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Abstract

Privacy is a major concern in e-commerce. There exist two main paradigms
to protect the customer’s privacy: one relies on the customer’s trust that the
network will conform to his privacy policy, the other one insists on the customer’s
anonymity. A new paradigm is advanced here as a natural balance between these
two. It sees the customer act using his real identity but only circulate cover
data that conceal the resources he requires. Privacy enforcement is thus shifted
from the customer’s identity to his purchase preferences. The new paradigm
is suitable for scenarios such as eBay purchases where trust that a network
sticks to a privacy policy is problematic, while anonymity is either forbidden or
impossible.

The computation of cover data is done by a node other than the customer
in order to minimize impact on the customer. That node will therefore see
the customer’s private data that are used to compute the cover. This de-
mands some technology to prevent the node from exposing private data. An
existing protocol developed for self-enforcing privacy in the area of e-polls is
thoroughly analysed and found somewhat weak in terms of fairness among its
participants. A stronger version is designed and adopted, together with an in-
novative differential-privacy preserving function, in the new privacy paradigm.
The strengthened e-poll protocol and the new differential-privacy preserving
function, which strictly speaking only are side contributions of this paper, each
appear as important as the new e-commerce privacy paradigm.

Keywords: Self-enforcing privacy; differential privacy; customer privacy;
security protocol, e-polling; pollster.



Contents

1 Introduction 3

2 Protocols for Self-Enforcing Privacy 4
2.1 The SEP Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Evaluating SEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 A Strengthened SEP: SEP+ . . . . . . . . . . . . . . . . . . . . . 10

3 Existing Paradigms of Privacy Enforcement in E-Commerce 13
3.1 Trust: Suspending and Resuming Data . . . . . . . . . . . . . . . 14
3.2 Anonymity: Using a Pseudonym . . . . . . . . . . . . . . . . . . 15

4 A Novel Paradigm of Privacy Enforcement in E-Commerce 16
4.1 Data Concealment . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Simulating data concealment with a candidate differential-privacy
preserving function 21

6 Discussion 25

7 Conclusions 26

2



1. Introduction

Privacy is often erroneously abused as confidentiality, although it rather
indicates a right to confidentiality, that is “the right of an individual to decide
when and how sensitive personal data should be revealed” [1]. For example, a
customer’s personal data are private in the EU so that he can decide whether or
not to disclose them. The consequences of abusing private data such as people’s
purchase preferences are well known to the marketing industry. However,
ensuring that a customer’s data are kept private while they traverse a network
of computers is far from trivial. Most security protocols appeared in the last
three decades, from Kerberos [2] to SSL/TLS [3], only aim at transmitting data
confidentially but assume that the initiator is willing to share them with the
responder. That assumption is not met when privacy is required.

This is often the case with e-commerce, for example. In a typical transaction,
a customer contacts a node to obtain some desired resources, and enters his
personal data. The node may be unable to honour the request on its own, and
hence may need to variously collaborate with others. This requires the sharing of
(some of) the customer’s personal data, such as what he wants to buy. Finalising
the purchase then requires the selling node to interact with a bank to manage
the payment, and with a shipment society to deliver the purchased items. The
result is that the customer’s private data have flown through several nodes, each
handling them according to its own privacy policy, while the customer usually
remains uninformed of the various branches or paths the flow may develop in.

There exist two main privacy paradigms in e-commerce. One rests on the
customer’s trust that the network conforms to his privacy policy, so that he
accepts to transmit his identity and required resources, but is able to suspend
or resume trusted nodes’ treatment of his personal data. The other one is based
on anonymity, so that data are linked with a pseudonym and not with the
real customer’s identity. We advance an e-commerce privacy paradigm as the
natural tradeoff between these two. There are many real-world scenarios, such
as eBay shopping, where a customer may not sufficiently trust the network to
handle his data privately, and at the same time anonymity is either forbidden
or impossible due to unavailability of a privacy certification authority (which
stores the pseudonyms). Our paradigm applies here because it removes both
the need for the customer’s trust in the network and the need for his anonymity.

The gist of the new paradigm is that the customer uses his real identity
but only circulates data that cover the actual resources he is looking for —
this is the data concealment phase. Such data will be orchestrated through the
network to raise potential matchings, and each node will use certified e-mail
to send the customer a matching offer in a standardised format for mechanical
processing — this is the orchestration phase. The customer will only disclose
the very resource names, via a fair-exchange scheme, to the node he has chosen,
so that the customer’s trust reduces from the entire network to only this end
node — this is the completion phase. The three phases are as light-weight as
possible upon the customer so that they can be easily implemented as a privacy-
preserving e-commerce service to run on the customer’s machine in order to
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automate the interaction with the customer. He would only have to enter his
required resources and wait for the best-matching offers.

Data concealment turns out the most complicated phase. Our main require-
ment was to relieve the customer, who might be a casual customer, from the
burden of calculating cover data. Also, these would be more suitably calculated
by a merchant node according to the most appropriate business rules. How-
ever, meeting this requirement would raise the risk of privacy breach because
the resources that the customer requires should be handed over to a participat-
ing node in an intelligible form, for the node to calculate cover data. We were
pleased to find in the area of e-polls some technology that would contribute
meeting our two-faceted requirement. It is a protocol that we call SEP [4],
aimed at self-enforcing privacy, which we deeply scrutinised in a strong threat
model. Our analysis revealed a conceptual weakness in the protocol in terms of
insufficient fairness, and inspired our upgraded, stronger protocol, called SEP+.
E-commerce clearly is a broader application than e-polls, hence our paradigm
continues with the orchestration and completion phases, which however turn
out rather elaborate but not controversial.

The contribution of our research therefore is at least threefold. Its main
one is a privacy paradigm that balances anonymity and trust in e-commerce.
What was born as a side contribution, but in the end turned out to be at least
as relevant as the main one, is the thorough analysis of the SEP protocol and
the design of its strengthened version SEP+. This paper, which is about the
design and informal analysis of our technology, conjugates the findings of two
conference papers [5, 6]. However, it entirely rewrites them upon the basis of
significant extensions to both the design and the analysis aspects. A major
extension, and third contribution of this paper, is the definition of what seems
to be the first differential-privacy preserving function with non-numeric values,
which is used to simulate the main phase of our paradigm.

Our treatment begins with protocols for self-enforcing privacy, presenting
SEP, its analysis and SEP+ (§2). It moves on to privacy enforcement in e-
commerce by outlining the two main existing paradigms (§3). Then, it describes
our e-commerce privacy paradigm (§4). After that, it introduces our differential-
privacy preserving function with non-numeric values, and uses it to simulate the
main phase of our paradigm (§5). Finally, it makes some discussion (§6), and
terminates (§7).

2. Protocols for Self-Enforcing Privacy

We call SEP a recent protocol to release data with self-enforcing privacy; it
is the final and main one in a triple where the first allows no release of data
and the second only allows a randomised response [4]. A weakness was recently
found in the first protocol of the triple [7], and thus is not directly related to
our work. This Section presents SEP (§2.1), continues with our analysis of the
protocol (§2.2) and terminates with SEP+, our strengthened protocol (§2.3).
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2.1. The SEP Protocol

Golle et al. [4] develop an e-poll protocol to trace data after transmission.
As depicted in Figure 1, each individual is required to add to his preferences P1,
P2, ..., Pp1 some information that must link the preferences with the pollster.
This additional information B1, B2, ..., Bb1 serves as baits. Therefore, each
individual in fact transmits a bundle containing his preferences and the baits.

It is important that the baits do not compromise the results of the poll,
and the pollster be unable to distinguish whether the received bits are actual
preferences or baits. If the pollster is dishonest and publishes or sells individ-
uals’ private data, then the individuals must be able to indict it publicly. The
indictment is possible exactly because the published data contain the individ-
uals’ baits. Like the authors of SEP, we are not concerned here with how the
individuals can practically realise that their data have been published, a process
termed leak return [4, Fig.1].

It is also necessary to ensure that the pollster cannot be indicted illicitly.
Since the individuals have the baits, they could insert them in a fake data
collection, then publish the collection, and finally indict an honest pollster. A
fair scheme must make such an indictment impossible.

I1

B1

PollsterI2

Ir

B2 Bb1....

P1 P2 Pp1

B1 B2 Bb2....

Pp2P2P1

....

B1 B2 Bbr....

P1 P2 Ppr

....

....

....

Figure 1: The original SEP protocol

The SEP protocol attempts to implement a fair scheme of preference submis-
sion. It adopts the RSA encryption scheme to endow the pollster with a public
encryption function E and a corresponding private decryption function D. It
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is understood that anyone can apply E as it requires the pollster’s public key,
whereas only the pollster can apply D as it requires its own private key. The
main idea is that each individual computes the baits using a hash function that
the pollster makes public. That function is required to have as image the set
of ciphertexts that can be produced using the underlying cryptosystem. As a
result, the pollster will be unable to discern whether a ciphertext was produced
using the hash function, in which case it is a bait, or using the actual encryption
algorithm, in which case it is a real preference.

We can now move on to describe the protocol in detail. It is composed of
four main phases plus the indictment phase.

• Setup. The pollster publishes the parameters for the encryption algorithm
E and two hash functions. One, named h, is a standard hash such as SHA-
256; the other one, named g, is a special hash function whose image is the
same as the encryption function’s, that is Im(g) = Im(E).

• Sending a bit to the pollster. The individual’s preference is sent bit
by bit. To send a bit b ∈ {0, 1}, the individual whose identity is Ii chooses
a random value r such that the least significant bit of h(Ii ‖ r) is b. The
individual sends Ii, E(r) to the pollster.

• Sending a bait to the pollster. To send a bait to the pollster, the
individual chooses a random value s, computes g(s) and sends Ii, g(s) to
the pollster.

• Decryption. Given an identifier Ii and a ciphertext c, the pollster de-
crypts c to recover the plaintext p, then computes the least significant bit
b of h(Ii ‖ p) and stores it. Such b is a single bit of Ii’s preference.

Because E and g have the same image, the pollster cannot discern which
function was used to build the ciphertext c it receives. It can only decrypt it as
described above, obtaining a plaintext p. Only if c was computed using E do we
have that p = r. On the other hand, the individual cannot later decrypt g(s),
that is calculate D(g(s)), because he ignores the appropriate key, and hence
cannot predetermine the bait that the pollster will decrypt.

However, although the pollster is not entitled to publish the preferences as
such, it must be allowed to publish, without a significant risk of indictment,
some data about them. Such data must be computed using a function that
conforms to the definition of ε-differential privacy [8] (Definition 1).

Definition 1 (ε-differential privacy). A randomized function f over data
sets gives ε-differential privacy if for any two data sets X1 and X2, which differ
in at most one point, and S ⊆ Range(f), the following holds:

Pr[f(X1) ∈ S] ≤ exp(ε) × Pr[f(X2) ∈ S]

The intuition behind this Definition is simple. We may think of X1 and
X2 as two databases that differ in only one record. A function f satisfies the
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definition of ε-differential privacy if, once fixed a small value of the ε parameter,
there are similar probabilities that the respective applications of f to the two
databases yield the same “feature” S. Conversely, for relatively big values of
ε, those probabilities may differ significantly. We remark that the ε parameter
is typically omitted in informal prose although, as we shall see, it plays an
important role.

A chief property for the pollster is that the computation of the function
eliminates the baits so that, by publishing its results, the pollster will expose
insufficient information for the individuals to indict it. As an extreme, if the
pollster used the constant function f(x) = 1, it would be on the safe side
because the constant reveals no baits, but such a function would be much too
inaccurate. Conversely, if the function also satisfies ε-differential privacy, then
its output can be tuned towards concealment of the input, that is privacy, by
means of small values of ε, or towards accuracy by means of relatively big values
of ε. We provide a demonstration below (§5). Many useful functions, such
as individual component analysis and k-means clustering, can be constructed
to be differential-privacy preserving [9]. In general, a function can be made
differential-privacy preserving by adding laplacian noise or by the exponential
mechanism [10].

In our application, we may think of the example set X1 as the set of clean
preferences and of the example set X2 as the set of preferences enriched with
the baits. A dishonest pollster may publish the raw collected data (containing
the baits), thus breaching the privacy of the individual who submitted them. If
this is the case, that individual can start the indictment phase thanks to the
clues that the baits provide. To succeed, the individual must show a number of
valid exhibits of the form:

Ii, si, bi

where Ii is the individual’s identity, si is the bait and bi is the indicted bit.
Recall that D denotes the decryption function, which only the pollster can
apply, corresponding to E, which anyone can apply. The judge will deem an
exhibit valid if and only if the least significant bit of h(Ii ‖ D(g(si))), which only
the pollster can compute by applying D, is equal to bi. The security analysis of
this phase will be crucial (§2.2).

Two parameters are important to regulate the indictment phase and there-
fore should be pre-agreed out of band between the pollster and the participating
community. One, indicated as n0, is the validity threshold for the accusation.
The individuals shall then advance a number of valid exhibits higher than n0
to successfully accuse the pollster. It is interesting that different individuals
can contribute to reaching that number, precisely those whose data the pollster
putatively published. Since each exhibit is based on the value of a single bit, an
individual might just be successful at guessing a valid exhibit. But n0 reduces
the probability that the individuals guess a sufficient number of valid exhibits
to 1

2n0
.

Another important parameter is indicated as wn and represents a sort of ver-
dict’s tolerance. The pollster can successfully contest the indictment by demon-
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strating that at least ( 1
2 − wn)n of the alleged exhibits are invalid. Therefore,

the pollster will need to invalidate as fewer than half the exhibits as defined by
wn. It proves that an exhibit is invalid by outputting ri = D(g(si)), with a
proof of correct decryption, and demonstrating that the least significant bit of
h(Ii ‖ ri) is not bi.

The ε parameter in Definition 1 is linked to n0 and wn. More precisely, “safe
values of ε in turn depend on the values of n0 and wn that govern the indictment
rules. These values must be chosen to permit a sufficient level of safe disclosure”
[4, §5].

2.2. Evaluating SEP

Let us consider the following real-world scenario for the sake of evaluation.
A pollster P claims an investigation about the people who are interested in a
life insurance contract. The individuals submit their preferences bundled with
baits. Then, P collects the preferences, applies its chosen function that conforms
to Definition 1. Finally, it publishes the output.

Although everyone has behaved honestly so far, it may be the case that,
after the publication of the results, some malicious individuals decide to accuse
P for an unfounded privacy breach, aiming in fact at a refund for a hypothetical
violation. Also the opposite violation is possible, as a malicious pollster may
purposely breach the individuals’ privacy by selling the clean collected prefer-
ences to an insurance company.

SEP must be evaluated in the real world, where it must be assumed that
anyone may seek personal benefit by acting maliciously. Because the protocol
is not deployed, this issue can only be addressed by abstract analysis. It is well
known that only an abstract analysis that relies on some formal, mathematically
grounded, method can provide a rigorous evaluation. Despite our experience in
formal protocol analysis [11], we found out that even an informal analysis of
SEP denounces that the protocol has room for improvement, as detailed below.

The most appropriate threat model to evaluate SEP appears to be BUG
[12], which is named as a permuted acronym of “The Good, the Bad and the
Ugly”. It partitions the protocol participants into three sets according to their
behaviour:

• good nodes always conform to the protocol;

• bad nodes always attempt to break the protocol for the sake of personal
profit;

• ugly nodes may, in turn, resort to either good or bad behaviour; they may,
either deliberately or not, favour bad nodes.

It seems fair to observe that BUG has opened the ground to new findings
about security protocols, which historically had exclusively been studied against
the single super-potent attacker theorized by Dolev and Yao [13]. Chiefly, BUG
allows scenarios in which nodes do not collude but work for personal profit
instead. Hence, it is most appropriate to studying SEP realistically. Each
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static picture of the network, depicting the nodes with the messages they have
sent or received up to that stage, can be characterized in terms of behaviour.
For example, Lowe’s famous attack sees the man in the middle acting as bad,
the end point as good and the initiator as ugly [12]. However, nodes may
change behaviour, so that other pictures may show a different partition. More
details about BUG can be found in its dedicated publication [12] or in its recent
simplification and mechanization in a model checking tool [14].

Before the actual protocol evaluation, it is important to clarify the meaning
of an exhibit. An exhibit may be seen as a claim of an individual’s. If the
individual is good and the pollster is bad, then the individual found the bit bi
illicitly published somewhere by the pollster; viceversa, he just guessed bi. The
individual’s claim is that bi belongs to himself because it is computationally
linked to a bait he can exhibit (that is si) only after application of the decryption
algorithm publicly associated to the pollster. The truth value of this claim can
be easily verified by decrypting the bait as detailed in the previous Section.
Intuitively, if the individual is good (and therefore truthful) and the pollster is
bad, then with high probability the claim will be verified as true, otherwise it
will be verified as false. Thus, if the individuals who submit exhibits are good
and the pollster is bad, then the minimum exhibit threshold n0 will be reached.

We can now analyse SEP, informally though systematically, from the stand-
points of the individuals or of the pollster. The analysis shows how the protocol
counters scenarios with various behaviours.

The individuals. If they are good, then they submit their preferences cor-
rectly bundled with the baits, and attempt no dispute. If they are bad,
they may attempt to build by themselves a fake collection of preferences
with baits and publish it. Then, they may build a number of exhibits that
will generally turn out invalid, and the pollster will get by thanks to the
minimum exhibit threshold n0 and the verdict’s tolerance parameter wn
explained above (§2.1). If the individuals are ugly, then they may decide,
according to their personal cost/benefit analysis, to take a good behaviour
at times and a bad behaviour at other times. Still, the pollster cannot be
indicted if it followed the protocol because the exhibits against him are
insufficient.

The pollster. If the pollster is good, it does not commit any privacy breach be-
cause it publishes the output of a differential-privacy preserving function.
Therefore, the individuals cannot indict it. If the pollster is bad, it may
collect the individuals’ preferences and then publish or sell them to a third
party for example. Then, the individuals may start the indictment phase
but the pollster may decide not to show up at court, or pretend a tech-
nical problem such as a denial-of-service attack if the indictment were to
take place remotely via the Internet, and only participate partially. With-
out the pollster’s complete participation, none or an insufficient number
of proven correct decryptions of the baits can be produced, so that the
individuals will fail to reach a sufficient number of valid exhibits. Hence,
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the pollster will go unpunished! Finally, if the pollster is ugly, it may over
time give rise to either one of the scenarios described here.

Our evaluation confirms that SEP is robust against the individuals’ malicious
behaviour, which is an important feature. However, it also reveals that when the
node that acts maliciously is the pollster, the individuals are unable to indict it
because they have none or an insufficient number of valid exhibits.

It is somewhat surprising that SEP requires the pollster to collaborate in its
own indictment (by decrypting, with a proof of correct decryption, the baits)
because it seems highly unlikely that a dishonest pollster would help its own
accusation in practice. Most importantly, criminal trials in the real world can
reach an end even in absentia of one of the parties, that is when one of the
parties fails to show up at court, whereas SEP’s indictment phase cannot with-
out the pollster’s participation. Of course, the law might introduce dedicated
regulations to bind the pollster to participate, but in such case the technology
would be sure to have failed its goal. For example, the Zhou-Gollman protocol
ensures non-repudiation of origin and of receipt against false claims without the
indictee’s contribution in any case [15].

We conclude that SEP as it stands violates the fairness requirement between
its peers by giving some advantage to the pollster. The protocol should be
strengthened so as to guarantee the individuals’ successful accusations even
when the pollster refuses to collaborate.

2.3. A Strengthened SEP: SEP+

The previous Section showed that SEP gives some advantage to the pollster
over the individuals: because the pollster itself is essential to its own indictment,
it can practically avoid being indicted. This is the main motivation to improve
SEP. Our aim is to give the individuals evidence that their data were sent to
a specific pollster, and to make that evidence sufficient to indict a dishonest
pollster without the pollster’s contribution. This would provide the required
fairness.

We pursue and reach our aim by adopting digital signatures and a complete
Public Key Infrastructure (PKI). The pollster is required to be registered with
the PKI so that it is equipped with a signature key pair and relative certifi-
cates, private signature creation algorithm S and public signature verification
algorithm V [16]. By using V , the individuals will be able to verify validity
and integrity of data signed by S. More precisely, the individuals will verify
the validity of the pollster’s certificate, that is the validity of its signature key,
through the PKI, and ultimately associate the signed data to a specific pollster.
Because a Global PKI is not available at present, our requirement may appear
limitative. However, it is not stronger than SEP’s requirements of a public en-
cryption algorithm E based on RSA (§2.1) and of a function g, which are both
to be associated with a specific pollster. Also these associations required some
PKI to let the individuals correctly pinpoint the required pollster. Moreover,
secure, global e-polls do not seem an issue at present.
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Having described our main and only requirement to strengthen SEP, we can
move on to explaining our design upgrades. Our first attempt, which failed as we
shall see, also caused the extra requirement that each individual I be registered
with the PKI and endowed with a private encryption algorithm EI and a public
decryption algorithm DI . As for the protocol design, the two sending phases
should be augmented with an extra message: when an individual sends real data
or baits to the pollster, he should wait for an ack message from it.

The form of the ack message is crucial. It shall deliver to the individual the
decryption that he may subsequently need for the indictment, that is EI(D(c)),
and shall be signed by the pollster for the sake of integrity and authenticity. A
possible ack message would then be of the form:

S(I, c, t, EI(D(c))), CertP

where I is the individual’s identity, t is the current timestamp, CertP is the
pollster’s signature-key certificate, and c is the ciphertext that the individual
sends per each bit of preference or per each bait. We remind (§2.1) that c is:

• E(r) : if the individual sent a bit of his preference;

• g(s) : if he sent a bait.

When the individual receives the ack message, he verifies the validity of the
pollster’s certificate by contacting the PKI and precisely the very Certification
Authority (CA) that signed the certificate. Then, with the right public key
available, he verifies the digital signature using the V algorithm. The individual
can deduce that something went wrong and abort the session in any of the three
following cases: the signature verification fails; the pollster fails to send the ack
message; the timestamp is expired. Incidentally, the fact that the pollster is
registered with the PKI and precisely with a CA provides a reliable identification
mechanism that may help in the subsequent indictment phase.

It is worth remarking that the ack messages provide an individual with the
decrypted versions of the data that he previously sent. Therefore, if he sent a
bit of preference, then he will receive r; otherwise if he sent a bait, then he will
receive the decryption of g(s), which he did not know otherwise. The decrypted
value can be read only by that individual, because it is encrypted using EI .

Also our updated protocol must be evaluated in the BUG threat model,
especially to assess whether anyone may have some advantage over anyone else.
If the pollster P is bad and publishes or sells the collected data to a third party,
then the individuals may start the indictment phase. If P does not participate
here, the individuals may collect the decrypted baits from the ack messages and
reach a sufficient number of valid exhibits. Therefore, they will be able to indict
P all the same. Conversely, if P is good and the individuals are bad, they may
make a fake collection using the decrypted versions of the baits, publish that
collection and then accuse P . In this case, P has no means to defend itself, and
consequently will be unfairly indicted.

It can be noted that this updated protocol removes the advantage from the
pollster but moves it on the individuals. In consequence, our updates fail to
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make the original protocol fair. It becomes clear that it is excessive to give the
decrypted baits to the individuals before any actual indictment. Having learned
the lesson, we advance a different update to the protocol, resulting in what we
address as SEP+, and achieve more fairness.

We remind that SEP+ assumes a PKI and a registered pollster with signa-
ture algorithms V and S, but sets no similar requirement for the individuals.
SEP+ extends the original sending phases with a simple ack message (simpler
than the previous attempt) of the form:

S(I, c, t), CertP

It can be observed that this message does not provide the decrypted c, that
is the pollster simply replies by signing the just-received pair along with the
current timestamp. As with the failed variant, an individual will continue the
protocol if and only if the pollster sends the acks correctly and timely.

The layout of the protocol is difficult to depict completely. Figure 2 shows
the bundled preferences and baits that each individual sends, and also features
one ack per individual, which the pollster sends in reply to either a single bit of
preference or to a bait of the individual’s.

Using timestamps has two obvious drawbacks. One is that all clocks must
be synchronised. The other one is that a bad pollster may attempt inserting
a more recent timestamp, although this might only convince the individual to
bear extra network latency. The known alternative is a nonce round trip, which
sees the individual issue a fresh nonce to accompany each message of his, and
the pollster quote the same nonce in each reply of his. Although the latter is
more robust a mechanism, it also is more computationally demanding. Due to
the large number of messages that the individual has to issue, we preferred to
opt for the former alternative.

SEP+ passes an analysis against the BUG threat model more successfully
than SEP did (§2.2). The analysis is identical except for the case in which
the pollster P , who runs SEP+ with the individuals, is bad. This time, as P
publishes the collected preferences, the individuals can still indict P even if it
does not participate actively in its indictment. They have collected the ack
messages that are signed by P . This means that the individuals have evidence
that their data where received by P . In particular, P ’s signature may have been
pre-agreed to signify that the pollster accepts compliance with the individuals’
privacy policy. Thus, the ack messages qualify as valid clues that the individuals
can show to the judge if the pollster committed a breach and then did not want
to participate in its own indictment.

Conversely, if the individuals are bad and the pollster P is good, then they
will make a fake collection by themselves, publish it and finally attempt to accuse
P . Their case will be stronger than with SEP because they can also exhibit the
pollster’s signed ack messages. Still, the judge will require a sufficient number
of valid exhibits, which the individuals cannot build by themselves because they
do not know the decrypted versions of the baits, as with SEP. This time, P will
be interested in participating because it can prove its honesty: it will decrypt
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Figure 2: SEP+: our fairer variant of SEP

all baits from the individuals’ exhibits showing that the valid ones are fewer
than the threshold n0. In the end, P will not be indicted illicitly.

The indictment phase of SEP+ is similar to that of SEP but is fairer. The
individuals have significant evidence against a bad pollster even without the
pollster’s collaboration, but their evidence is insufficient if they attempt to indict
a good pollster. The integrity of the acks ensured by the digital signatures is
crucial here. They help tracking the pollster’s participation, a useful feature
that SEP did not have. In brief, SEP+ narrows down the pollster’s malicious
behaviour by balancing fairness towards the individuals.

3. Existing Paradigms of Privacy Enforcement in E-Commerce

The aim of this Section is nowhere near an exhaustive presentation of privacy
enforcement technologies. By contrast, it is meant as a brief outline of those
that seem to be the main paradigmatic approaches to preserve a customer’s
privacy from a networked audience. One insists on the customer’s trusting the
audience to preserve his privacy (§3.1), the other one relies on the customer’s
anonymity from the audience (§3.2). These two paradigms may appear opposite
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to each other, hence our idea to define a balance between them, as we shall see
later.

3.1. Trust: Suspending and Resuming Data

Waidner and Schunter design a suite of protocols (briefly addressed as WS
protocol in the following) to let a customer manage his private data across a net-
work of trusted nodes [17]. Nodes are trusted in the sense that they will conform
to the customer’s privacy policy, which therefore is the paradigm underlying this
protocol. In terms of protocol design, this means that the participating nodes
will conform to the protocol without deviating from its prescribed steps. The
treatment develops in the context of electronic commerce in the Web 2.0, an
“on-line retail scenario” [17].

The WS protocol sees a customer transmit his identity and what he wants to
buy to a relevant node in the trusted network, e.g. a bookseller. The bookseller
may collaborate with the other nodes in the trusted network in order to fulfill
the customer’s request. The authors suggest that each node have a privacy
panel that allows the customer to manage his data at the collaborating nodes’
sites. The customer can view the node privacy policy from its panel and so
decide whether it conforms to his own. If the check is affirmative, the customer
may decide to release his data to that node, and its privacy panel will then
state whom the node disclosed the customer’s data to. Another functionality of
a node’s privacy panel is to let the customer delete or block the node’s use of
his data.

The customer bundled his data with various ACLs (Access Control Lists)
to specify who can do what on them, and with a DF (Data Flow) matrix to
indicate his intended flows for the data, that is from which node to which node
the data may travel. The ACLs and the DF coming with the data implement
the customer’s privacy policy on his data. Both these structures are digitally
signed by the originator, but we argue that each intermediate node might alter
the plaintext at will and affix its own signature to the modified version, if it only
were not trusted not to do so: “Those parties are then trusted to enforce the
privacy restrictions as specified by an individual” [17]. Removing this portion
of trust would require each intermediate node to verify the customer’s signature
through a PKI.

Each flow may be seen as a delegation, as it is regulated by typical delega-
tion mechanisms. Initially, the customer delegates a node to handle his data,
and then the node delegates another one, and so on. The customer can block
or unblock the use of his data at a node’s through dedicated protocols, and
the block message will propagate to all nodes that received the customer’s data.
More precisely, the block protocol sees the customer send an authenticated block
request message to the first node in the data flow. If that node ever disclosed
the data to others, then it now forwards the block request message, otherwise it
responds to the customer with a signed block response message as an acknowl-
edgement. Along each delegation path, the delegation response messages are
nested. The unblock protocol is simpler: it sends the unblock request messages
through the delegation graph but requires no response messages.
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The WS protocol has the pro of being simple and intuitive. As the partic-
ipating nodes are trusted to follow the protocol rules, the protocol only needs
to regulate the flows of data among a distributed community. Therefore, an
important remark is that no security mechanism to thwart the nodes’ active
misbehaviour is needed within the protocol because “our concept needs to be
augmented by proper auditing and controls to ensure that enterprises correctly
deploy the technology and comply with the privacy promises they have made”
[17]. The same remark applies to the private information that each privacy
panel features about a customer’s data flows: access to that information should
be forbidden to other customers.

3.2. Anonymity: Using a Pseudonym

Nothing in the previous paradigm confirms that the nodes will respect their
stated privacy policy and therefore conform to the customer’s policy upon re-
ception of his data. Addressing this issue is left to other layers of technology.
The opposite paradigm disposes with such a trust entirely by providing the cus-
tomer with anonymity. Although pseudonymity and anonymity have different
shades of meaning, our treatment safely makes no distinction between them —
the interested reader may refer to other publications [18].

The DAA (Direct Anonymous Attestation) protocol [19, 20], which is adopted
in the TPM v1.2 (Trusted Platform Module) specification by TCG (Trusted
Computing Group), perhaps is the best-known protocol aiming at customer’s
anonymity. Here, we only outline in the context of electronic commerce the
main steps of the protocol (Figure 3), as its details are irrelevant to the rest our
treatment. The customer C is depicted paired with the TPM of his machine,
which contains a unique endorsement key pair. Cryptographic operations may
then be asked to the customer, as they will be performed by his TPM.

C + TPM

TTP

P-CA

Ni

1. Authentication

2. Anonymous Attestation

3. Public Key + Pseudonym  
    + Anonymous Attestation

4. Pseudonym's Certificate

5. Public Key + Pseudonym Certificate

Figure 3: Using a pseudonym

An Issuer authenticates a customer through his pre-existing certificate, and
issues an anonymous attestation (message) for him. This takes place through
steps 1 and 2. The attestation message, which is encrypted with the customer’s
public key, states that the customer is genuine but does not reveal his identity. In
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step 3, the customer generates a public key, chooses a pseudonym, and submits
them to an entity called P-CA (Privacy Certification Authority). The P-CA
verifies that the customer has valid attestation, and that his pseudonym is
computed out of information that is present in the attestation. If this double
check succeeds, then the P-CA will release the certificate for the pseudonym’s
public key, in step 4. Through this correctly attested purchase certificate, the
customer can access the chosen end node Ni, taking step 5.

It can be appreciated that the protocol protects the customer’s privacy,
that is his identity and his TPM’s endorsement public key, as these are only
used in the initial phase with the Issuer. More precisely, for the attestation
to be anonymous, an attacker must be unable to link the pseudonym with the
customer’s identity. Because the Issuer is the only entity that can resolve that
link, the DAA protocol protects it by adopting a group of Issuers and a group
signature scheme [21]. Moreover, the protocol separates the Issuer from the
P-CA, so that a successful attack would require collusion with both authorities.
The protocol can be additionally strengthened by having the P-CA release one-
time certificates [20]. Some real-world applications adopting a DAA protocol
already exist [22].

Also the concept of k-anonymity [23] is related to anonymity, although it does
not rely on a pseudonym. It establishes that a tuple of records in a database
is associated to k individuals so that the tuple cannot be uniquely associated
to the actual data owner, who then remains anonymous. By contrast, we shall
see below that data in our paradigm can be associated to their owner although,
rather than being private data as such, they only are cover data.

4. A Novel Paradigm of Privacy Enforcement in E-Commerce

The previous Section presented two paradigmatic approaches to privacy en-
forcement. One requires the customers to trust the network, while the other one
keeps the customers anonymous because that trust is removed. Our aim is to
conjugate the benefits of both paradigms by removing as much as possible the
trust from the network and by shifting the privacy enforcement mechanism from
the customer’s identity, which is a shift from anonymity, to the customer’s actual
required resources. In other words, the shift is from privacy of the customer’s
Personally Identifying Information (PII), which is “any piece of information
which can potentially be used to uniquely identify, contact or locate a single
person” [24], to privacy of the customer’s information that is not PII, such as
his purchase preferences. This Section assumes that the sought resource names
do not include the customer’s PII. Our paradigm will clearly avoid the necessity
of a privacy certification authority. Of course, we cannot aim at removing the
customer’s trust from every node in his network: at least one node that will
eventually provide the required resources or products must be trusted to keep
the customer’s privacy.

The main idea underlying our paradigm is to conceal a customer’s data by
means of a differential-privacy preserving function, and to transmit only the
output of the function, that is cover data. It may be argued that also certain
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cover data may expose private data. Precisely, the more probably cover data
conceal private data, the less trust is required of peer nodes — for example,
the customer may not want to share his interest in war books with the network
because he does not trust its nodes sufficiently; conversely, he might accept to
share that information with some probability he finds adequate because his trust
in the network is proportionate to that probability. Balancing concealment of
the input, that is privacy, with preciseness of the output, that is accuracy of
the cover, can be done by resorting to differential privacy, as we shall see below
(§5). The expected price to pay when trust tends to nothing is an increasingly
inaccurate proposal finding, due to the fact that the cover data will match the
original resource name with decreasing probability.

Our e-commerce privacy paradigm is a tradeoff between the customer’s
anonymity and his trust over the network. It comprises three phases.

1. Data concealment is the first and main phase as it operates the main
shift of privacy enforcement from the customer’s identity to his data.
Concealment is done by applying a suitable differential-privacy preserving
function (§4.1).

2. Orchestration then informs the customer of the network nodes providing
the resources or the goods that best match his data. Obviously, a deeper
data concealment causes a less precise orchestration (§4.2).

3. Completion sees the customer choose a node on the basis of its prod-
uct offer. The customer finally initiates an appropriate security protocol
(depending on the application domain) with the chosen node (§4.3).

As we shall see, all phases are as light-weight as possible for the customer.
They can be easily implemented in a privacy-preserving e-commerce service,
which, downloaded onto the customer’s machine, would mechanise the interac-
tion with the customer. He would only be left with the task of entering his
required resources and wait for the best-matching offer.

4.1. Data Concealment

A customer who wishes to interact with a network to obtain specific re-
sources begins by finding an “initial” node in that network. A deeper discussion
about this search is beyond our interests here. For example, in the context of
electronic purchases, that node might be accessed through the web site of a
price-finding engine; in the context of peer-to-peer networks, the initial node
has some “proximity” relation with the customer. For brevity, the initial node
is termed hook in the following.

Phase 1 of our paradigm prescribes the customer to run SEP+ (§2.3) with
the hook. Figure 4 portrays this phase from left to right. First, the customer
C executes SEP+ with the hook N1 inserting the baits in his required resource
name. Then, the hook applies a differential-privacy preserving function f to the
enriched resource name in order to produce cover data — more technicalities
can be found below (§5). It is clear that using the original SEP protocol would
be entirely inappropriate here, especially for a decentralized and delocalized
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application as e-commerce. It cannot be assumed that any node anywhere
in the world would collaborate to its own indictment without having digitally
signed anything.

C N1

B

B

f

B

B

Figure 4: Phase 1 — data concealment

The hook is acting in the pollster’s place. To operate in the individuals’
role, the customer transmits the hook his required resource name modified with
a number of baits. Our privacy-preserving e-commerce service can mechanise
this interaction as the data-concealment sub-service, which takes as input a
resource name and outputs its version enriched with the baits. Running such a
sub-service seems a much lighter design requirement than having the customer
compute the differential-privacy preserving function most appropriate to the
type of shopping. SEP+ conveniently leaves that computation to the hook.

4.2. Orchestration

This phase begins when the hook has computed the cover data for the re-
sources that the customer required. Figure 5 shows that the hook N1 begins
to transmit the cover to a number of participating nodes in the network (to-
wards the right hand side of the Figure). It is important to remark that the
customer’s privacy is considered unaffected, according to the customer’s privacy
policy, because only cover data are treated. However, they can be linked to the
customer’s identity: he is not anonymous.

N1 ...C

...

Figure 5: Phase 2 — orchestration

Transmission is recursive in the sense that whichever node receives the data
will forward them to other nodes depending on its computational resources,
anti-DoS heuristics and possibly a personal relationship that is either business-
relevant (rational) or sentimental (irrational). In case of a business-relevant
relationship, the node typically relies on some network reputation system. For
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example, if a node Ni passes to a node Nj some data concerning stationery in
the observed period of time, and stationary is relevant to Nj ’s business, then the
reputation of Ni at Nj may increase; this may not be the case if the transmitted
data concerned vehicles, upon the assumption that Nj does not sell them. Also,
every node shall decrease all values in its reputation table proportionally with
the passing of time, so as to promote the orchestration. However, maintaining a
reliable reputation systems against potential false claims is not trivial [25] and
lies beyond our focus.

When a node feels that it can make a significant offer about the data just
received, it emails the customer with the details of the offer using a certified
email protocol, as indicated by the dash-dotted lines in Figure 5. Alterna-
tively, this process could be made more synchronous by suitable protocols [26].
Clearly, the level of accuracy of the offers depends on the cover data. The more
privacy-preserving the cover, as established by the differential-privacy preserv-
ing function, the less focused the offers. Alternatively, the node may opt for a
careful conduct during a valuable transaction: rather than sending the customer
an offer that it recognizes as unappealing (that is either unrelated or overpriced),
it may decide to pass the data on to other nodes with reputation higher than a
threshold, and hence build up its own reputation. The node might even decide
to do both but this will raise the competition.

In brief, a reputation system that accounts for the business-relevance of the
transmitted data keeps the orchestration alive, because a simple cost-benefit
analysis will convince each node to participate. In particular, each node may
choose whether:

• to email an offer to the customer but not to pass on the data to other
most reputed nodes, if the node cares more about the exclusiveness of its
offer than about its network reputation;

• not to email an offer to the customer but to pass on the data to other
most reputed nodes, if the node cares less about the exclusiveness of its
offer than about its network reputation;

• to do both, if the node accepts the competition with other offers for the
sake of increasing its network reputation.

We remark that how to make the best business choice among these three
is not obvious for a node, as subsequent offers by other nodes might be higher
as well as lower priced. In principle, a node might choose a greedy policy of
always emailing offers but, due to the number of customers, processing all data
containing customers’ requests would raise the risk of a DoS attack to itself
more than to a specific customer. It is however certain that the node would be
unable to forge more expensive offers by other nodes because all offers must be
made by certified email. This applies in particular to the hook, whose reputation
gets balanced with its sole right of sale. The orchestration terminates with the
customer’s choice of the best offer. This will contain the very resources the
customer is seeking, depending not only on their availability in the network but
also on the accuracy of the cover data.
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This phase does not significantly raise the risks of DoS attacks to the cus-
tomer. The customer may decide to process the offers only for a limited time
window, and to discard them afterwards. Moreover, he may only process
lightweight emails containing the URL with the dedicated offer and discard
the others. These heuristics would be simple to implement as the orchestration
sub-service of our privacy-preserving e-commerce service to be run at the cus-
tomer’s machine. Ideally, the form of the offers should be standardised so that
they could be mechanically selected: the orchestration sub-service would choose
them if under a threshold price.

4.3. Completion

This final phase, which begins when the customer has already chosen the
node from which to obtain his required resources, lets the customer come to
a formal agreement with that end node. Figure 6 shows that the customer C
executes a security protocol with the chosen end node Ni in order to settle a
secure access to the resources. Obviously, the customer must reveal to the end
node the required resources, but the security protocol shall protect its name.

NiC
security
protocol

Figure 6: Phase 3 — completion

As remarked above, the customer must put some trust in the chosen end
node. It is the only network entity trusted to conform to the customer’s privacy
policy, as opposed to the trust paradigm (§3.1) where the customer had to trust
the entire network. Because the customer is not protected by anonymity, such
a single-node trust cannot be removed. The end node will one way or another
realise what resources to grant the customer or which good to ship to him.
However, this limitation is somewhat shared also with the anonymity paradigm
(§3.2).

Security in this phase strongly depends on the application domain. It may
generically evaluate to mutual authentication and confidentiality. For electronic
commerce in particular, this phase would require a suitable protocol such as
SSL/TLS [3] or a fuller payment protocol such as SET [27]. In addition, a
combination with a fair-exchange protocol [28] would protect the peers from
each other’s potential false claims. This would help the customer face the risks
associated to his trust on the end node. The protocol would require the end node
to formally agree with the customer’s privacy policy, so that such agreement
would be non-repudiable. Should the end node abuse the customer’s private
data, that is what he has just purchased, the customer would be able to sue it
using the non-repudiation evidence collected during the protocol.

The interaction with the customer in this phase reduces to an appeal to
an appropriate security protocol. The completion sub-service of our privacy-
preserving e-commerce service would only have to implement that invocation.
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The implementation effort would be negligible: SSL for example is implemented
in all modern browsers, while open-source implementations are already available
for it [29].

5. Simulating data concealment with a candidate differential-privacy
preserving function

Given two alphabetic words X = x1 . . . xn and Y = y1 . . . yn of same length
l(X) = l(Y ) = n, we define their similarity as the number of symbols they have
in common, in specific positions, as:

s(X,Y ) =

n∑
i=1

j : j =

{
1 if xi = yi

0 else

For example, s(privacy,wrivxcg) = 4. To introduce a differential-privacy pre-
serving function, it is useful to compare and contrast it with an analogous
deterministic function.

Let D denote the set of all English words; it is larger than the English
dictionary because it includes all dictionary entry variations such as plural nouns
and conjugated verb forms. A deterministic extractor of the most similar word
to a given one can be defined as:

edet(X) = Y : Y is alphabetically the first in

{W : W ∈ D ∧ l(W ) = l(X) ∧ s(X,W ) = max
P∈D

s(X,P )}

The function begins by building the subset of dictionary words of the same
length as that of X, and such that they bear maximum similarity to X. It
terminates by deterministically choosing a word in that subset, for example the
first in alphabetical order.

Then, an analogous though differential-privacy preserving extractor can be
defined resorting to a probability distribution over the neperian number as:

edpp(X) = Y with probability proportional to e ε s(X,Y )

According to an established result [10, Theorem 6], this function is 2ε-differential-
privacy preserving because it is built using the so called exponential mechanism.
Further details lie outside our focus, but it must be stressed that the probability
with which the function provides a specific output Y is not exactly e ε s(X,Y ) but,
rather, proportional to it. Therefore, the exact probability can be obtained by
normalising the probability pre-distribution e ε s(X,Y ).

To get to grasps with edpp, it is useful to observe how the probability pre-
distribution varies with its exponent. In particular, Figure 7 shows how the
probability pre-distribution varies with the similarity function, having set ε in-
creasingly smaller, first as 0.1, then as 0.01, and finally as 0.001. It can be
appreciated that, as ε gets smaller, the pre-distribution tends to flatten irre-
spectively of the similarity function. The consequences are significant, as we
shall see.
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Figure 7: The similarity function in abscissas and the probability pre-distribution in ordinates,
having fixed ε to 0.1, 0.01 and 0.001 respectively

We have implemented a Java prototype simulator for the data concealment
phase in approximately 200 lines of code. Therefore, to demonstrate this phase
to the reader, we discuss some of the findings obtained with the help of the pro-
totype. Each letter is represented by the five least significant bits of the ASCII
binary code so that all codes can be printed; for example “a” is represented as
00001 and “z” as 11010. We premise that our interpretation of the insertion of
a bait is that the bait replaces a bit in a specific position. Because the number
of baits does not influence the chances of indictment [4], we decide to insert a
number of baits that is 20% of the total length of the binary representation,
precisely one bait per quintuple. So, each letter gets a bait, but because the
baits are randomly generated, this does not imply that all letters will change.

Let us assume that the customer seeks a resource named “privacy”. We
run our simulator with the bait insertion parameters set above, taking as D
a wordlist of approximately 5MB [30]. At the first run, we obtain output
“wrivxcg” as the word that the hook decrypts through SEP+. This word still
has the four letters “rivc” matching the original resource name in specific po-
sitions. Because of the randomness of the baits, at the second run we obtain
output “airways”. Our simulator also finds out that “wrivxcg” has 2677 words
with similarity 1, 447 words with similarity 2, 46 with similarity 3, and 4 with
similarity 4, but no other words with higher similarity. By contrast, because
“airways” belongs to the wordlist, the simulator obviously finds it with max-
imum similarity, that is 7. Table 1 summarises these findings. Among other
information, it can be seen that “airways” only has 2 words with similarity
5 and no words with similarity 6. Also, the Table shows that “privacy” has
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similarity 4 to the first word and 1 to the second.

X wrivxcg airways s(X,Y )

Y

abasing abalone

1

abating abandon
ability abashed
absence abasing
. . . . . .

privacy
. . .

(2677 words) (4486 words)

abiding abashes

2

alining abducts
arching abjures
arking ablates
. . . . . .
(447 words) (1307 words)

arising abrades

3

braving abreast
bribing acreage
craving acronym
. . . . . .
(46 words) (160 words)

driving areials

4

privacy affrays
waiving airbase
writing airfare

. . .
(tot. 22 words)

airbags
5

midways
6

airways 7

Table 1: Sample of English words w.r.t. their similarity to “wrivxcg” and to “airways”

It follows that edet(wrivxcg) = driving, as “privacy” is not alphabetically the
first in its class, and that edet(airways) = airways. By contrast, the homologous
observation about edpp is that:

Pr[edpp(wrivxcg) = privacy] = Pr[edpp(airways) = airbase]

because
S(wrivxcg,privacy) = S(airways, airbase)

However, observations of this kind are not relevant to our purposes. A
first useful observation is that, having fixed the ε parameter, the probability
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distribution with which edpp outputs a word is identical from column to column
in Table 1 because it only depends on the similarity.

What really is significant is to observe how little the probability distribution
varies within each column: edpp may yield “privacy” almost equally as it may
yield the other words in the column because, for sufficiently small values of
the ε parameter such as 0.001, the probability pre-distribution is almost flat,
irrespectively of the similarity to the input word.

More precisely, edpp(wrivxcg) may return “privacy” with a probability that
is only negligibly higher than the probability with which it may return words,
such as “ability”, with lower similarity to the input. Figure 7 confirms this:
the probability pre-distribution varies negligibly, from 1.001 to 1.004, when the
similarity changes from 1 to 4. Likewise, edpp(airways) may return “privacy”,
despite the low similarity of the two words, with probability that is only neg-
ligibly lower than that with which it may return “airbase”, while arguably a
reasonable deterministic extractor would not output “privacy” in this case.

In conclusion, our ε-differential-privacy preserving extractor can be used
during the data concealment phase to compute cover data because it exhibits
the desirable properties of outputting:

• rather equiprobable words irrespectively of their similarity to the input
word when ε is relatively small, and

• discernibly probable words, depending on their similarity to the input
word, when ε is relatively big.

In line with ε-differential privacy [4], this means that our extractor can be tuned
towards concealment of the input, that is privacy, or towards preciseness of the
output, that is accuracy, by appropriately setting the ε parameter.

Given an input word of length l, the words of length l in D that our extractor
may yield can safely be assumed equiprobable for adequately small values of ε.
Therefore, the probability of an attacker to invert the output of our extractor
and find the input word is inversely proportional to the cardinality of the subset
of D of length l. Such cardinality can be assumed to be bigger than the cardi-
nality of the possible domain of answers to e-polls. Hence, our application of
differential privacy seems more robust in terms of privacy than the application
to e-polling.

To the best of our knowledge, this is the first practical definition, demon-
stration and application of a differential-privacy preserving function with non-
numeric values. An obvious limitation is that it becomes increasingly difficult
to conceal the input while its length increases. This is due to the fact that there
exist few very long words. We are currently working towards more intelligent
extractors that break up long words suitably. It is already clear that, working
with non-numeric values, the main limitations that our definitions must face
live in the world of linguistics.
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6. Discussion

The authors of the WS protocol remark that “without additional assump-
tions it is impossible to achieve the correct schema against a node that is com-
pletely untrusted” [17]. Their protocol cannot work without enforcing trust in
the network at another architectural level. For example, nothing in the proto-
col prevents an intermediate node to tamper with the ACLs and the DF matrix
that come with the customer’s data, thus violating the customers’ privacy. The
ACLs and DF matrix are digitally signed by the customer but the node is not
prescribed to verify those signatures. Even so, the node might replace the data
signature with his own, or pretend to have never received the data or sell them
before actually accepting a block request. The customer would have no means
to prove its misbehaviour.

We have seen that our privacy paradigm transmits the customer’s data only
to the hook. The raw names of the resources the customer is looking for can
be enriched with baits because the hook will have to compute cover data out of
them, as prescribed by SEP+, otherwise it could be indicted. Therefore, it is
unnecessary to program a privacy panel into all nodes’ web servers. Also, the
ACLs and the DF matrix are not required because cover data can flow freely
between the nodes. The orchestration is guaranteed to proceed by the cost-
benefit analyses of the nodes, while each node will freely decide how to behave
(whether to make an offer and/or to forward the cover data) according to its
own business logic.

Our paradigm pays a price when cover data that fail to match the required
resource name are orchestrated. The hook can be required to launch the orches-
tration repeatedly, each time with fresh cover data, for a fixed number of times
inversely proportional to the ε parameter. More offers would be generated, but
the orchestration sub-service could support the customer in mechanically choos-
ing among variously pertinent offers. Should the customer remain dissatisfied
with all offers after a fixed number of orchestrations, then he could protect his
privacy by restarting the data concealment phase with the same resource name:
the randomness of the baits would leave the hook unaware.

All three paradigms allow a man-in-the-middle attack that sees the hook
behave as the attacker. Nothing can prevent it from restarting the entire pro-
tocol abusing the customer’s data as if they were its own. Assuming that the
subsequent orchestration phase would not make the data public, the hook would
not be indictable because the customer would remain unaware. The hook might
finally collect all offers and abuse them analogously with the customer, that is
as offers of its own. In case of resources for sale, for example, the hook might
present increased prices to the customer. It seems impossible to prevent this
scenario even in the real world, where a shop might sell the same products of
another shop though at an increased price, while the clients ignore it. Anyone
who can both provide and seek resources becomes a potential attacker. How-
ever, our paradigm at least reduces the chances of a successful attack because
an offer will not necessarily match the actual resources that the customer was
looking for. This attack is limited in practice by the rules of the open market,
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which see various sub-markets compete for the best prices.
A simple man-in-the-middle attack would have threatened the orchestration

phase of our privacy paradigm if the offers were not submitted by certified
email, which makes the email contents confidential for its peers. The attack
would have seen a node intercept and block an offer being emailed, and then
make the same offer as one of its own. The price of the fake offer could have
been higher or lower than the original offer’s depending on whether the original
could be blocked or not.

7. Conclusions

We have advanced a novel paradigm to safeguard customers’ private data
in e-commerce. It is the natural balance between the paradigm of trusting
the network, adopted by the WS protocol, and the paradigm of distrusting it
entirely thanks to anonymity, adopted by the DAA protocol. Trust is reduced
to the single node selling the required resource to the customer. Privacy of
identity, that is anonymity, is shifted towards privacy of data. More precisely,
the original data are concealed and therefore both the need for full network
trust and for anonymity are removed.

The thorough analysis of the SEP protocol for e-polls has denounced lack
of fairness for the participants. We have upgraded the protocol as SEP+ and
adopted it in the data concealment phase of our privacy paradigm, so that the
customer can safely leave the computation of cover data to someone else. The
orchestration phase delivers pertinent offers to the customer by certified email.
The completion phase requires the execution of appropriate security protocols
between the customer and the chosen selling node. Customers should run a
privacy-preserving e-commerce service that mechanises such paradigm.

Moreover, we have defined and demonstrated what seems to be the first
differential-privacy preserving function with non-numeric values. With the help
of our Java prototype simulator, we have shown how to apply the new function
profitably in the data concealment phase.

E-commerce is developing quickly, especially with the advent of the Web2.0,
as with eBay for example. The inherently hierarchical architecture of the In-
ternet is flattened at the application level so that each node may easily become
both a customer and a merchant. This new picture makes trusting the network
difficult to accept, and the frequent appeal to a trustworthy privacy certifica-
tion authority perhaps more problematic. Our privacy-preserving e-commerce
paradigm may then offer valid support to the new picture.
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