. Instead of modelling
an ideal browser, we analyze the actual implementation of modern browsers. It would be interesting to
merge our approach with their model of web browser. Formal verification techniques have been used
to analyze Human-Automation Interaction [[15]]. They mostly focus on cognitive aspects of users rather
than on the technical aspects of the systems the users interact with. In this manuscript, we consider user
choices, which do depend on human cognitive factors, but our focus is more on the technical part, namely
the web browsers.

There are many studies that conduct a security analysis of certificate validation [28/27]]. Georgiev et
al. [34] analyze certificate validation in the context of TLS for different web applications, including
shopping carts, cloud storage, and payment gateways. They show several vulnerabilities due to the cus-
tomization of APIs that implement certificate validation without following any standard. Differently to
our automated approach, they detect attacks by visual inspection of the source code; moreover, the an-
alyzed applications involve no browsers. Kaminsky et al. [43] discuss different attacks against the cer-
tificate infrastructure. They point out that certificate issuers and browsers may differently interpret the
field subject name in an X.509 certificate. Such a lack of standardization makes the subject name vul-
nerable to injection attacks. A recent update to the X.509 standard [71] aims to fix the issue. Clark and
Van Oorschot [20] provide a comparative evaluation of enhancements implemented into browsers for
certificate validation. They argue that it is becoming more common that attackers own valid certificates
for a web site. Attackers’ attention focuses on certificate infrastructure because of its reliance on human
factors. We share their view that certificate validation goes beyond the mere binding between a domain
name and a public key.

Certificates may be revoked for various reasons, such as compromise of the corresponding private key
or variation of the subject details. Abstracting away from those details, Liu et al. advance a compara-
tive analysis on how modern browsers handle revocation [48]]. They demonstrate that different browsers
make dissimilar decisions in mapping the output of the certificate revocation statuses “unavailable” and
“unknown” into yes/no decisions. Contrarily to our earlier work [[12]], the mapping is now explicitly
represented in our models (Section [3).

Different solutions have been proposed to modify the structural flaws of the certificate infrastructure
[52153/40]], but they also require dedicated modifications to the protocols that use certificates to achieve

authentication. For example, the Certificate Transparency project [46] suggests an improvement to the
current TLS certificate system that consists in supplemental monitoring and auditing services via certifi-
cate logs. Such improvement requires a different server implementation to accommodate a TLS exten-
sion. Structural solutions such as TLS extensions may take a long time before being implemented exten-
sively, because both browser and server need to support the extension. In this manuscript, we also end up
with a similar proposition, but it requires a modification of the browser only, with no change required on
the server and on the TLS protocol.

The human aspect of certificate validation has recently been analyzed via different empirical studies
and more recently also with formal methods [9]. Akhawe and Felt [22] make an empiric analysis to
assess the effectiveness of browser security warnings. In particular, they measure the users’ click-through
rates on certificate and malware warnings. They find that users tend to ignore warnings as they click
through the Chrome certificate warnings. Such a finding led Google to redesign Chrome’s certificate
warnings. Similarly, Flinn and Lumsden [31] conduct a survey to assess whether users are aware of
the security risk they face online. They find that users have different interpretations of the term “secure
web site” and are generally unaware that TLS provides server authentication. By contrast, our formal
analysis does not pertain to user perception, but investigates the various ways in which user’s choices
influence server authentication. Jgsang et al. [41] point out that web browsers can only do syntactic server
authentication, as TLS cannot provide semantic server authentication. Thus, the attacker can exploit
semantic attacks to trick the user. They advocate the need of a framework to determine the assurance
level of server authentication. Our approach aims at analyzing how web browsers help users to avoid
such server authentication attacks. Gajek et al. [33]] propose a new authentication protocol that consists of
a mix between the Password Authentication Key Exchange (PAKE) and TLS protocols without relying
on a PKI. They formalize a user as a probabilistic machine. The user’s behaviour can recognize the so-
called human-perceptible indicators like pictures and sounds. In contrast, we are not interested in the
cognitive aspects, and make minimal assumptions about the user capabilities. Akhawe et al. [4] produce
a taxonomy of certificate validation warnings and collect data over more 10 billion TLS connections that
are not under MITM attacks. Thus, they calculate the false positive rate of showing warnings and present
a number of recommendations to improve the design of browsers. Conversely, our approach considers
MITM attacks.

The security of browsers has been studied variously, for example to avoid the user’s oversight of
warning messages [66]], or to improve the readability of their contents [13]]. These works are positioned
over the cognitive aspects of human-computer interaction with the browsers. In short, our work can be
positioned as follows: we see the socio-technical system consisting of a web server, a computer network,
a browser, a user and possibly an intruder as a ceremony in the sense of Ellison [25]]; we focus on layer
IIT of that ceremony, referring to a layering of Bella and Coles-Kemp [10]], where user personas interact
with the interface of a technology.

3. Basics

This section clarifies a few technical notions and sets the terminology used throughout this article.
First, it details the constituents of a web certificate and explains how their validation works or can fail.
Then, it discusses the regulations that specifies the path validation of a web certificate, and observes how
the standard eventually leaves the interpretation of certificate validation to browser manufacturers. In
consequence, certificate validation becomes a mix of user’s choices and technical security mechanisms,

from which emerges that certificate validation in modern browsers is a socio-technical process. The
sequel of this section outlines a few basic concepts that are needed later.

Web certificates

A web certificate binds an identity to a public key. The X.509 standard [21] specifies the structure of a
certificate as a set of mandatory and optional fields. Among the mandatory fields, four are fundamental
to understand the authentication purpose of a certificate: subject, which specifies the certificate owner’s
identity; subject public key, which specifies the public key associated to the subject; issuer, which spec-
ifies the entity who verified that the public key belongs to the owner described in the subject; certificate
signature, which specifies the digital signature generated by the issuer on subject and public key.

A subset of mandatory fields also includes the following ones: version, which specifies whether op-
tional fields are expected to be used; serial number, which is unique among the certificates generated by
the issuer; and not before and not after, which specify the time interval during which the issuer maintains
information about the status of the certificate.

Certificate validation

The algorithm for the path validation of a certificate checks whether the certificate is valid. It consists
in verifying that the signature is correct provided that the verifier trusts the issuer. In this case the public
key can be used to communicate with its owner. However, even if the signature is correct, the verifier may
not trust the issuer. In this case the issuer, which is known as intermediate authority, needs itself to be
certified. This forms a chain of intermediate authorities called certificate path. The certificate path always
chains up to a root called certification authority (CA), whose certificate is self-signed, namely the issuer
and the subject coincide. The verifier is assumed to trust the public key of the CA. Thus, the validation
of a certificate path is to check the fields of each certificate up to a trustful root certificate. The X.509
standard details a certification path validation algorithm, but verifiers are free to implement their own
algorithms, provided they offer equivalent functionality [21]]. The fetching of the certificates forming a
certificate path is outside the scope of this paper; by contrast, this paper focuses on the validation of a
given certificate path.

Invalid certificates

If the path validation of the certificate succeeds, then the certificate is valid for the verifier, namely the
verifier trusts the link between the public key and the identity presented by the certificate. However, the
validation may fail due to a number of errors:

Unknown or untrusted certificate issuer The certificate path chains up to a certification authority that
is not in the list of CAs the verifier trusts. Verifiers may trust different certification authorities,
since there is no universally trusted list of CAs.

Possible reasons A certificate may be invalid because entities, such as web servers, may prefer to
self issue a certificate rather than purchase expensive certificates by commercial CAs. This
choice may be even necessary when a single entity owns many different domains that need
to be certified. Self-issuing a certificate is a quick procedure and has no costs. Self-issued
certificates “are often used in large companies” [69] as well as in important institutions, such
as the US Army [68].

Expired certificate A certificate expires if the not after field contains a date in the past.

Possible reasons Entities may forget to renew their certificates before they expire. According to
a recent survey [4], expired certificates are the most common form of benign (i.e., false
positives) certification path validation failures.

Revoked certificate A certification authority may revoke the certificate due to either administrative or
security reasons. For example, if an entity believes that an attacker has learned the private key, it
may ask the CA to revoke the certificate.

Possible reasons Again, verifiers may trust different certificate authorities, thus revocation also
depends on the specific CA store used by the verifier. Moreover, certificate revocation is
a protocol by itself: CRL, OCSP, and CRLSets are three common protocols to revoke and
check certificates [[71l6136l], and verifiers may support any of these. The certificate specifies
which protocols the verifier should use to check the certificate revocation status. However,
such information might be missing, leading to the unavailable status. Some protocols may
not be able to evaluate the revocation status, hence terminating with an unknown status.

Mismatched certificate subject The subject expected by the verifier mismatches the one shown in the
certificate. According to a large-scale survey on certificates [69], mismatched certificate subject is
a frequent case of certificate path validation failure.

Possible reasons False positives may occur because an entity needs to secure its own sub-domain
(e.g.,www.subl.entity.com), but, to save costs, the entity does not purchase a certifi-
cate for each sub-domain.

The standard X.509 says that if any one of the checks of the certification path validation fails, then
the algorithm terminates, returning a failure indication to the concerned protocol. The TLS protocol uses
X.509 certificates to support authentication, and browsers implement TLS over HTTP to provide confi-
dentiality, integrity, and authentication on the communications with web servers. Since authentication is
an optional TLS requirement, the corresponding RFC standard [23]] outsources the certificate validation
to the browsers: “How to interpret the authentication certificates exchanged is left to the judgment of
the designers and implementors of protocols that run on top of TLS”. Moreover, the HTTP over TLS
standard [S9] advocates the involvement of the user when the certification path validation fails: “User
oriented clients MUST either notify the user (clients MAY give the user the opportunity to continue with
the connection in any case) or terminate the connection.”. Ultimately, browsers can implement differ-
ently the certificate validation, which becomes socio-technical when the technical approach, namely the
certification path validation, fails.

Socio-Technical aspects of certificate validation

Browsers communicate with the user in different ways, such as text warnings, pop-up windows, open
or closed padlocks, and colored address bars. The main component that browsers use to interact with the
user is the viewport, which is depicted in Figure|[T]

The user can choose any of the options proposed in the browser’s viewport: a cautious user may close
the browsing session, while a curious one may click through a warning. Users may be variously skilled
and educated. They are influenced by a huge variety of local or global cultural values.

Malicious websites nowadays can use scripts to gain major control on browser’s viewport and deceive
users [20] on security warnings. Although the design of browser’s security indicators has improved over

www.sub1.entity.com

the years [[70], a number of studies have shown that users tend to click through a warning without paying
attention [45/4)66]. These social factors make the problem of certificate validation a security problem
that cannot be solved by purely technical means.

a Viewport

Your connection is not private

Attackers might be trying to steal your information from www.us.army.mil (for
example, passwords, messages, or credit cards).

This server could not prove that it is www.us.army.mil; its security certificate is not

trusted by your computer's operating system. This may be caused by a misconfiguration
or an attacker intercepting your connection.

Proceed to www.us.army.mil (unsafe)

Fig. 1. The viewport component of a browser

HTTP Strict Transport Security (HSTS)

A few proposals have been recently advanced to minimize the participation of users in certificate val-
idation and make security less reliant on user’s choice [67/39]]. Different browsers have adopted HSTS
[39]], a security mechanism originally conceived to thwart TLS stripping attacks [51,50]. In a TLS strip-
ping attack, the attacker forces the user to communicate via an HTTP connection although the web
server supports HTTPS connections. HSTS-compliant browsers prevent “unsecured” HTTP connections
to HSTS-compliant web servers. To do so, the web server sends the browser an HSTS header during a
secured TLS session. Optionally, the HSTS header may include a list of the only certification authorities
allowed to issue the web server’s certificate. Then, the browser adds an internal policy stating that the
concerned web server must be accessed via HTTPS only, and with a valid certificate. Thus, once the
authentication of the web server succeeded, it shall not fail in the future.

HSTS minimizes user’s participation in favour of a purely technical enforcement of security: if the
certificate validation fails for browser-known HSTS-compliant web servers, then the browser shows the
user an error message (not a warning) and aborts the connection. Some browsers implement an HSTS
pre-loaded list of web servers precisely to make those servers browser-known and hence mitigate so
called bootstrap MITM attacks: this attack exploits a vulnerability that sees a user type a URL or follow
a link using HTTP rather than HTTPS to an unknown HSTS-compliant server.

Since HTTP uses an insecure channel, the first attempt to interact with the specified server is still
vulnerable to MITM attacks. However, HSTS usage statistics show that only a small percentage of top
web servers is HSTS-compliant [[18/44]]. Similarly to what they do with certification path validation,
browsers implement HSTS differently from each other, as we shall see below.

4. Modern browsers

This manuscript considers the most popular browsers available nowadays. According to StatCounter
[63]], the most used browsers are Firefox, Chrome, Internet Explorer, and Safari. Additionally, we con-
sider two more browsers: Opera Mini and Safe Exam Browser (SEB) [62]. Opera Mini is the most popu-
lar platform-independent browser [58]] and is available on many mobile devices. Its analysis is motivated
because nowadays more and more users prefer to browse the Web with touchscreen mobile devices, and
in particular Opera Mini dramatically reduces the amount of data transferred. In doing so, we aim to
evaluate how such restrictions affect certificate validation. SEB is the state-of-the-art browser to carry
out online exams securely, in which authentication is a critical security property [24]. By analyzing SEB
socio-technically, we mean to evaluate how certificate validation is affected by a kiosk browser intended
to minimize the interaction with its users. We remark that not all browser specifications are available,
hence many of our modelling choices are derived empirically, as noted below.

Firefox

The inception of Mozilla Firefox originates from Netscape Navigator. According to StatCounter [63], it
is the third most popular browser over desktop, mobile, tablet, and console devices. Among the browsers
we consider, Firefox seems to be the most complete: it supports HSTS, distinguishes two different certifi-
cate stores, and allows users to store server certificates either permanently or temporarily. Since Firefox
is open source, we studied it by looking at its official documentation and source code. In this manuscript
we consider Firefox version 36.0.4.

Chrome

Although Google Chrome is the youngest browser we consider, it is the most popular. It was the first
browser to support HSTS policies, and adopts different certificate stores depending on the operating sys-
tem underlying the browser. Chrome is based on the Chromium open source code with minor differ-
ences. We analyzed Chrome inspecting the Chromium source code and using empirical tests. This work
considers Chrome version 41.0.

Internet Explorer

Microsoft Internet Explorer was the most popular browser for years, and has been overtaken by
Chrome only recently. Currently, it does not support HSTS, which is however planned to be implemented
soon [S5]. Internet Explorer is available only for Windows operating systems, and uses their certificate
stores. Since Internet Explorer is closed source, we relied on empirical tests, also supported by network
analyzers. The version of Internet Explorer analyzed is 11.0.16.

Safari

Safari is the browser developed by Apple and is popular on the company devices. It supports HSTS
and, similarly to Firefox, distinguishes two different certificate stores allowing users to store server cer-
tificates. Safari is available only on Apple’s operating systems and is closed source. We thus analyzed it
empirically and assisted by network analyzers. We studied Safari 8.0.3.

Opera Mini

Opera Mini is used by more than 244 million people per month and is particularly popular in emerging
countries, according to the company data [58]]. It aims at being the most lightweight browser for any Java-
capable device. To do so, the browser uses Opera proxy servers and compression technologies to reduce
traffic and speed up page display. Thus, although communications to the proxy server are encrypted,
there is no end-to-end TLS encryption between the browser and the web server. We analyzed the (closed-

10

source) browser empirically, using a Java emulator with network analyzers. In this work we consider
version 7.6.4.

Safe Exam Browser

The last browser considered in this manuscript is SEB, which is developed at ETH Zurich. The goal
of SEB is to impede fraud in online exams by preventing access to unwanted resources and utilities
of the operating systems. In practice, it turns the device into a kiosk for exams by removing any other
components of a browser but the viewport. Due to the stringent security requirements imposed by the
risk of cheating at exams, SEB is an interesting case study for our browser analysis. Since SEB is open
source, we studied it by looking at its official documentation and source code, analyzing the version 2.0
of the browser.

4.1. Private browsing

All the browsers we consider in this manuscript support private browsing[] which is a privacy pro-
tection mode that disables browser’s history and cache. Private browsing gives the user no guarantee
about Internet privacy as an eavesdropper can still learn the web sites visited by the user. Rather, private
browsing protects user’s privacy only over the data stored in the local machine. Each browser implements
private browsing differently, and this is usually done by inhibiting different features [3]]. Private browsing
is becoming increasingly popular among users [19], so we consider it in our analysis. In particular, it is
interesting to study how browsers balance security (e.g., HSTS, user’s approved certificate) with privacy
technologies. Concerning certificate validation, one would expect no differences between private and
classic browsing. However, as we shall see later, this is not true.

4.2. Technical notes

We tested the certificate validation in Firefox, Chrome, Internet Explorer, and SEB using an Intel Core
i7 3.0 GHz with 8 GB RAM running Windows 8.1 on a virtual machine. We tested certificate valida-
tion on Opera Mini inside MicroEmulator, a Java implementation of JavaME, and analyzed certificate
validation on Safari on an Apple MacBook Pro Intel Core i5 2.5 GHz with 8 GB RAM running OS X
Yosemite 10.10. The network analyzers we used to understand how certificate validation works, espe-
cially on closed-source browsers, are “Wireshark™ [32], “mitmproxy” [1], and “Charles” [42]]. They ran
on a second virtual machine with Linux Ubuntu 14.04 and intercepted any traffic between a server and
the target browser on the main virtual machine.

5. Modelling certificate validation
As seen in Section[3] the certificate validation is not an algorithm, since it may involve users. Therefore,

we refer to it as a ceremony, namely as a heterogeneous protocol where users and machines are the
communicating processes.

'SEB supports private browsing sessions only.

11

The certificate validation ceremony includes a user, the browser, and the web server. In this section,
we provide a formalization of the ceremony for each browser. However, finding the right formalism for
the socio-technical analysis is not easy. The standard notation to describe security protocols is the Alice-
and-Bob notation [49]]. Although this notation provides a simple and clear description, it comes with
some limitations: it cannot express fork, join, and branching, which are essential, for example, to model
multiple user’s choices in the certificate validation. Flowcharts offer a graphical description and look
suitable to describe browsers and algorithms in general, but are less appropriate for the description of
protocols: we have the three roles of browser, user, and server, and we need to detail the messages that
the roles exchange. Message sequence charts extend flowcharts to the domain of protocols, emphasizing
the interaction among the roles. Still, they have the same limitation of the Alice-and-Bob notation.

Thus, we choose the semi-formal and graphical description of UML Activity Diagram [S7], but we are
aware that also Workflow Description Languages such as BPMN would have suited well. An UML ac-
tivity diagram is a graphical scheme that defines the activities needed to meet a given functionality. UML
activity diagrams are made of shapes that model choices, interactions, and concurrency. A description of
the main UML activity diagram’s shapes is given in Appendix [A] The contribution of activity diagrams is
threefold. First, they give an intuitive representation of a protocol session, highlighting the mechanisms
used on each role. Second, they can represent parallel actions (fork/join) and multiple choices (branch-
ing). Third, they can be easily translated in a fully formal language, thanks to their semi-formal semantics
[2]. In short, the activity diagrams provide invaluable help to our understanding of the various entangle-
ments of modern browsers, and we can now comment a posteriori that we would not have managed the
formal models for the browsers without an intermediate graphical notation.

We translate UML activity diagrams to CSP# [64], a modelling language that enriches the high-level
operators of CSP (e.g., choices, interleaving, hiding, etc.) with low-level programming constructs (e.g.,
arrays, while, etc.). The CSP# code is then fed to an automatic tool that checks whether the input model
guarantees a set of properties. The code is given in Appendix [B]

5.1. UML Activity Diagrams for certificate validation

We build nine activity diagrams that model the certificate validation ceremonies for the browsers both
in classic and private browsing. Although we consider six browsers, we do not model the private browsing
of Internet Explorer and Opera Mini because they are identical to the corresponding classic browsing
modes, and we do not model the classic browsing for SEB since it supports only private browsing.

The UML activity diagrams modelling Firefox in classic and private browsing are respectively in
Figure[2]and in Figure [3] The remaining seven activity diagrams can be found in Appendix [A]

The activity diagrams include the functionalities limited to describe how each browser achieves certifi-
cate validation. Each activity diagram has four columns, each representing a communicating role. From
left to right we have the user, the browser user interface, the browser engine, and the server. Each role
begins with a filled dot that points to their first activity. We assume that the browser bootstraps with the
start web page, which is displayed in the browser user interface. Next, the browser user interface can
load a web page because the user types a URL or clicks on an active link in the currently displayed web
page. A label close to a thick arrow defines the object exchanged between activities. Activities may need
to get access to datastores, which are represented as object nodes.

12

User | Browser | Server
User Interface Engine
I webpage Display
Type URL or [‘ Webpage
Click Button url Resolve
URL

preloadedHSTSList

url, HelloClient

Init.
4 TLS

dynamicSTSList |

TrustedCA

"""

nknown

Check |’ HelloServer, Cert
Certificate

CertificatelsRevoked

no/unavailable
o X CertificatelsValid

URLHasHSTSpolicy
no n

yes

UserChoice
Abort.
®

ClientFinished

Display
Webpage

“ dynamicHSTSList

Store HSTS policy

Fig. 2. Activity diagram for certificate validation in Firefox

User | Browser | Server

User Interface Engine

. Display
Webpage

webpage

Type URL or i
Click Button

Resolve
URL

1, HelloClj :
url, HelloClient Init.

4 TLS

TrustedCA \
Check ' HelloServer, Cert
Certificate

yes/unknown ¥ CertificatelsRevoked
no/unavailable
o CertificatelsValid

®
CertificatelsStored URLHasHSTSpolicy
no n

ClientFinished

Display
Webpage

ServerFinished, Header, Data

Fig. 3. Activity diagram for certificate validation in Firefox in private browsing

5.2. Description of the main UML activities

For each role involved in the certificate validation, we describe the principal activities and checks that
concern their UML activity diagrams. In the remainder, we denote UML activities in serif and UML
decisions in italics.

13

User A user is modelled as a non-deterministic entity, so she may choose any of the paths of interaction
that the browser offers, namely Type/ClickURL or ClickButton. This means that our model user is
the best approximation at capturing all possible personas that a real-world user may express [[11]].
It is also the most pessimistic assumption from a security standpoint; therefore, a ceremony that
is secure for a non-deterministic user in the model will be secure for any user in practice. Such an
over approximation resembles that of the Dolev-Yao threat model: when an attack is found, it is
still worth testing whether it can be reproduced in practice; similarly, if a socio-technical property
is found to be violated, in general one ought to test the realism of the persona that causes it, namely
to what extent a user may express that persona. However, this effort exceeds the scope of the
present article.

Browser The representation of the browser is split into user interface and engine. The former has
the activities of DisplayWebpage and DisplayWarning. The engine normally begins with the ac-
tivity ResolveURL and then starts the TLS handshake with the activity Init. TLS. The activity
CheckCertificate concerns the various checks that the browser makes on a certificate. Some de-
mand the assistance of dedicated protocols such as the revocation ones, or of datastores such as
preloadedHSTSList, which stores the HSTS policies, and ServerCert, which stores certificates ap-
proved by the user. The decisions stemming from such checks are represented by appropriate di-
amond boxes. We choose to model as Certificatels Valid three fundamental decisions: that the
certificate issuer is known and trusted, that the certificate is not expired and that the certificate
subject matches the intended one. We explicitly represent the decision point CertificatelsRevoked
both because it is subject to external protocols and because this choice highlights how the various
revocation statuses are mapped into a yes/no decision; our representation is independent from the
decisions behind such mapping, investigated by Liu et al. [48]]. If the flow of certificate validation
has not been aborted, the engine of the browser concludes a successful TLS handshake with the ac-
tivity FinishTLS. Then, it runs the activity ProcessDATA to get the data encrypted by the server. It
possibly verifies if the data contains new information about HSTS with the activity CheckHeader,
which may lead the browser to store a new HSTS policy with the activity StoreHSTSpolicy.

Server We purposely consider only two activities of the server. We aim in fact to focus more on the
model of the browser rather than that of the web server. The server starts the TLS handshake on
its side with the activity Init. TLS, and concludes it with the activity FinishTLS. As we shall see
below, a server may be corrupted by the attacker and may deviate from the supposed activity flow.

Before formally analyzing the socio-technical properties on each browser, we note that the activity
diagrams already offer some interesting insights (this supports the case that graphical models may be
more insightful than formal ones). Firefox, Chrome, Internet Explorer, and Safari involve the user more
than Opera Mini and SEB. In particular, only Firefox and Safari allow the user to store a server certificate
either permanently or temporarily. Both browsers ignore previously stored certificates if a new valid
certificate is encountered, which could happen, for example, when mobile users access the same site
from different locations.

However there is a fundamental difference between Firefox and Safari: Firefox prioritizes the HSTS
policy check (i.e., URLHasHSTSpolicy) over user’s choices, Safari prioritizes the user’s stored server
certificate (i.e., CertificatelsStored) over the HSTS policy. Firefox, SEB, and Chrome seem to treat
HSTS policies similarly in both classic and private browsing. Internet Explorer and Opera Mini do not
support HSTS policies. Also the activity diagrams of SEB and Opera Mini show a fundamental differ-

14

ence, although they look generally similar: in SEB the certificate validation may lead to aborting the
handshake according to the check CertificatelsValid; in Opera Mini, unless the certificate is revoked,
the certificate validation instead always leads to a successful termination of the TLS handshake. Notably,
this means that Opera Mini displays the web page to the user when the certificate is expired or the issuer
is untrusted or the subject name mismatches.

Some browsers also show differences between their classic and private browsing. Firefox involves the
user and implements HSTS differently in private browsing: the user cannot store a server certificate, and
HSTS policies stored in earlier sessions are not considered. Also Chrome has a different implementation
of HSTS in private browsing: no new HSTS policies can be permanently stored while the ones stored
in previous classic sessions are considered. More surprisingly, Safari neither permanently stores HSTS
policies in private browsing nor considers the ones previously stored in classic sessions.

This brief informal analysis corroborates the statement that certificate validation differs among
browsers. In the next section, we see in depth by means of a formal approach how these differences affect
the socio-technical security aspect of browser certificate validation.

6. Formal analysis of certificate validation

We use model checking to formally analyze certificate validation. We provide a systematic method to
translate the UML activity diagrams to a formalization in CSP# that is amenable to automatic validation
by means of PAT. Then, we define a threat model and specify the socio-technical properties that concern
certificate validation in LTL.

It must be noted that the idea of using LTL model checking for validating web protocols is not a
novelty: notably it has been vastly explored within a successful EU project [26]. Our work explores how
a generic model checker can be tailored to the same task.

6.1. Threat model

We consider a Man-in-the-Middle (MITM) attacker who wants to violate server authentication. He
controls the network and can divert the browser’s Init. TLS request to a corrupted server that the attacker
owns. The attacker can generate a self-issued certificate, namely a new certificate signed by himself. He
also controls a server for which he has a valid certificate signed by a certification authority. The attacker
can interpose between the browser and the honest server that the user requests, and can replace the server
certificate with one of his own. The sole limitation is that the attacker cannot sign a certificate on behalf
of a certification authority.

6.2. Socio-technical security properties

We select five different socio-technical properties that we deem relevant. They bind elements that span
from TLS session identifiers to user choices. They aim to demonstrate how the technical mechanisms im-
plemented in browsers interrelate the user choices with the overall system security. We first give informal
and intuitive descriptions of the properties and then express them formally.

Property 1 (Warning Users) A user whose browser receives an invalid certificate is warned before the
browser completes the session.

15

This property is about a browser warning the user that the certificate of the required server is invalid.
As explained in Section [3] a certificate can be invalid for different reasons, each of them being more or
less risky for the user. For example, some circumstances observe a server that self-issues its certificate,
others conceal an attacker who attempts a MITM by injecting a fake certificate of his own.

Property 2 (Storing Server Certificates) A user who approves a server certificate via a browser by
means of successful out-of-band validation is protected from Man-in-the-Middle attacks on future ses-
sions with the same server via the same browser.

This property is about how storing a server certificate relates with MITM protection. When browsers
receive a server certificate that they cannot validate, they prompt the user with some choices on how to
treat it and, notably, may still allow the user to store the certificate. The user may decide to do so for a
number of reasons, ranging from distraction to the successful out-of-band validation of the certificate.
The preconditions of this property refer to the latter, which may variously take place, for example by
handing over the certificate face-to-face via a pen drive or by verifying the certificate fingerprint over
a secure voice channel. Despite the obvious scalability limitations of out-of-band validation, one could
expect that, when successful, it could help protect future sessions with the same server from MITM
attacks. We shall see in the discussion that follows that this is not true for all browsers.

Property 3 (Applying HSTS User Security) A user who accesses a server via a browser that receives
a valid certificate and an HSTS header is protected from Man-in-the-Middle attacks on future sessions
with the same server via the same browser.

This property stands on a different scenario from that of the previous one, although their conclusions are
equal. This scenario sees an HSTS-compliant server who sends a valid certificate to the browser the user
is using.

Property 4 (Applying HSTS Bootstrap) A user who accesses a server that is pre-loaded on the
browser’s HSTS list is protected from Man-in-the-Middle attacks on future sessions with the same server
via the same browser.

This property concerns the relation between HSTS pre-loaded list and MITM protection. In particular,
we check whether HSTS-compliant browsers correctly implement the HSTS pre-loaded list to mitigate
bootstrap attacks, namely MITM attacks at the first server visit.

Property 5 (Learning from Server Certificate History) A user who completes a TLS session with a
server via a browser receiving an invalid certificate, and then completes another session with the same
server via the same browser receiving a valid certificate is warned by the browser about the risk of
Man-in-the-Middle attack.

This last property aims at checking whether the browser informs the user that a MITM attack may have
occurred in a previous TLS session. For example, if one considers a session where the browser receives
an invalid certificate, then the browser may warn the user about this (according to Property [I). If in a
subsequent session the browser receives a valid certificate for the same web page, it may be the case that
the former session experienced a MITM attack, hence the browser warns the user.

16
6.3. Analysis

Our automated analysis relies on PAT, a model checker for the analysis of concurrent and real-time
systems. Its layered design separates modelling languages from model checking algorithms, thus sup-
porting different languages via different algorithms. It supports a range of application domains that span
from bio-systems to security protocols.

PAT supports an enriched version of CSP, called CSP#. The extensions of CSP# include low-level
constructs that offer a connection between data states and executable operations. Moreover, PAT supports
user defined C# functions and data types that can be used directly in CSP# code as external libraries. We
take advantage of this by defining an advanced data structure to model the certificate stores of browsers.
PAT can model safety (i.e., bad things never happen) and liveness (i.e., good things eventually happen)
properties. In PAT, a property can be specified in the same language used to specify the system model,
i.e., CSP, or in a temporal logic language. We use Linear Temporal Logic to specify our properties,
and resort on PAT’s model checking techniques for their validation, namely a dedicated temporal-logic
model checker. In particular, we use depth-first-search as searching strategy algorithm to check whether
a property is valid. If the property turns out to not be valid, we use the breadth-first-search algorithm to
find the shortest witness trace that falsifies the property.

PAT supports symbolic and explicit model checking. Notably, our models interleave an unbounded
number of browser instances because it can be seen (Appendix [B)) that each specification of a browser
concludes by recalling itself. However, PAT implements a clever abstraction mechanism (which ensures
fairness and yet groups behaviourly similar processes) to keep the state space finite [65]. The absence of
a violation signifies that the security property that is being checked holds of the underlying finite-state
model.

Table 1
CSP# syntax.
CSP# Description
a,b,c e actions (abstract events, data operations, channels)
PQ references to processes
Skip successful termination of a process
a— P process that is ready to engage in an action a, and then behaves lie P
c?blz - P process that reads from c the value b and assigns it to x, and then behaves like P
cle » P process that outputs e on ¢, and then behaves like P
P[+]Q external choice that offers the environment the possibility to choose P or Q)
Ti=e assignment of e to
if b then P else Q | process that behaves as P if b holds and like) otherwise
Pl Q parallel composition by interleaving that allows P and () to run independently of each other

Mapping UML activity diagrams to CSP#. We systematically generate the CSP# code from UML ac-
tivity diagrams, and then validate the code with PAT. Such generation is quite straightforward because
we define a map between the shapes of UML activity diagrams and the CSP# syntax, which is outlined
in Table[I} More precisely:

— the activity node maps to the CSP# event;
— the object (datastore) node maps to the CSP# array;
— the decision point maps to CSP# conditional choice;

17

— input and output objects of activities map to the CSP# values of input and output communications;
— activities roles are distinguished within a CSP# process;

— the beginning of the activity flow is a CSP# event;

— the ending of the activity flow maps to CSP# termination;

— the flow of activities within a role maps to the CSP# event prefixing;

— the flow of activities among different roles maps to CSP# input and output communications;

— the flow of data of an object node maps to the CSP# assignment.

Socio-technical properties in LTL

PAT fully supports LTL. An LTL formula is defined by events, predefined propositions, logical opera-
tors, and modal operators. An LTL formula can be evaluated over an infinite sequence of truth evaluations
and paths. Thus, the assertion is true if every execution of the system satisfies the formula.

Although LTL defines five different modal operators, our properties can be expressed using the com-
bination of two operators only: [], whose semantics is that the formula holds on the current state and the
entire subsequent path; (), whose semantics is that the formula holds at the next state on the path. The
combination ()] expresses that the formula holds on the entire subsequent path (not necessarily in the
current state).

The propositions of our LTL formulas refer to “choices” (e.g., Certificatels Valid) and to the activities
(e.g., Init. TLS) of our UML activity diagrams. In the following definitions, we employ the same font
styles used in the activity diagrams consistently. Those predicates evaluate true in states, respectively,
where that choice has been selected and where that activity is executed with success. Also, our properties
include four additional LTL predicates, which we code in CSP# as macros, and one more event, namely:

— UserTypesS is true when a user types a URL or clicks a link that points to the specific and unique
honest server S that is not corrupted by the attacker;

— AuthFail is true when a MITM attack succeeds, namely when the browser completes the TLS
session with the attacker;

— Preloaded is true when an honest server is in the preloaded HSTS list of the browser. Assuming
only one honest server (S) the list may contain S or nothing;

— ServerFinished.HSTS.Data is true when the server sends that message to the browser at the end of
the TLS handshake.

Assertion 1 (Warning Users)
O((FinishTLS A — DisplayWarning) = CertificatelsValid)

Assertion 1 formalizes Property 1. It says that it is always the case that, when the browser concludes
the TLS session (FinishTLS) without warnings (— DisplayWarning), the certificate must have been valid
(Certificatels Valid). This is logically equivalent to say that when the browser receives an invalid certifi-
cate, it sends a warning to the user.

Assertion 2 (Storing Server Certificates)

O((CertificatelsStored N UserTypesS A DisplayWebpage A — AuthFail) —
O O(UserTypesS = - AuthFail))

18

Assertion 2 formalizes Property 2. It signifies that it is always the case that if the user visited a
web page (UserTypesS A DisplayWebpage) whose certificate she successfully validated out-of-band
(— AuthFail) and hence the browser stored it (CertificatelsStored), then the user can safely visit that
page (UserTypesS) in subsequent sessions without MITM attacks (— AuthFail).

Assertion 3 (Applying HSTS User Security)

O((Certificatels Valid N ServerFinished.HSTS.Data A UserTypesS) —
O O(UserTypesS = - AuthFail))

Assertion 3 formalizes Property 3. It is structured as the previous property, and can be interpreted
similarly, but it is about the HSTS policy. It says that it is always the case that if the web page is HSTS
compliant (ServerFinished.HSTS.Data A UserTypesS) and the certificate is valid (Certificatels Valid),
then the user can safely visit the web page (UserTypesS) in the next sessions as the browser precludes
MITM attacks (— AuthFail).

Assertion 3 is about the HSTS policy, hence strictly technical as it focuses on the engine of the
browser. Also, ServerFinished.HSTS.Data takes place before the event ProcessData. By contrast, As-
sertion 2 focuses on the user visiting a web page, hence on the user interface of the browser. In that case,
DisplayWebpage takes place after the event ProcessData.

Assertion 4 (Applying HSTS Bootstrap)
O(Preloaded = (UserTypesS = — AuthFail))

Assertion 4 formalizes Property 4. It also relates to the HSTS policy. It expresses that it is always the
case that if the web page is stored in the browser’s HSTS pre-loaded list (Preloaded), then the user can
safely visit the web page (UserTypesS) as the browser precludes MITM attacks (— AuthFail).

It is worth noting that Assertion 3 implicitly refers to certificate expiry, which is buried into
Certificatels Valid and includes the decision that the certificate is not expired. By contrast, Assertion
4 does not need to refer to certificate expiry as the goal of Property 4 is to test whether the browser
is immune to a MITM attack at the first server visit, something that is captured by — AuthFail. It is
useful to stress that the properties do not aim at studying the mechanisms implemented by the browsers
in isolation, but rather at assessing how such mechanisms relate to the user choices.

Assertion 5 (Learning from Server Certificate History)

O((FinishTLS A = CertificatelsValid N\ UserTypesS) —
O O((FinishTLS A Certificatels Valid A UserTypesS) =—>
DisplayWarning))

Finally, Assertion 5 formalizes Property 5. It signifies that it is always the case that if the user vis-
ited a web page (FinishTLS A UserTypesS) whose certificate was invalid (— Certificatels Valid), and
later she visits again the same web page (FinishTLS A UserTypesS) but with an associated valid cer-
tificate (CertificatelsValid), then the browser warns the user about the potential past MITM attack
(DisplayWarning).

7. Findings

We studied our five properties on the six browsers by checking the satisfiability of our formulas on the
CSP# models of the certificate validation. As said above, we considered Firefox, Chrome, and Safari in
three different modes: classical browsing, private browsing, and their interleaving. In total, the analysis
covered 60 different scenarios due to the mix of browsers, modes, and properties.

Interpreting the output of the tool required some effort, and Table [2] summarizes the findings. At first
glance, the browsers that verify the highest number of properties are Chrome and SEB, then come Internet
Explorer and Firefox, and lastly Safari and Opera Mini, but this conclusion should be gauged through
the details that the table conveys.

It was possible to encode most of the scenarios without incurring state explosion: PAT terminates the
validation of each scenario in just a few seconds over an Intel 17 processor with 8 GB RAM. However,
we needed to assume no expired certificates to avoid non-termination in five scenarios that turn out to
ensure the properties: Applying HSTS User Security on classic browsing of Firefox, and Applying HSTS
Bootstrap on classic browsing of Safari, Firefox, and the respective interleaving. This does not seem
limitative because expired certificates would only cause CertificatelsValid to fail, which in turn may also
fail due to a subject mismatch or to an unknown certificate issuer.

Also, as expected, if a property fails in one of the modes (i.e., classic or private), then it fails also on
their interleaving. However a more interesting result is that a session in one mode may influence a later
session in a different mode. This is the case with Safari for Applying HSTS Bootstrap. In the remainder,
we comment on each property in detail.

Warning Users. The first property is found valid over Chrome, Internet Explorer, and SEB. It is also
valid in Firefox in private browsing. By contrast, the model checker shows traces that falsify the property
over the other modes for Firefox, Safari, and Opera Mini. With Firefox and Safari the traces are similar.
They report a sequence of two TLS sessions both with a MITM attack. In the first session, the browser
connects to the corrupted server and warns the user, who chooses to store the certificate of the attacker
anyway. In the second session, the user tries to get access to the same server, but this time the browser has
the attacker’s server certificate stored, and completes the session without warning the user. This is due
to the drawbacks of storing server certificates, which Firefox and Safari allow their users to do. Notably,
Firefox in private browsing forbids the user to store server certificates, hence the property turns out to be
valid. The trace that falsifies the property with Opera Mini is rather trivial because the browser does not
involve the user at all. Opera Mini in fact shows a padlock when the certificate is valid, but even if the
certificate is invalid, the browser completes the TLS session anyway, without informing the user.

Storing Server Certificate. 'The second property turns out to be the most tricky to be interpreted. It is
found that all browsers verify the property except Firefox and Safari, since the latter are the only browsers
that allow a user to store server certificates. This is because the property is a logical implication whose
precondition is trivially falsified by the browsers that do no store server certificate. The property does
not hold on Firefox in classic browsing and on Safari in all modes, even though the precondition is not
falsified. The user can in fact replace a server certificate as many times as she wishes to, while the browser
does not inform the user that a server certificate was already stored. In support of this, the tool exhibits
the following counterexample. In one session, the user engages with an honest server that transmits a
self-issued certificate; the browser warns the user about the invalid certificate, but she chooses to store
the certificate, thus the browser successfully concludes the TLS session. In a subsequent session, the user
wants to connect again with the same server, but this time the attacker interposes himself between the

20

communication and sends a self-issued certificate pretending to be the honest server; the browser warns
the user about this second invalid certificate, regardless the fact that another certificate was already stored
for the same server; the user decides to store also this certificate and the browser concludes the TLS
session.

Applying HSTS User Security. The third property is valid in classic browsing on Chrome and on SEB.
PAT does not terminate in the full model of classic browsing on Firefox unless assuming no expired
certificates. In that case, the property is valid. The property does not hold in private browsing because
Firefox and Chrome prefer to remove HSTS policies stored during private browsing sessions to protect
user’s privacy. In fact an examination of the stored HSTS policies would reveal which HSTS-compliant
websites the user visited in private browsing. Surprisingly, the property is not valid on Safari in any
mode. The model checker shows a trace as follows: in the first session the attacker interposes himself
in the communication, and the user chooses to store the attacker’s certificate. In a subsequent session,
the browser communicates with the honest server, from which it receives the HSTS header. Then, in a
new session, the attacker interposes himself again on the communication, and the browser does not abort
but concludes with no warnings. This is because a user’s approved certificate bypasses the HSTS policy
in Safari as the browser prioritizes user’s approved certificates over HSTS policiesE] As expected, the
property is not valid on browsers that do not support HSTS. However, it holds on SEB although it does
not support HSTS, because the browser aborts when the certificate is invalid.

Applying HSTS Bootstrap. The fourth property is checked over the browsers that support HSTS. PAT
does not terminate in the full models for Firefox and on classic browsing for Safari. The property can be
proved valid only assuming no expired certificates. It is valid on Chrome but not on private browsing of
Safari, which does not consider the HSTS pre-loaded listE] Moreover, the interleaving of Safari modes
also does not guarantee the property: since Safari allows the user to permanently store a certificate even
in private browsing, and such storing supersedes the HSTS policy, future sessions with HSTS-compliant
websites are compromised also in classic browsing.

Learning from Server Certificate History. Finally, the fifth property holds only on SEB, in which the
precondition (FINISHTLS A — Certificatels Valid) is always falsified since SEB aborts the session when
the certificate is invalid. However, the property is not valid in the other browsers. This denounces the
stateless philosophy whereby browsers do not record warnings they issued in the past, hence browsers
cannot leverage upon them at present.

7.1. Recommendations

Upon the basis of our findings, we formulate the following three recommendations. The first refers
to certificate validity, and in particular to the treatment of expired certificates and to the management of
invalid certificate history.

Recommendation 1 Browsers should keep track of invalid certificate history to warn users more appro-
priately.

2 After we filed a bug report to Apple, we received this reply: “The information you’ve provided will be valuable in our efforts
to determine the cause of the issue you reported.”

3We received this reply from Apple: “Your reported issue will be addressed in upcoming releases. If you are a member of
our developer program, you can test our fix in the current beta release of i0OS 9 and OS X 10.11 El Capitan”

21

Table 2

The five socio-technical properties studied over six browsers. Note: The term c¢b indicates classic browsing, pb is for private
browsing, and in is the interleaving of classic and private browsing sessions. The term co indicates that classic and private
browsing activity diagrams coincide. The symbol v" indicates that the property holds in the full PAT model; the symbol v "¢
indicates that it holds in a PAT model that assumes no expired certificates; the symbol x indicates that the property does not
hold; the symbol — indicates that the property cannot be checked because the corresponding browsers do not support HSTS.

. Storing Applying Applying Learning
v%‘ggirslg Server HSTS User HSTS from Cert.
Certificate Security Bootstrap History
cb X X vne Ve
Firefox | pb v v X Ve X
in X X X vone X
cb v v v v X
Chrome | pb v v X v X
in v v X v X
IE ‘ co ‘ v v X — X
cb X X X vne X
Safari | pb X X X X X
in X X X X X
oM Jeof x [« [x [- [x |
| SEB [0 v [v | v | - 1 v]

Users may forget past security warnings, and browsers may help. For example, browsers could maintain
a cache of all invalid certificate hashes. In doing so, it would be possible for browsers to warn users when
a different invalid certificate is presented by a server with which the browser communicated in the past. It
is worth noting that looking at past interactions is the strategy that the Session Description Protocol [47]]
advances to strengthen the management of self-issued certificates. Surprisingly, it has not been used in
HTTPS.

In particular, Recommendation 1 is about caching certificates that are invalid for any of the four pos-
sible reasons we model (§3)), therefore it does not rely on a single specific reason. An implication is that
a browser should implement an additional check every time it receives a live certificate from a web site
and the certificate is invalid: whether the same certificate is already in the browser cache.

The remaining recommendations pertain to the HSTS technology. Although we noted above that HSTS
is only relatively widespread among modern web servers [[18/44], our recommendations remain valid
because they pertain to the browser-side of the use of HSTS, which is itself very rich. For example, “if
a UA receives HTTP responses from a Known HSTS Host over a secure channel but the responses are
missing the STS header field, the UA MUST continue to treat the host as a Known HSTS Host...” [39];
this means that browsers must force the HSTS policy for any web server found in their pre-loaded HSTS
list, notably even if the web server is not HSTS-compliant. Also, “A user-declared HSTS Policy is the
ability for users to explicitly declare a given domain name as representing an HSTS Host, thus seeding it
as a Known HSTS Host before any actual interaction with it.” [39]; this means that users may decide to
enforce an HSTS policy over any server.

In support of the following recommendations, we also conjecture that, if browsers implement HSTS
properly, and in particular following our recommendations, then the adoption of HSTS by web servers
will be fostered.

22

Recommendation 2 Browsers should consider the HSTS pre-loaded list also in private browsing.

Firefox and Chrome show that it is possible to protect the user and mitigate bootstrap attacks with HSTS
without breaking user’s privacy in private browsing. The choice of Safari not to consider the HSTS pre-
loaded list leads to some weaknesses that when mixed with other features (i.e., user approved server
certificates) may become serious vulnerabilities.

Recommendation 3 Browsers should prioritize HSTS policies over user’s past choices.

Also this recommendation comes from the findings on Safari, which currently implements a customized
HSTS mechanism. HSTS has been conceived to avoid user’s participation in security choices. A server
that chooses to be HSTS-compliant cannot self-issue a certificate. Thus, any check on a user’s approved
certificate should be superseded by the HSTS policy stored in the browser.

8. Conclusions

The socio-technical analysis of the security of modern browsers is yet to be considered innovative
at present. It combines traditional analysis of the technologies underlying browsers on the one hand,
with elements of user participation on the other. By doing so, the socio-technical approach is oriented at
characterizing security properties also in terms of what the user may accomplish, with the ultimate aim
of building browsers that are secure in the presence of humans.

This manuscript describes our work in this area. It focuses on server authentication with the user via the
browser. More specifically, it studies the socio-technical ceremony of certificate validation in the various
circumstances where this validation can fail, including MITM attacks, and formulates three high-level,
best-practice recommendations.

The security analysis of the ceremony of certificate validation from a socio-technical standpoint in-
spires a number of research questions, and we concentrated on three (cf. IJ): the first addresses the dif-
ferences in terms of user participation in server authentication; the second concerns the strategies that
browsers use to reduce the security risks for users in the presence of an invalid certificate; the third relates
to how browsers improve the security by involving the users more profitably than they do at present.

To address these questions we formulated five properties that tackle how users are involved in the cer-
emony of certificate validation. The outcome of our analysis demonstrates that each browser implements
the ceremony of certificate validation differently, and that this is the origin of a few security problems.
In particular, our analysis shows that HSTS fails on its goal when implemented in the wide customized
process of certificate validation. Microsoft announced that the next version of Internet Explorer will sup-
port HSTS [54]]. We argue that its usefulness will depend on how HSTS is implemented in the browser’s
certificate validation.

A major hallmark through our work is the adoption of UML activity diagrams as a semi-formal lan-
guage to represent portions of browser functioning compactly, so that the human analyzer can quickly
realize their niceties. However, rigorous security analysis requires a formal approach. Thus, the diagrams
that represent the ceremonies are systematically mapped into CSP# and validated in the PAT model
checker against the LTL specification of our five socio-technical properties. These are the main steps
of our approach to the socio-technical formal analysis of the security of browsers. The current findings
encourage us to develop this approach further, for example by automating it fully, and by trying it out on
additional socio-technical properties. It is worth stressing that our current choices of formal languages
and supporting tools are not meant to be binding; rather, they aim at demonstrating our approach.

23

An obvious step in front of this work is to assess the failed properties and to design dedicated fixes upon
inspiration of our best-practice recommendations; it can be expected that this will also require tweaking
the models slightly and repeating the validation process accordingly. Also, we are currently working
on reproducing the experiments described above using different tools, since PAT does not terminate in
all general cases. We advocate alternative validation methods to check other properties such as privacy,
a property that cannot be modelled in PAT. While looking at the interleaving of sessions in different
browser modes, we noted that a session in private browsing should not interfere the subsequent sessions in
classic browsing. A different approach, possibly a different model checker such as FDR [60], is required
to understand whether this interference may leak information, since PAT cannot verify privacy properties.
We leave these further developments as intriguing future work.

24
Appendix
A. UML Activity Diagrams for Certificate Validation

Table |3| recalls the main UML activity diagrams shapes. The remaining seven UML activity diagram
models are depicted from Figures [4] to Figure Specifically, the activity diagrams modelling Chrome
in classic and private browsing are respectively in Figure {] and [5} the activity diagrams for Safari are
in Figure [0] and [7] the activity diagrams for Internet Explorer, Opera Mini, and SEB, which each are
represented only by one diagram, are respectively in Figure 8] [9] and [10]

Table 3
Description of the shapes defined in UML Activity Diagram.

Shape Description

Activity node

Object (datastore) node

Decision or merge point

Input and output objects of activities

Distinguishing the activities by role

Initial node

Activity final node

Activity final node within a role

Control flow within a role

HMECIOES] RY [

Control flow among different roles

Object flow from or to an object node

1
1
1
1

3

25
B. CSP# Code

B.1. Formal specification of common parts

//UML activities’ objects and certificate’s fields

enum { HelloClient, HelloServer, ClientFinished, ServerFinished, Data,Warning, Webpage,
Continue, Abort, StoreCertificate, Pk, HSTS, No_HSTS, S, I, SignCA, SignS, SignI,
expi, noexpi, revo, norevo};

channel ui 0; channel network 0;

//UML datastores, certificate, and typed/clicked url
var<Set> dynamicHSTSList; var<Set> preloadedHSTSList; var<SetArray> ServerCert;
var cert[3]; var extendedcert[5]; wvar typed_url: {S..I}=S;

//UML decision points

#define CertificateIsValid cert[0]==typed_url && cert[2]==SignCA && extendedcert[4]==noexpi;

#define URLhasHSTSpolicy dynamicHSTSList.Contains (typed_url) || preloadedHSTSList.Contains (typed_url);
#define CertificateIsStored ServerCert.Contains (extendedcert) ;

//Variables to keep track of some session’s event
var intruder_server=false; var user_warned=false; var finishTLS=false; var preload=false;

/=== Intruder process chooses which server plays session by session--———-— //
Intruder ()= ServerI() [] ServerH();

/=== Intruder server process————-— //

ServerI() = [lheader:{HSTS, No_HSTS}@ [Jurl:{S,I} @ [1sk:{SignI, SignCA}Q@

Init_TLS —-> network?urlx.HelloClient —->

//Intruder cannot sign certificate on behalf of CA

if (url==S && sk==SignCA) {network!HelloServer.url.Pk.SignI -> Skip}
else {network!HelloServer.url.Pk.sk -> Skip};

Finish_TLS -> network?m ->

if (m==ClientFinished) {INTRUDER_IN{intruder_server=true} ->
network!ServerFinished.header.Data ->Skip }; Intruder();

ServerH() = [lheader:{HSTS, No_HSTS}@ [1sk:{SignS, SignCA}@
Init_TLS -> network?urlx.HelloClient -> network!HelloServer.S.Pk.sk —->
Finish_TLS —-> network?m —>
if (m==ClientFinished) {network!ServerFinished.header.Data ->Skip};
Intruder();

[/ ===== User process—-—---— //
User () = ui?webpage ->
case {
//The user can type or click on either honest’s or intruder’s url
webpage == Webpage: ui!S{typed_url=S} -> User() [] ui!I{typed_url=I} -> User /()
webpage == Warning: ui!StoreCertificate -> User () [] ui!Continue -> User () []

ui!Abort -> User ()
default: User () };

[/ ====== Model process—-—---— //

Model = Preloading() [] Begin();

Preloading = PreloadHSTSpolicy->{preloadedHSTSList.Add(S); preload=true} -> Begin;
Begin = Intruder() ||| User() ||| Browser();

//User who wants to visit the honest server

#define UserTypesS typed_url==S;

//Successful MITM attack: User wants to visit the honest server,

//but browser completed with the intruder

#define AuthFail intruder_server && UserTypesS; #define User_warned user_warned;

26

#define CompleteTLS finishTLS; #define Preload preload;

VA Properties——------- /17

#assert Model deadlockfree;

//Property 1

#assert Model |=[] ((CompleteTLS && !User_warned) -> CertificateIsValid);

//Property 2
#assert Model |=[] ((CertificatelIsStored && UserTypesS && ui.Data && !'AuthFail)->
X ([] (UserTypesS -> !AuthFail)));
//Property 3
#assert Model |=[]((CertificateIsValid && network.ServerFinished.HSTS.Data && UserTypesS)-—>

X([] (UserTypesS —-> !AuthFail)));
//Property 4
#assert Model |=[] (Preload-> (UserTypesS -> !AuthFail));
//Property 5
#assert Model [=[]((CompleteTLS && !CertificateIsValid && UserTypesS)-—>
X([] ((CompleteTLS && CertificateIsValid && UserTypesS)-> User_warned)));

B.2. Formal specification of Browsers

B.2.1. Firefox

Browser () = []Jrev:{revo, norevo}@[]exp:{expi,noexpi}@
Display_Webpage -> //New session, variables used in macros are resetted
ui!Webpage{finishTLS=false; intruder_server=false; user_warned=false;} ->
ui?url -> Resolve_URL -> Init_TLS -> network!url.HelloClient ->
network?HelloServer.id.pk.sk{extendedcert [0]=cert[0]=1id;extendedcert[l]=cert[1l]=pk;
extendedcert [2]=cert [2]=sk;extendedcert [3]=url;extendedcert[4]=exp} ->
Check_Certificate —>
if (CertificateIsValid) {{finishTLS=true} -> Skip}
else { if (URLhasHSTSpolicy || rev==revo) {{finishTLS=false} -> Skip}
else { if (CertificateIsStored) {{finishTLS=true} -> Skip}
else { DisplayWarning -> ui!Warning{user_warned=true} ->
ui?userchoice ->

tauf{
if (userchoice == Abort) {finishTLS=false}
else { finishTLS=true;
if (userchoice == StoreCertificate) {ServerCert.Add(extendedcert);}
//associates a url to the server certificate } } -> Skip } } };
if (!'finishTLS) //The browser informs the server about Abort for syncing

{network!Abort -> Skip}
else { Finish_TLS -> network!ClientFinished -> Process_DATA —>
network?ServerFinished.header.Data -> Display_Webpage -> ui!Data -> Check_Header —>
if (header==HSTS && CertificateIsValid) {StoreHSTSpolicy->
{dynamicHSTSList.Add (cert[0])} -> Skip} }; Browser();

B.2.2. Firefox - Private browsing

Browser () = []lrev:{revo, norevo}@[]exp:{expi,noexpi}d@
Display_Webpage -> //New session, variables used in macros are resetted
ui!Webpage{finishTLS=false; intruder_server=false; user_warned=false;} ->
ui?url -> Resolve_URL -> Init_TLS -> network!url.HelloClient ->
network?HelloServer.id.pk.sk{extendedcert [0]=cert[0]=id;extendedcert[1l]=cert[1l]=pk;

extendedcert [2]=cert [2]=sk;extendedcert [3]=url;extendedcert[4]=exp} ->

Check_Certificate —->
if (CertificateIsValid) {{finishTLS=true} -> Skip}

else { if (URLhasHSTSpolicy || rev==revo) {{finishTLS=false} -> Skip}
else { if (CertificateIsStored) {{finishTLS=true} ->Skip}
else { DisplayWarning -> ui!Warning{user_warned=true} -> ui?userchoice ->

tau{

27

if (userchoice == Abort) {finishTLS=false}
else { finishTLS=true;} } -> Skip } } };
if (!finishTLS) //The browser informs the server about Abort for syncing

{network!Abort -> Skip}

else { Finish_TLS -> network!ClientFinished -> Process_DATA —>
network?ServerFinished.header.Data —-> Display_Webpage —-> ui!Data -> Skip};

Browser () ;

B.2.3. Chrome

Browser () = []Jrev:{revo, norevo}@[]exp:{expi,noexpi}@

Display_Webpage -> //New session, variables used in macros are reset
ui!Webpage{finishTLS=false; intruder_server=false; user_warned=false;expc=exp} —->
ui?url -> Resolve_URL -> Init_TLS -> network!url.HelloClient ->
network?HelloServer.id.pk.sk{cert[0]=id;cert[1l]=pk;cert[2]=sk} ->
Check_Certificate —>
if (CertificateIsValid) {{finishTLS=true} -> Skip}
else { if (URLhasHSTSpolicy || rev==revo) {{finishTLS=false} -> Skip}

else { DisplayWarning -> ui!Warning{user_warned=true} ->

ui?userchoice ->

tau{if (userchoice == Abort) {finishTLS=false}
else { finishTLS=true; } } -> Skip } };
if (!finishTLS) //The browser informs the server about Abort for syncing

{network!Abort -> Skip}
else { Finish_TLS -> network!ClientFinished -> Process_DATA —>
network?ServerFinished.header.Data -> Display_Webpage -> ui!Data -> Check_Header ->
if (header==HSTS && CertificateIsValid)
{StoreHSTSpolicy->{dynamicHSTSList.Add (cert[0])} —-> Skip} }; Browser();

B.2.4. Chrome - Private browsing

Browser () = []Jrev:{revo, norevo}@[]exp:{expi,noexpi}d@
Display_Webpage -> //New session, variables used in macros are reset
ui!Webpage{finishTLS=false; intruder_server=false; user_warned=false;expc=exp} —->
ui?url -> Resolve_URL -> Init_TLS -> network!url.HelloClient ->
network?HelloServer.id.pk.sk{cert[0]=id;cert[1l]=pk;cert[2]=sk} ->
Check_Certificate —>
if (CertificateIsValid) {{finishTLS=true} -> Skip}

else { if (URLhasHSTSpolicy || rev==revo) {{finishTLS=false} -> Skip}
else { DisplayWarning -> ui!Warning{user_warned=true} -> ui?userchoice ->
tau{
if (userchoice == Abort) {finishTLS=false}
else { finishTLS=true; } } -> Skip } };
if (!finishTLS) //The browser informs the server about Abort for syncing

{network!Abort -> Skip}
else { Finish_TLS -> network!ClientFinished -> Process_DATA —>
network?ServerFinished.header.Data -> Display_Webpage -> ui!Data -> Skip }; Browser();

B.2.5. Safari

Browser () = []rev:{revo, norevo}@[]exp:{expi,noexpi}d

Display_Webpage -> //New session, variables used in macros are resetted
ui!Webpage{finishTLS=false; intruder_server=false; user_warned=false;} ->
ui?url -> Resolve_URL -> Init_TLS -> network!url.HelloClient ->
network?HelloServer.id.pk.sk{extendedcert [0]=cert[0]=id;extendedcert[l]=cert[1l]=pk;

extendedcert [2]=cert [2]=sk;extendedcert [3]=url;extendedcert[4]=exp} —>
Check_Certificate —>
if (CertificateIsStored) {{finishTLS=true} -> Skip}
else { if (rev==revo) {{finishTLS=false} -> Skip}

else { if (CertificateIsValid) {{finishTLS=true} -> Skip}
else { if (URLhasHSTSpolicy) {{finishTLS=false} -> Skip}
else { DisplayWarning -> ui!Warning{user_warned=true} ->
ui?userchoice ->
tau{if (userchoice == Abort) {finishTLS=false}

28

else { finishTLS=true;
if (userchoice==StoreCertificate) {ServerCert.Add (extendedcert) ;}
//associates a url to the server certificate
b} —> Skip } } })i
if (!finishTLS) //The browser informs the server about Abort for syncing
{network!Abort -> Skip}
else { Finish_TLS -> network!ClientFinished -> Process_DATA —>
network?ServerFinished.header.Data -> Display_Webpage -> ui!Data -> Check_Header ->
if (header==HSTS && CertificateIsValid) {StoreHSTSpolicy->
{dynamicHSTSList.Add(cert[0])} -> Skip} }; Browser();

B.2.6. Safari - Private browsing

Browser () = []Jrev:{revo, norevo}@[]exp:{expi,noexpi}d
Display_Webpage -> //New session, variables used in macros are resetted
ui!Webpage{finishTLS=false; intruder_server=false; user_warned=false;} ->
ui?url -> Resolve_URL -> Init_TLS -> network!url.HelloClient ->
network?HelloServer.id.pk.sk{extendedcert [0]=cert[0]=id;extendedcert[l]=cert[1l]=pk;

extendedcert [2]=cert[2]=sk;extendedcert [3]=url; extendedcert[4]=exp} ->

Check_Certificate —>
if (CertificateIsStored) {{finishTLS=true} -> Skip}
else { if (rev==revo) {{finishTLS=false} —-> Skip}

else { if (CertificatelIsValid) {{finishTLS=true} -> Skip}
else { DisplayWarning -> ui!Warning{user_warned=true} -> ui?userchoice ->
tau{
if (userchoice == Abort) {finishTLS=false}
else { finishTLS=true;
if (userchoice == StoreCertificate) {ServerCert.Add(extendedcert);}
//associates a url to the server certificate
}} => Skip } } };
if (!finishTLS) //The browser informs the server about Abort for syncing

{network!Abort -> Skip}

else { Finish TLS -> network!ClientFinished -> Process_DATA ->
network?ServerFinished.header.Data —-> Display_Webpage -> ui!Data -> Skip};

Browser () ;

B.2.7. Internet Explorer

Browser () = []Jrev:{revo, norevo}@[]exp:{expi,noexpi}d@
Display_Webpage -> //New session, variables used in macros are resetted
ui!Webpage{finishTLS=false; intruder_server=false; user_warned=false;expc=exp} —->
ui?url -> Resolve_URL -> Init_TLS -> network!url.HelloClient ->
network?HelloServer.id.pk.sk{cert[0]=id;cert[l]=pk;cert[2]=sk} -> Check_Certificate ->
if (rev==revo) {{finishTLS=false} -> Skip}

else { if (CertificateIsValid) {{finishTLS=true} -> Skip}
else { DisplayWarning -> ui!Warning{user_warned=true} -> ui?userchoice ->
tau{ if (userchoice == Abort) {finishTLS=false}
else { finishTLS=true; } } -> Skip } };
if (!finishTLS) //The browser informs the server about Abort for syncing

{network!Abort -> Skip}

else { Finish TLS -> network!ClientFinished -> Process_DATA ->
network?ServerFinished.header.Data —-> Display_Webpage -> ui!Data -> Skip};

Browser () ;

B.2.8. Opera Mini

Browser () = []Jrev:{revo, norevo}@[]exp:{expi,noexpi}d@
Display_Webpage -> //New session, variables used in macros are resetted
ui!Webpage{finishTLS=false; intruder_server=false; user_warned=false;expc=exp} —->
ui?url -> Resolve_URL -> Init_TLS -> network!url.HelloClient ->
network?HelloServer.id.pk.sk{cert[0]=id;cert[l]=pk;cert[2]=sk} -> Check_Certificate —->
if (rev==revo) {{finishTLS=false} -> Skip}
else {{finishTLS=true} -> Skip };
if (!finishTLS) //The browser informs the server about Abort for syncing

29

{network!Abort -> Skip}

else { Finish_TLS -> network!ClientFinished -> Process_DATA —>
network?ServerFinished.header.Data -> Display_Webpage -> ui!Data -> Skip };
Browser () ;

B.2.9. SEB

Browser () = []rev:{revo, norevo}@[]exp:{expi,noexpi}d@
Display_Webpage -> //New session, variables used in macros are reset
ui!Webpage{finishTLS=false; intruder_server=false; user_warned=false;} ->
ui?url -> Resolve_URL -> Init_TLS -> network'!url.HelloClient ->
network?HelloServer.id.pk.sk{cert[0]=id;cert[1l]=pk;cert[2]=sk} —->
Check_Certificate —>
if (rev==revo) {{finishTLS=false} -> Skip}

else { if (CertificateIsValid) {{finishTLS=true} -> Skip}
else { {finishTLS=false} -> Skip } };
if (!finishTLS) //The browser informs the server about Abort for syncing

{network!Abort -> Skip}
else { Finish_TLS -> network!ClientFinished -> Process_DATA ->
network?ServerFinished.header.Data -> Display_Webpage -> ui!Data -> Skip};
Browser () ;

30

References

[1] A. Cortesi. Mitmproxy. https://mitmproxy.orgl 2015.

[2] I. Abdelhalim, S. Schneider, and H. Treharne. An integrated framework for checking the behaviour of fUML models
using CSP. International Journal on Software Tools for Technology Transfer, pages 375-396, 2012.

[3] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. An analysis of private browsing modes in modern browsers. In
The 19th USENIX Conference on Security, USENIX Security’ 10, pages 6—6. USENIX Association, 2010.

[4] D. Akhawe, B. Amann, M. Vallentin, and R. Sommer. Here’s my cert, so trust me, maybe?: Understanding tls errors on
the web. In The 22nd International Conference on World Wide Web, (WWW ’13), pages 59-70. International World Wide
Web Conferences Steering Committee, 2013.

[5] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. Towards a Formal Foundation of Web Security. IEEE Computer
Security Foundations Symposium (CSF’10), pages 290-304, 2010.

[6] Apple Support. About the security content of OS X El Capitan v10.11, 2015.

[7] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Keys to the Cloud: Formal Analysis and Concrete Attacks
on Encrypted Web Storage. In 2nd Conference on Principles of Security and Trust (POST ’13), volume 7796 of Incs,
pages 126-146. spv, 2013.

[8] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Discovering concrete attacks on website authorization by
formal analysis. Journal of Computer Security, 22(4):601-657, 2014.

[9] D. Basin, S. Radomirovic, and L. Schmid. Modeling human errors in security protocols. In 2016 IEEE 29th Computer
Security Foundations Symposium (CSF’16), pages 325-340, 2016.

[10] G. Bella and L. Coles-Kemp. Layered Analysis of Security Ceremonies. In The 27th IFIP International Conference on
Security and Privacy (IFIPSEC’12), volume 376 of IFIP Advances in ICT, pages 273-286. Springer, 2012.

[11] G. Bella, P. Curzon, and G.Lenzini. Service Security and Privacy as a Socio-Technical Problem. 10S Journal of Computer
Security, 23(5):563-585, 2015.

[12] G. Bella, R. Giustolisi, and G. Lenzini. Socio-technical formal analysis of TLS certificate validation in modern browsers.
In 11th Annual International Conference on Privacy, Security and Trust, PST, pages 309-316. IEEE, 2013.

[13] R. Biddle, P. C. van Oorschot, A. S. Patrick, J. Sobey, and T. Whalen. Browser interfaces and extended validation SSL
certificates: an empirical study. In The ACM Conference on Computer and Communications Security (CCS’09), pages
19-30. ACM, 2009.

[14] A. Bohannon and B. Pierce. Featherweight firefox: Formalizing the core of a web browser. In USENIX Conference on
Web Application Development, WebApps’ 10, pages 11-11. USENIX Association, 2010.

[15] M.L. Bolton, E.J. Bass, and R.I. Siminiceanu. Using formal verification to evaluate human-automation interaction: A
review. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(3):488-503, 2013.

[16] M. Bugliesi, S. Calzavara, R. Focardi, W. Khan, and M. Tempesta. Provably sound browser-based enforcement of web
session integrity. In 2014 IEEE 27th Computer Security Foundations Symposium, pages 366-380, 2014.

[17] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat Khan. Cookiext: Patching the browser against session
hijacking attacks. Journal of Computer Security, 23:509-537, 2015.

[18] builtwith. HSTS Usage Statistics, 2016.

[19] E. Bursztein. 19% of users use their browser private mode. http://www.elie.net/blog/privacy/
19-of-users—-use—-their-browser-private—mode, 2012.

[20] J. Clark and P.C. van Oorschot. Sok: Ssl and https: Revisiting past challenges and evaluating certificate trust model
enhancements. In IEEE Symposium on Security and Privacy (SSP), pages 511-525, 2013.

[21] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. RFC 5280, 2008.

[22] D.Akhawe and A. Porter Felt. Alice in warningland: A large-scale field study of browser security warning effectiveness.
In 22nd USENIX Security Symposium, pages 257-272. USENIX, 2013.

[23] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, 2008.

[24] J. Dreier, R. Giustolisi, A. Kassem, P. Lafourcade, G. Lenzini, and P. Y. A. Ryan. Formal analysis of electronic exams. In
11th International Conference on Security and Cryptography SECRYPT, pages 1-12. SciTePress, 2014.

[25] C. Ellison. Ceremony design and analysis. JACR eprint, 2007.

[26] L. Vigano et al. SPaCloS Project, 2009.

[27] S. Fahl, Y. Acar, H. Perl, and M. Smith. Why eve and mallory (also) love webmasters: A study on the root causes of
ssl misconfigurations. In The 9th ACM Symposium on Information, Computer and Communications Security, (ASIACCS
’14), pages 507-512. ACM, 2014.

[28] S. Fahl, M. Harbach, T. Muders, L. Baumgirtner, B. Freisleben, and M. Smith. Why eve and mallory love android: An
analysis of android ssl (in)security. In The 2012 ACM Conference on Computer and Communications Security, (CCS *12),
pages 50-61. ACM, 2012.

[29] A. Ferreira, J. Huynen, V. Koenig, and G. Lenzini. Human Aspects of Information Security, Privacy, and Trust: 2nd

https://mitmproxy.org
http://www.elie.net/blog/privacy/19-of-users-use-their-browser-private-mode
http://www.elie.net/blog/privacy/19-of-users-use-their-browser-private-mode

31

International Conference, (HAS 14), Held as Part of HCI International, chapter A Conceptual Framework to Study Socio-
Technical Security, pages 318-329. Springer International Publishing, 2014.

[30] D. Fett, R. Kiisters, and G. Schmitz. An expressive model for the web infrastructure: Definition and application to the
browser id sso system. In IEEE Symposium on Security and Privacy, (SSP *14), pages 673-688. IEEE Computer Society,
2014.

[31] S. Flinn and J. Lumsden. User perceptions of privacy and security on the web. In Privacy Security and Trust (PST) ’05,
2005.

[32] G. Combs. Wireshark, 2015.

[33] S. Gajek, M. Manulis, A.R. Sadeghi, and J. Schwenk. Provably secure browser-based user-aware mutual authentication
over TLS. The ACM Conference on Asia Computer and Communications Security (ASIACCS’08), page 300, 2008.

[34] M. Georgiev, S. Iyengar, S. Jana, Rishita A., D. Boneh, and V. Shmatikov. The most dangerous code in the world:
validating SSL certificates in non-browser software. In The ACM Conference on Computer and Communications Security
(CCS’12), pages 38-49, 2012.

[35] D. Gollmann. What do we mean by Entity Authentication? In IEEE Security and Privacy (SSP)’96, pages 4654, 1996.

[36] Google. CRLSets. https://dev.chromium.org/Home/chromium-security/crlsets), 2012.

[37] T. GroB, B. Pfitzmann, and A.-R. Sadeghi. Browser model for security analysis of browser-based protocols. In The
European Symposium on Research in Computer Security (ESORICS)’ 05, pages 489-508. Springer-Verlag, 2005.

[38] C. A.R. Hoare. Communicating Sequential Processes. Communication of ACM, 21(8):666-677, 1978.

[39] J. Hodges, C. Jackson, and A. Barth. HTTP Strict Transport Security (HSTS). RFC 6797, 2012.

[40] P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS)
Protocol: TLSA. RFC 6698, 2012.

[41] A.Jgsang, K. A. Varmedal, C. Rosenberger, and R. Kumar. Service provider authentication assurance. In Privacy Security
and Trust (PST) ’12, pages 203-210. IEEE Computer Society, 2012.

[42] K. von Randow. Charles. http://www.charlesproxy.com, 2015.

[43] D. Kaminsky, M. L. Patterson, and L. Sassaman. PKI layer cake: new collision attacks against the global x.509 infrastruc-
ture. In Financial Cryptography (FC)’10, pages 289-303. Springer-Verlag, 2010.

[44] M. Kranch and J. Bonneau. Upgrading HTTPS in mid-air: An empirical study of strict transport security and key pinning.
In 22nd Annual Network and Distributed System Security Symposium, NDSS. The Internet Society, 2015.

[45] A. Langley. SSL interstitial bypass rates. https://www.imperialviolet.org/2012/07/20/
sslbypassrates.html, 2012.

[46] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC 6962, 2013.

[47] J. Lennox. Connection-Oriented Media Transport over the Transport Layer Security (TLS) Protocol in the Session De-
scription Protocol (SDP). RFC 4572, 2006.

[48] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mislove, A. Schulman, and C. Wilson. An end-to-
end measurement of certificate revocation in the web’s pki. In The 2015 ACM Conference on Internet Measurement
Conference, IMC 15, pages 183-196. ACM, 2015.

[49] LSV. Security Protocols Open Repository (SPORE). http://www.lsv.ens-cachan.fr/Software/spore/,
2015.

[50] M. Marlinspike. More tricks for defeating ssl in practice. DEFCON 17, 2009.

[51] M. Marlinspike. New tricks for defeating ssl in practice. BlackHat DC, February, 2009.

[52] M. Marlinspike. Convergence. http://convergence.io/} 2015.

[53] M. Marlinspike and T. Perrin. Trust Assertions for Certificate Keys. |http://tools.ietf.org/html/
draft-perrin-tls—-tack-02,2013.

[54] Microsoft. HTTP Strict Transport Security comes to Internet Explorer. |http://blogs.msdn.com/b/ie/
archive/2015/02/16/http-strict-transport—-security-comes—-to-internet-explorer.
aspx, 2015.

[55] M. Mimoso. Ie 12 to support hsts encryption protocol. https://threatpost.com/
ie—12-to-support—hsts—encryption—-protocol/105266,2014.

[56] Mitre. Common Vulnerabilities and Exposures, 2015.

[57] OMG. Unified Modeling Language. http://www.omg.org/spec/UML/2.4.1/, 2011.

[58] Opera Mini. State of the Mobile Web. http://www.opera.com/smw/, 2014.

[59] E. Rescorla. HTTP Over TLS. RFC 2818, 2000.

[60] A. W. Roscoe. The Theory and Practice of Concurrency. international series in computer science. Prentice-Hall, 1997.

[61] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP. RFC 6960, 2013.

[62] D.R. Schneider, D. Bauer, B. Volk, M. Lehre, and T. Piendl. The safe exam browser: Innovative open source software for
online examinations. 18th International Conference on Technology Supported Learning & Training, 2012.

[63] StatCounter. Top web browsers. http://gs.statcounter.com/, 2015.

https://dev.chromium.org/Home/chromium-security/crlsets
http://www.charlesproxy.com
https://www.imperialviolet.org/2012/07/20/sslbypassrates.html
https://www.imperialviolet.org/2012/07/20/sslbypassrates.html
http://www.lsv.ens-cachan.fr/Software/spore/
http://convergence.io/
http://tools.ietf.org/html/draft-perrin-tls-tack-02
http://tools.ietf.org/html/draft-perrin-tls-tack-02
http://blogs.msdn.com/b/ie/archive/2015/02/16/http-strict-transport-security-comes-to-internet-explorer.aspx
http://blogs.msdn.com/b/ie/archive/2015/02/16/http-strict-transport-security-comes-to-internet-explorer.aspx
http://blogs.msdn.com/b/ie/archive/2015/02/16/http-strict-transport-security-comes-to-internet-explorer.aspx
https://threatpost.com/ie-12-to-support-hsts-encryption-protocol/105266
https://threatpost.com/ie-12-to-support-hsts-encryption-protocol/105266
http://www.omg.org/spec/UML/2.4.1/
http://www.opera.com/smw/
http://gs.statcounter.com/

32

[64] J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards Flexible Verification under Fairness. In International Conference
on Computer-Aided Verification (CAV) 09, volume 5643 of LNCS, pages 709-714. Springer, 2009.

[65] Jun Sun, Yang Liu, Abhik Roychoudhury, Shanshan Liu, and Jin Song Dong. Fair model checking with process counter
abstraction. In The 2nd World Congress on Formal Methods (FM’09), volume 5850 of LNCS, pages 123—139. Springer,
2009.

[66] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor. Crying wolf: An empirical study of SSL warning
effectiveness. In USENIX Security Symposium, 2009.

[67] The Chromium Blog. New Chromium security features. http://blog.chromium.org/2011/06/
new-chromium-security-features-june.html, 2011.

[68] U.S. Army. Army Knowledge Online. https://www.us.army.mil/, 2015.

[69] N. Vratonjic, J. Freudiger, V. Bindschaedler, and J. Hubaux. The Inconvenient Truth About Web Certificates. In Economics
of Information Security and Privacy I1I. Springer, 2013.

[70] Z. (Eileen) Ye, S. Smith, and D. Anthony. Trusted paths for browsers. ACM Transaction on Information System Security,
8(2):153-186, 2005.

[71] P. Yee. Updates to the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List Profile. RFC
6818, 2013.

http://blog.chromium.org/2011/06/new-chromium-security-features-june.html
http://blog.chromium.org/2011/06/new-chromium-security-features-june.html
https://www.us.army.mil/

User Browser Server

User Interface Engine

I webpage Display
Type URL or Webpage
Click Button

B url

Resolve
URL

url, HelloClient Init.

TLS

HelloServer, Cert

yes/unavailable X CertificatelsRevoked

®
no/unknown
. URLHasHSTSpolicy . .
warning Display no no X CertificatelsValid
Warning g
yes yes

®

Continue

ClientFinished

Finish
TLS

ServerFinished, Header, Data

Data Process DATAY
Check Header “‘{Trl(;;;:a)c/\

no CertificatelsValid && HeaderHasHSTS

Display
Webpage

yes
(store HSTS policy || dynamicHsTsList |

Fig. 4. Activity diagram for certificate validation in Chrome

User Browser Server

User Interface Engine

webpage

Display
Type URL or Webpage
Click Button url

Resolve
URL

e

url, HelloClient Init.

TLS

preloadedHSTSList

eress

dynamicHSTSList P y
Check
-{Certificate

CertificatelsRevoked

HelloSernver, Cert

.
: URLHasHSTSpolicy no/unknown
warning Display no no X CertificatelsValid
Click F‘_ Warning
Button lyes yes
O
Continue

UserChoice

ClientFinished

Finish
TLS

ServerFinished, Header, Data

Finish TLS

Display
Webpage

Process DATAY

Fig. 5. Activity diagram for certificate validation in Chrome in private browsing

34

Browser

Server

User Interface

Engine

t =

UserChoice

Abort
O

URLHasHS‘I;SpoIic

HelloSe|

ed

~ves
unavailable

noI
yes

Continue

no
yes

CertificatelsValid

User

ClientFinished

rver, Cert

ServerFinished,

Header, Data

asHSTS

Fig. 6. Activity diagram for certificate validation in Safari

Browser

Server

webpage

User Interface

Engine

UserChoice
Abort

HelloSe|

StoreCertificate

yes/
unavailable | no,
unknown

o,

yes

no Vyes

CertificatelsValid

ClientFinishe

url, HelloCli

ent

rver, Cert

ServerFinished,

—

Header, Data

Fig. 7. Activity diagram for certificate validation in Safari in private browsing

User | Browser

User Interface Engine

Type URL or |
Click Button Resolve
URL

Check HelloServer, Cert

Certificate

o YES/unavailable
- no/unknown

Certific.

Continue

ClientFinished

Finish TLS

Process DATAY ServerFinished, Header, Data

Fig. 8. Activity diagram for certificate validation in Internet Explorer

User Browser Server
User Interface Engine
I L]
webpage Display
Type URL or [Webpage
Click Button url Resolve
URL

url, HelloClient

HelloServer, Cert

TrustedCA

yes/unknown

®:

no/unavailable
ClientFinished

Process DATAY

ServerFinished, Header, Data

Fig. 9. Activity diagram for certificate validation in Opera Mini

User | Browser Server

User Interface Engine

Type URL or I

Click Button Resolve

URL

ver, Cert

no/unavailable
CertificatelsValid

ished, Header, Data

Display
Webpage

Fig. 10. Activity diagram for certificate validation in SEB

