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Abstract

Historically, exam security has mainly focused on threats ascribed to candidate
cheating. Such threats have been normally mitigated by invigilation and anti-
plagiarism methods. However, as recent exam scandals confirm, also invigilators
and authorities may pose security threats. The introduction of computers into
the different phases of an exam, such as candidate registration, brings new
security issues that should be addressed with the care normally devoted to
security protocols.

This paper proposes a protocol that meets a wide set of security requirements
and resists threats that may originate from candidates as well as from exam
administrators. By relying on a combination of oblivious transfer and visual
cryptography schemes, the protocol does not need to rely on any trusted third
party. We analyse the protocol formally in ProVerif and prove that it verifies
all the stated security requirements.
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1. Introduction

Exams play a key role in assessing skills and knowledge of people, hence they
are indispensable to bring meritocracy in modern societies. The idea of using
exams as a procedure to eliminate favouritism and corruption for personnel se-
lection came to West in the 17th century [1]. Nowadays, exams are extensively
used in various situations, for example in universities for admission and progres-
sion of students to a degree, in non-profit organizations to certify professional
qualifications, and in the work sector for recruitment and promotion.

An exam is a complex procedure that begins with the appointment of ex-
aminers and concludes with the notification of the results. Ideally, every step of
such a procedure should resist any misbehaviour so that people could trust the
exam system, and society could truly achieve meritocracy. However, the par-
ticipating principals may be corrupted, and so they may commit misconducts
that are hard to eradicate. Recent scandals confirm that administrators, as well
as candidates, may misbehave [2, 3, 4], and the introduction of computers in
the exam procedures has not reduced the trend [5, 6], making the exam not
necessarily more secure than it was.

Such scandals make people doubtful about exam procedures. We observe
that current exams generally fail to recognise that every principal may profitably
misbehave, as they are normally designed to only resist cheating candidates. In
this paper, we advance a novel exam protocol that also considers misbehaving
administrators and, therefore, we study the security of the protocol without
assuming any trusted parties. The underlying idea of our protocol is to combine
oblivious transfer and visual cryptography to allow candidate and administrator
to jointly generate a pseudonym that anonymises the candidate’s test. The
pseudonym is revealed only to the candidate at the beginning of testing. We
analyse the protocol formally in ProVerif [7] and prove that it meets a wide set
of security requirements, even with the presence of corrupted administrators.
We believe that by removing this additional layer of trust in the design and
analysis of exams, we foster their trustworthiness and contribute to people’s
confidence in the exam practice in general.

We extend a conference paper of ours [8] by extending and updating the
security requirements, by updating the formal definitions, and by redesigning
our protocol to meet the novel set of requirements. More in detail, this article
provides the following novel contributions that exceed the conference paper:

• It extends the list of requirements with Mark Authentication, which is
unpublished.

• It further extends the list of requirements with Test Authenticity, Anony-
mous Examiner and Test Integrity Verifiability using existing definitions
[9].

• It updates the formal definition of requirement Mark Authenticity so that
appropriate authentication requirements now cover all the phases of an
exam.
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• It provides a novel graphical representation of the authentication require-
ments with their coverage of all protocol phases.

• It updates the formal definition of requirement Dispute Resolution so that
the scenario with both administrator and candidate being corrupted is
admitted.

• It presents a novel set of 15 requirements derived from the 11 published
ones [8] by the extensions and updates outlined above and by rewriting
otherwise towards consistency of style and readability.

• It updates several parts of the exam protocol to meet the novel set of
requirements.

• It updates the examiner role by partitioning it as administrator, examiner
and invigilator roles so that both protocol design and analysis gain detail.

• It redesigns the Testing Dispute Resolution algorithm to meet the new
definition of Dispute Resolution.

• It proves by ProVerif that the updated exam protocol meets the novel set
of requirements.

Outline. The paper is organized as follows. Section 2 analyses some related
work. Section 3 details the list of security requirements and their formalisation.
Section 4 describes the protocol. Section 5 details the formal analysis of the
protocol in ProVerif. Finally, Section 6 draws future work and conclusions.

2. Related work

Few works [10, 11] list a number of security requirements for exams, still
only informally. Only Dreier et al. [12] define a formal framework in the ap-
plied π-calculus to define and analyse authentication and privacy requirements
for exams, which this paper extends with new requirements. They analyse two
existing electronic exam protocols as case studies. In the domain of Computer
Supported Collaborative Working, Foley and Jacob [13] formalised confidential-
ity requirements and proposed an exam as a case study.

Recently, a number of secure exam protocol have been introduced. Castella-
Roca et al. [14] develop an exam protocol that meets authentication and privacy
properties in the presence of a fully trusted exam manager. Bella et al. [15]
propose WATA IV, a protocol that considers a corrupted examiner but assumes
an honest-but-curious anonymiser. Huszti-Pethő [16] advance an Internet-based
exam with few trust requirements on principals, but with some security flaws in
the design [12]. Giustolisi et al. [17] describe Remark!, another Internet-based
exam protocol that ensures authentication and conditional anonymity require-
ments with minimal trust assumption. The protocol generates pseudonyms via
an exponentiation mixnet, which assumes at least one honest mix server.
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Many universities and companies for language proficiency tests or person-
nel selection replaced traditional exams with Internet-based exams [18, 19] or
Computer-assisted exams [20, 21]. For example, the European Union adopts
computer-based exams for the selection of EU personnel [22]. However, their
designs include trusted exam authorities that are in charge of the critical tasks
of the exam. Conversely, our protocol is designed to minimise the reliance on
trusted parties.

Maffei et al. [23] implemented a course evaluation system that guaran-
tees privacy using anonymous credential schemes without a trusted third party.
Similarly, Hohenberger et al. [24] advanced ANONIZE, a protocol for surveys
that ensures authentication and privacy in presence of corrupted authorities.
However, surveys have different security requirements than exams, for instance,
surveys do not consider test authorship and fixed-term anonymity definitions.

Some related protocols have been proposed in the area of conference man-
agement systems. Kanav et al. [25] introduced CoCon, a formally verified
implementation of conference management system that guarantees confiden-
tiality. Arapinis et al. [26] introduced and formally analysed ConfiChair, a
cryptographic protocol that addresses secrecy and privacy risks coming from a
malicious-but-cautious cloud. Their work has been recently extended to support
any cloud-based system that assumes honest managers, such as public tender
management and recruitment process [27].

Few protocols [28, 29] have been proposed to ensure anonymous marking still
assuming trusted authorities. The goal of our protocol is to meet anonymous
marking and other properties without the need of a TTP.

3. Security requirements

Our exam protocol involves four roles. These are obtained by partitioning
the examiner role [8] as administrator, examiner and invigilator to increase the
detail.

• The candidate (C) role, who takes the exam.

• The administrator (A) role , who checks the eligibility of candidates who
wish to take an exam, populates a list of registered candidates accordingly,
informs the candidates of the marks that their respective tests received,
and stores this information with some recorders.

• The invigilator (K) role, who distributes tests to candidates, checks can-
didates’ identities, follows candidates while they take their test preventing
them from misbehaving, collects the tests from the candidates and then
distributes the test answers to the examiners.

• The examiner (E) role, who reads the test answers and produces adequate
marks for them.
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A typical exam runs in phases: at preparation, the administrator files a new
exam, registers eligible candidates, generates the tests and all the relevant ma-
terial for the subsequent phase. For example, creation of questions, printing of
tests, and generation of pseudonyms to anonymise tests are tasks accomplished
in this phase; at testing each registered candidate gets a test. Invigilators watch
candidates through this phase. Each candidate answers her test and may have
to complete it with her personal details. The candidate then submits her test
answer to the invigilator; at marking the test answers of all candidates reach
the examiner for evaluation. The examiner reads the test answers and evaluates
their adherence to the required knowledge, then forming a mark, chosen on a
given scale, for each test; at notification, the administrator gives each candidate
the mark for the test answer the candidate submitted and stores the mark.

We consider a list of seven authentication, five privacy, two verifiability, and
one accountability requirements. This list updates (and extends) a previous one
as described above (§1). Although we find them highly desirable out of personal
experience and discussions with colleagues, the list of requirements is not meant
to be universal or exhaustive. It means that certain exam protocols might de-
mand additional requirements. However, we consider our set of requirements to
be fundamental as similar requirements can be found in other independent works
[10, 11], still only informally. As we shall see later, the list of our requirements
includes the classic confidentiality, integrity, and authentication requirements
and many others.

To express our requirements unambiguously, we use the applied π-calculus
[30], a formal language for the description and analysis of security protocols,
in which principals are represented as processes. The processes communicate
via a public channel that is controlled by an attacker. We chose this approach
rather than others (e.g., ISO security standard, informal argumentation) be-
cause the applied π-calculus is the input language of ProVerif, an automatic
protocol verifier tool. Authentication can be defined using correspondence as-
sertions [31]. An event e is a message emitted into a special channel that is
not under the control of the attacker. To model correspondence assertions, we
annotate processes with events such as e⟨M1, ...Mn⟩ and reason about the re-
lationships (↝) between events and their arguments in the form “if an event
e⟨M1, ...Mn⟩ has been executed, then an event e′⟨N1, ...Nn⟩ has been previously
executed”. Verifiability requirements demand the existence of sound and com-
plete verifiability-tests [32]. Soundness and completeness can be checked in the
applied π-calculus as reachability properties. The same approach can be used
to express accountability. The applied π-calculus supports the notion of obser-
vation equivalence. Informally, two processes are observational equivalent if an
observer cannot distinguish the processes even if they handle different data or
perform different computations. The indistinguishability characterization of the
definition of observation equivalence allows us to capture privacy requirements.

3.1. Authentication

In the applied π-calculus, an event is a message output e(a⃗): e is the event
channel and a⃗ is a, possibly empty, list of arguments. The message appears in
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the trace as soon as the execution of the process reaches the event.
To model authentication requirements as correspondence assertions, it is

necessary to define a number of relevant events. Events normally need to agree
on some arguments to capture authentication. Thus, we introduce the terms
that serve as arguments in our events.

• id c refers to the identity of the candidate;

• ques denotes the question(s) of the test;

• ans denotes the answer of a test;

• mark denotes the mark assigned to the test;

• id e refers to the identity of the examiner;

• id test refers to the identifier of the test.

We then define a list of eight events that allow us to specify seven funda-
mental authentication requirements for exams:

• registered⟨id c⟩ means that the administrator considers the candidate
id c registered for the exam. The event is inserted into the process of the
administrator at the location where the registration of the candidate id c
concludes.

• submitted⟨id c, ques,ans, id test⟩ means that the candidate id c consid-
ers the test id test , which consists of question ques and answer ans, sub-
mitted for the exam. The event is inserted into the process of the candidate
at the location where the test is sent to the invigilator.

• collected⟨id c, ques,ans, id test⟩ means that the invigilator accepts the
test id test , which originates from the candidate id c. The event is in-
serted into the process of the invigilator at the location where the test is
considered as accepted.

• distributed⟨id c, ques,ans, id test , id e⟩ means that the invigilator con-
siders the test id test , which originates from the candidate id c, associated
with the examiner id e for marking. The event is inserted into the pro-
cess of the invigilator at the location where the test is distributed to the
examiner.

• marked⟨ques,ans,mark , id test , id e⟩ means that the examiner id e con-
siders the test id test , which consists of question ques and answer ans,
evaluated with mark . The event is inserted into the process of the exam-
iner at the location where the test is marked.

• requested⟨id c, id test⟩ means that the candidate id c accepts to learn
the mark associated to the test id test . The event is inserted into the
process of the candidate at the location where the request is sent to the
administrator.
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• stored⟨id c, id test ,mark⟩ means that the administrator considers the
candidate id c associated with mark . The event is inserted into the pro-
cess of the administrator at the location where it officially registers the
mark assigned to the candidate.

• notified⟨id c, id test ,mark⟩: means that the candidate id c officially
accepts the mark mark . The event is inserted into the process of the
candidate at the location where the mark is considered accepted.

These events mark important steps of an exam protocol, and some can be as-
sociated with the phases of an exam. The event registered normally concludes
the preparation phase, while collected concludes the testing phase. The event
distributed begins the marking phase, which the event marked concludes. Fi-
nally, the events requested and notified respectively opens and concludes
the notification phase. Note that these events implicitly refer to the same exam
session. However, one might want to parameterise all the events with a common
term in order to distinguish among exam sessions.

The first authentication requirement we consider is Candidate Authorisation,
which concerns preparation and testing. Informally, we want to capture the re-
quirement that only registered candidates can take the exam. More specifically,
the requirement says that if a candidate submits her test, then the candidate
was correctly registered for the exam.

Requirement 1 (Candidate Authorisation). An exam protocol ensures
Candidate Authorisation if for every exam process EP

submitted⟨id c, ques,ans, id test⟩ ↝ inj registered⟨id c⟩

on every execution trace.

This requirement is modelled as injective correspondence assertion because
the exam should consider only one submission per registered candidate.

The second authentication requirement that we advance is Answer Authen-
ticity, which concerns the testing phase. It states that the collector should con-
sider only answers that candidates actually submitted, and that the contents of
each collected test are not modified after submission. It says that a test must
be bound to a candidate identity. A practical implication of this requirement
is that two candidates will be unable to get tested on each other’s questions,
something they could attempt due to a variety of colluding aims. Moreover,
only one test from each candidate should be considered, namely every time the
collector process emits collected, there is a distinct earlier occurrence of the
event submitted that satisfies the relationship between their arguments.

Requirement 2 (Answer Authenticity). An exam protocol ensures Answer
Authenticity if for every exam process EP

collected⟨id c, ques,ans, id test⟩ ↝ inj submitted⟨id c, ques,ans, id test⟩

on every execution trace.
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The third requirement is Test Origin Authentication and concerns prepara-
tion and testing. Informally, it says that the collector should accept only tests
that originate from registered candidates. This requirement should be modelled
as an injective agreement to enforce that only one test from each registered
candidate is actually collected.

Requirement 3 (Test Origin Authentication). An exam protocol ensures
Test Origin Authentication if for every exam process EP

collected⟨id c, ques,ans, id test⟩ ↝ inj registered⟨id c⟩

on every execution trace.

Another authentication requirement is Test Authenticity and concerns test-
ing and marking. It is stated below using a recent definition [9] that was not
available in the conference version [8] of the present article. Because the tests
are possibly assigned to a number of examiners to even the marking load, Test
Authenticity insists that an examiner only marks the tests intended for him.
Moreover, the contents of each test should not be modified until the tests are
marked.

Requirement 4 (Test Authenticity). An exam protocol ensures Test Au-
thenticity if for every exam process EP

marked⟨ques,ans,mark , id test , id e⟩ ↝
inj collected⟨id c, ques,ans, id test⟩ ∪
inj distributed⟨id c, ques,ans, id test , id e⟩

on every execution trace.

Some universities allow candidates to take an exam up to a fixed number of
times until they succeed. However, if the candidate withdraws from an exam
before or during testing, this is not counted towards the number of attempts.
Other universities have a policy that prevents the candidate to resit a failed exam
at the very next session unless the fail derived from the candidate’s decision to
withdraw before being notified a mark. Thus, we consider the requirement of
Notification Request Authentication. It says that a mark should be associated
with the candidate only if she requests to learn her mark.

Requirement 5 (Notification Request Authentication). An exam proto-
col ensures Notification Request Authentication if for every exam process EP

stored⟨id c, id test ,mark⟩ ↝ inj requested⟨id c, id test⟩

on every execution trace.

The requirement Mark Authenticity concerns marking and notification. It
prescribes that a mark should be correctly recorded for the corresponding test
and candidate, namely that the administrator should store the mark assigned to
a test during marking by the examiner. This definition updates our previous one
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[8] by involving a pair of events that are now closer together. This contributes to
a finer and fuller coverage of all the phases of an exam in terms of authentication,
as Figure 1 will confirm graphically.

Requirement 6 (Mark Authenticity). An exam protocol ensures Mark Au-
thenticity if for every exam process EP

stored⟨id c, id test ,mark⟩ ↝ marked⟨ques,ans,mark , id test , id e⟩

on every execution trace.

A final, important requirement is Mark Authentication, which has never been
published before. It says that the candidate is notified with the same mark that
has been stored by the administrator.

Requirement 7 (Mark Authentication). An exam protocol ensures Mark
Authentication if for every exam process EP

notified⟨id c, id test ,mark⟩ ↝ stored⟨id c, id test ,mark⟩

on every execution trace.

In summary, an exam protocol that ensures all requirements outlined above
preserves the association between candidate identity, mark, and test, including
question and answer, through all the phases of the exam. The relationships
between authentication requirements with respect to exam run and principals
can be graphically represented as in Figure 1. This novel representation shows
that the stated requirements rest on an ordered sequence of events. It can
be noted that there is no requirement relating directly the events collected,
distributed, marked and requested (i.e., the densely dotted arrows). We
chose not to specify the requirement “the collector distributes the accepted tests”
since such requirement is usually enforced by the sequential execution of the
examiner process as both events belong to the same process. Moreover, it always
holds if the common arguments of the two events are derived from the same
source, for example, if the common arguments are built from the same message
input. Likewise, we did not specify the requirement “the candidate requests
the mark of their test” because, in general, the events marked and requested

may be emitted in any order. In fact, a candidate may request the mark to the
administrator even before the examiner marks the test, but this is not a security
issue.

Figure 1 also emphasises that the combination of these requirements produce
novel requirements. If an exam protocol guarantees Candidate Authorisation
and Answer Authenticity, then the protocol also guarantees Test Origin Au-
thentication, namely the tests submitted by registered candidates are actually
collected. Conversely, a protocol that guarantees Test Origin Authentication
may guarantee neither Candidate Authorisation nor Answer Authenticity. Test
Origin Authentication only states that collected tests originate from registered
candidates without considering the actually submitted tests. It follows that a
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test modified after submission may meet Test Origin Authentication but not
Answer Authenticity.

In general, if we consider a requirement in a certain phase of the exam, we
cannot infer anything about other phases. For example, Mark Authenticity sig-
nifies that the administrator stores the same mark that the examiner assigned
to the candidate’s test. However, the test provided by the invigilator to the ex-
aminer may contain a different answer with respect to the answer the candidate
submitted at testing. Only if the exam protocol also guarantees Answer Au-
thenticity and Test Authenticity, are the contents of the tests identical through
the whole exam.

3.2. Privacy

To model privacy requirements as equivalence properties, we use the defini-
tion of labelled bisimilarity (≈l) as defined by Abadi and Fournet in [30]. We also
use the definition of exam process and the corresponding notations introduced
by Dreier et al. [12] to specify the requirements.

We denote with EP a closed process such that:

EP = (Cσid1σa1 ∣ . . . ∣ Cσidjσaj ∣ Eσid′1σm1 ∣ . . . ∣ Eσid′kσmk ∣ Aσq ∣ Kσtest)

where:

• Cσidiσai ’s are the processes run by the candidates. The substitutions
σidi and σai specify the identity and the answers associated with the ith

candidate;

• Eσid′iσmi ’s are the processes run by examiners. The substitution σid′i and

σmi specify the identity and the mark associated with the ith examiner;

• Kσtest is the process run by the collector. The substitution σtest associates
a test with an examiner for marking;

• Aσq’s is the process run by the administrator. The substitution σq speci-
fies the exam questions;

We denote with “EPI [ ]” the context of the exam process EP pruned of
identities that appear in the set I. For example, the process

νñ.( ∣ ∣Cσid3σa3 ∣ . . . ∣Cσidjσaj ∣Eσid′1σm1 ∣ . . . ∣Eσid′kσmk ∣Kσdist ∣Aσq)

can be concisely written as EP{id1,id2}[ ]. Such compact notation is useful to
specify and focus exactly on the processes concerned by the requirement. For ex-
ample, we can write EP{id1,id2}[Cσid1σa1 ∣Cσid2σa2 ] to reason about candidates
id1 and id2 without repeating the entire exam instance.

Second, we denote with “EP ∣e” the process EP pruned of the code that
follows the event e. For example, the process EP ∣marked considers an exam
instance that terminates at marking, precisely after the event marked is emitted.
This notation is useful to capture fixed-term requirements such as anonymous
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marking, which is intended to hold until after the marking, but is eventually
falsified at notification when the mark is assigned to the candidate.

The first privacy requirement we consider is Question Indistinguishability,
which says that the questions are not revealed until the testing phase begins.
Thus, it is a fixed-term requirement ending with the preparation phase.

Requirement 8 (Question Indistinguishability). An exam protocol en-
sures Question Indistinguishability if for every exam process EP and every
questions q1 and q2

EP[Aσq1]∣registered ≈l EP[Aσq2]∣registered

Question Indistinguishability states that two processes with different ques-
tions have to be observationally equivalent until after the preparation phase.
Note that this requirement is more stringent than reachability-based secrecy
because the attacker should not be able to distinguish whether the exam will
use q1 or q2 although he knows both the questions in advance. For example, the
attacker cannot say whether the questions of the current exam are similar to
the questions of the previous exam, which are already in the attacker’s knowl-
edge. The analysis of Question Indistinguishability is particularly interesting
when considering corrupted candidates who may want to know the questions in
advance. For example, in the particular case of a corrupted candidate id1, the
requirement gets rewritten as

EP{id1}
[(Cσid1σa1)c1,c2 ∣Aσq1]∣registered ≈l

EP{id1}
[(Cσid1

σa1)c1,c2 ∣Aσq2]∣registered

The next requirement is Anonymous Marking, which covers preparation,
testing, and marking. This requirement signifies that the examiner marks a test
while ignoring its author, namely an anonymous test. It is a clear contribution
to the fairness of the marking. As it stands below, the requirement insists on
the anonymity of a test only until the point that the examiner affixes a mark on
the test. Anonymous Marking can be specified as two exam instances in which
the processes of two candidates who swap their answers cannot be distinguished
until after the end of the marking phase.

Requirement 9 (Anonymous Marking). An exam protocol ensures Anony-
mous Marking if for every exam process EP , every two candidates id1 and id2,
and every two answers a1 and a2

EP{id1,id2}
[Cσid1σa1 ∣Cσid2σa2]∣marked ≈l EP{id1,id2}

[Cσid1σa2 ∣Cσid2σa1]∣marked

In other words, Anonymous Marking says that the process where candidate
id1 submits a1 and candidate id2 submits a2 is indistinguishable to the process
where candidate id1 submits a2 and candidate id2 submits a1. It prevents the
attacker to obtain the identity of the candidate who submits a certain answer
before the marking ends.

Anonymous Marking means that nobody knows who submitted a test while
this is being marked, except the official author of the test. Similarly to Question
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Indistinguishability, it is interesting to consider corrupted principals also in the
analysis of this requirement, so that test anonymity during marking will even
resist collusion of the examiner with other authorities and candidates. Also with
this requirement, the definition of corrupted process [33] can model corrupted
examiners and authorities.

Of course, the definition could also be extended to corrupted candidates
similarly. However, meeting the requirement would then impose stating a lim-
itation: the candidates id1 and id2 who submit two different answers, to be
honest. This limitation would avoid the corner case in which all candidates
but one reveal their answers to the attacker, who could then easily associate
the remaining answer with the honest candidate and thus trivially violate the
requirement.

We now consider the requirement Anonymous Examiner. It is stated below
using a recent definition [9] that was not available in the conference version [8]
of the present article. It concerns all the phases of an exam because examiner
anonymity could be required to hold forever to prevent bribing or coercion.
Thus, the requirement of Anonymous Examiner says that no candidate knows
which examiner marked her test.

Requirement 10 (Anonymous Examiner). An exam protocol ensures Anony-
mous Examiner if for every exam process EP , every two candidates id1 and id2,
every two examiners id ′1 and id ′2, every two marks m1 and m2, and two associ-
ations test1 and test2

EP{id1,id2,id
′
1,id

′
2}

[Cσid1σa1 ∣Cσid2σa2 ∣Eσid′1σm1 ∣Eσid′2σm2 ∣Kσtest1] ≈l
EP{id1,id2,id

′
1,id

′
2}
[Cσid1σa1 ∣Cσid2σa2 ∣Eσid′1σm2 ∣Eσid′2σm1 ∣Kσtest2]

where

– σtest1 associates the test of candidate id1 to examiner id ′1 and the test of
candidate id2 to examiner id ′2;

– σtest2 associates the test of candidate id1 to examiner id ′2 and the test of
candidate id2 to examiner id ′1.

Thus, Anonymous Examiner states that a process in which the examiner
id ′1 evaluates the test of candidate id1 while the examiner id ′2 evaluates the
test of candidate id2 is indistinguishable to the process in which the examiner
id ′1 evaluates the test of candidate id2 while the examiner id ′2 evaluates the
test of candidate id1. Note that the two marks σm1 and σm2 are swapped
on the examiner processes to ensure that each test is evaluated with the same
mark in both cases. In the field of peer review systems, this requirement is
known as blind review. The requirement of double-blind review instead refers to
a peer review system that ensures both Anonymous Examiner and Anonymous
Marking, namely anonymity is provided to authors and examiners. To ensure
a stronger version of Anonymous Marking it is possible to model corrupted
administrator and candidates, provided that examiners id′1 and id′2 are honest.
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This would avoid the corner case in which an examiner reveals the mark to the
attacker, a case that would trivially violate the requirement.

The requirement of Mark Privacy concerns all phases of an exam. It states
that the mark ultimately attributed to a candidate is treated as valuable per-
sonal information of the candidate’s. More specifically, no one learns the mark,
besides the examiner, the concerned candidate, and the authority responsible
for the notification. This means that the marks cannot be public.

Requirement 11 (Mark Privacy). An exam protocol ensures Mark Privacy
if for every exam process EP and every two marks m1 and m2

EP{id′}[Eσid′σm1] ≈l EP{id′}[E σid′σm2].

The definition of Mark Privacy means that a process in which the examiner
id′ assigns the mark m1 to an answer cannot be distinguished from a process
in which the same examiner assigns a different mark m2 to the same answer.
If an exam protocol guarantees Mark Privacy, then the administrator cannot
publicly disclose the marks even if these cannot be associated with the corre-
sponding candidates. In fact, the publication of the marks allows the attacker
to distinguish the processes.

Also with this requirement some candidates and examiners can be assumed
to be corrupted, namely to collaborate with the attacker to find out the marks
of other candidates. However, the examiner who assigns the different marks, the
two candidates who submit the tests, and the administrator should be honest.
Otherwise, any of these could violate the requirement by revealing the mark to
the attacker.

Since Mark Privacy may be a too strong definition for certain exams, we
introduce a variant called Mark Anonymity. This requirement states that no
one learns the association between a mark and the corresponding candidate.
Intuitively, an exam protocol that publishes the list of all marks might still
ensure Mark Anonymity, but not Mark Privacy. This is a common privacy
requirement for real-world applications such as public competitions, in which
marks are published and associated with a list of pseudonyms for transparency.

Requirement 12 (Mark Anonymity). An exam protocol ensures Mark Anony-
mity if for every exam process EP , every two candidates id1, id2, every ex-
aminer id′, every two answers a1, a2, two substitutions σma and σmb and an
association test

EP{id1,id2,id′}[Cσid1σa1 ∣Cσid2σa2 ∣Eσid′σma ∣Kσtest] ≈l
EP{id1,id2,id′}[Cσid1σa1 ∣Cσid2σa2 ∣Eσid′σmb ∣Kσtest]

where

– σtest associates the tests of both candidates id1 and id2 to the examiner
id ′;

– σma attributes the mark m1 to the answer a1 and the mark m2 to the
answer a2;
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– σmb attributes the mark m2 to the answer a1 and the mark m1 to the
answer a2.

In other words, a process in which an examiner evaluates two answers a1 and
a2 respectively with m1 and m2 is indistinguishable for the attacker to a process
in which the examiner evaluates the same answers but with swapped marks,
namely the examiner marks a1 and a2 respectively with m2 and m1. In doing
so, the authority can make the list of marks public assuming the attacker cannot
associate the marks to the candidates. The analysis of Mark Anonymity requires
the two concerned candidates, the examiner, and the administrator to be honest.
Otherwise, they can simply reveal the answer and the associated mark to allow
the attacker to distinguish the two case processes. Other principals can be
considered corrupted. It can be noted that an exam protocol that guarantees
Mark Privacy also guarantees Mark Anonymity. The σma and σmb defined in
Mark Anonymity are in fact special instances of the σm1 and σm2 defined in
Mark Privacy.

3.3. Verifiability

We consider the verifiability requirements Mark Integrity Verifiability and
Test Integrity Verifiability, as advanced by Dreier et al. in [9]. In general,
a protocol is verifiable with respect to a specific property if a verifiability-test
exists, namely an algorithm that decides the property, and the algorithm is
sound and complete. This particular requirement means that the candidate can
verify that she was notified with the very mark that had been assigned to her
test.

In the following, we will advance a verifiability-test, conveniently named
testMIV, that outputs true if the candidate was notified with the mark of her
test, or false otherwise. In the applied π-calculus, testMIV can be specified as a
process that emits the event OK(id c,pid ,mark) when it is supposed to output
true and KO otherwise. The event published(pid) is emitted by the bulletin board
when a test identified with pid is available; the event assigned(id c,pid ,mark)
is emitted by the candidate at the end of notification. We say that testMIV

is sound if the event OK(id c,pid ,mark) is preceded by the two specific events
assigned(id c,pid ,mark) and published(pid) in every execution trace of the
protocol; we say that testMIV is complete if the event KO is emitted in no
execution trace of the protocol when the test is fed with correct data.

Requirement 13 (Mark Integrity Verifiability). An exam protocol ensures
Mark Integrity Verifiability if there exists a verifiability-test for Mark Integrity,
namely a sound and complete algorithm that decides Mark Integrity.

Another requirement in this group is Test Integrity Verifiability, which states
that the candidate can check that her test is accepted and marked precisely in
the same form as she submitted it. It is stated below using a recent definition
[9] that was not available in the conference version [8] of the present article.
Similarly to the formalisation of the previous requirement, Test Integrity Verifi-
ability is met through the existence of an appropriate verifiability-test, namely
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an algorithm testTIV that outputs true if the candidate’s test was marked as
it had been submitted, or false otherwise.

In the applied π-calculus, testTIV can be specified as a process that emits
the event OK(id c,pid ,answer) when it is supposed to output true and KO when
it supposed to output false. The event published(pid) is emitted by the adminis-
trator when a test identified with pid is available; the event accepted(id c,pid ,mark)
is emitted by the candidate at the end of marking. We say that testTIV is
sound if the event OK(id c,pid ,answer) is preceded by the two specific events
accepted(id c,pid ,answer) and published(pid) in every execution trace of the
protocol; we say that testTIV is complete if the event KO is emitted in no
execution trace of the protocol when the test is fed with correct data.

Requirement 14 (Test Integrity Verifiability). An exam protocol ensures
Test Integrity Verifiability if there exists a verifiability-test for Test Integrity,
namely a sound and complete algorithm that decides Test Integrity.

3.4. Accountability

Finally, an accountability requirement must be introduced: Testing Dispute
Resolution. In general, accountability allows us to identify which principal is
responsible for a protocol failure. With exams, a candidate should be able to
submit a test and receive the corresponding mark. Should any of these fail,
Dispute Resolution prescribes that the participant who caused such a failure
can be identified.

Below, we formally model Testing Dispute Resolution in the applied π-
calculus by appealing to a process dispute that performs dispute resolution.
Its specification is much more detailed than what we published [8]. The defi-
nition relies on two caveats: first resort to unreachability of an event to prove
soundness; second, as it may happen that both candidate and administrator
are corrupted, consider also this case towards soundness. The dispute process
emits the event Cguilty when the candidate is the culprit, the event Aguilty

if the administrator is the culprit, or the event CAguilty if both are culprits.
If the protocol executes the process dispute, then at least either the adminis-
trator or the candidate is corrupted. Thus, assuming that dispute returns a
principal, the idea is to check that dispute cannot return an honest principal,
if any, instead of the corrupted one. For soundness, this is captured by the
following definitions.

Definition 1 (Soundness of dispute resolution process). The dispute res-
olution process dispute is sound

• in case of corrupted administrator and honest candidate if it emits Cguilty
and CAguilty in no execution trace of the exam protocol;

• in case of corrupted candidate and honest administrator if it emits Aguilty
and CAguilty in no execution trace of the exam protocol;

• in case of corrupted administrator and candidate if it emits Cguilty and
Aguilty in no execution trace of the exam protocol.
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To prove completeness, we check that the exam protocol never runs the pro-
cess dispute, hence events Cguilty, Aguilty, and CAguilty are not emitted.
This is captured by the following definition.

Definition 2 (Completeness of dispute resolution process). The dispute
resolution process dispute is complete if it emits the events Aguilty, Cguilty,
and CAguilty in no execution trace of the protocol with honest roles.

Requirement 15 (Testing Dispute Resolution). An exam protocol ensures
Testing Dispute Resolution if the dispute resolution process dispute is sound
and complete.

4. The protocol

In a nutshell, the protocol works as follows. At preparation, candidate
and administrator jointly generate the candidate’s pseudonym (an alphanu-
meric pid) as a pair of visual cryptography shares, by means of an oblivious
transfer scheme. One share is held by the candidate, who prints it on a paper
sheet together with the candidate ID and signatures meant for integrity and
accountability purposes. The other share is printed by the administrator as a
transparency printout and handed to the invigilator before testing. Each share
alone does not reveal the pseudonym, which is revealed only when the two shares
are overlapped. This is possible only at testing, when the candidate and the
invigilator physically meet, and the latter hands the transparency to the can-
didate. Any dispute that may happen at testing can be resolved thanks to the
signatures printed with the printouts. The candidate can write the pseudonym
on the answer sheet, and testing concludes when all answer sheets are returned
to the examiner. At marking, the examiner evaluates the answers and assigns
a mark to each pseudonym, which she commits to and publishes on a bulletin
board. At notification, a candidate can retrieve her mark by proving to the
administrator that she owns the share that (re)-reveals the pseudonym. The
administrator’s share is required in this phase, but there is no need for the can-
didate and the administrator to meet. The candidate sends her share and the
signatures to the administrator, and any dispute happening at notification can
be again solved using the signatures associated with the shares.

The protocol combines a few cryptographic primitives, namely visual cryp-
tography, commitment, and oblivious transfer schemes. These are briefly ex-
panded upon here before the protocol is detailed.

4.1. Visual Cryptography

It is a secret sharing scheme devised by Naor and Shamir [34] for a visual
decryption of a ciphertext. A secret image is “encrypted” by splitting it into a
number of image shares. The basic version of the scheme is the 2-out-of-2 secret
sharing system, in which a secret image is split into two shares shareA and
shareB . The shares are printed on transparency sheets, which reveal the secret
image when the shares are overlapped. This scheme is information-theoretic
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secure, namely each share leaks no information about the secret image. While
a visual decryption by means of an overlay emulates the OR operator, visual
cryptography cleverly emulates the XOR. The scheme is information-theoretic
secure because of either a black or a white pixel, mapped respectively to 0 and
1, can originate from any of the sub-pixels shown in Figure 2.

4.2. Commitment Scheme

A commitment scheme is used to bind a committer to a secret value. The
committer publishes a commitment that hides the value, which remains secret
until he reveals it. Should the committer reveal a different value, this would
be noticed because it could not be mapped to the published commitment. The
Pedersen commitment scheme [35] guarantees unconditional hiding, namely the
value remains secret despite a computationally unbounded attacker. The scheme
consists of the algorithms of commitment, in which the value is chosen, hidden,
and bound to the committer, and of disclosure, in which the value is publicly
revealed. The commitment algorithm takes in two given public generators g, h ∈
Gq, the secret value v, and a random value r ∈R Z∗q . The algorithm outputs the
commitment gvhr denoted with Cr(v). The disclosure algorithm takes in the
commitment Cr(v), the values v and r, and outputs true if the commitment is
correct or false otherwise.

Our protocol uses a generalised Pedersen commitment scheme [36], which
guarantees unconditional hiding and allows the commitment to many values at
once. For example, we take advantage of the Pedersen commitment scheme
at notification. The administrator generates a commitment of the mark of the
candidate. Once the candidate reveals her identity to learn the mark, she can
verify that the administrator notifies her the committed mark. This deters the
administrator to notify the candidate with a mark that would differ from the
one the examiner assigned to candidate’s test.

4.3. Oblivious transfer

Oblivious transfer schemes allow a chooser to pick some pieces of information
from a set a sender offers him, in such a way that (a) the sender does not learn
which pieces of information the chooser picks, and (b) the chooser learns no more
than the pieces of information he picks. Our protocol adopts Tzeng’s oblivious
transfer scheme [37]. In Tzeng’s scheme, the chooser commits to some elements
from a set and sends the commitments to the sender. This, in turn, obfuscates
all the elements of the set, and the chooser will be able to de-obfuscate only the
elements he committed to. Tzeng’s scheme guarantees unconditional security
for the receiver’s choice, and it is efficient since it works with the sender and
receiver’s exchanging only two messages.

4.4. Threat model and assumptions

In addition to the threats derived from a standard Dolev-Yao attacker, we
consider the following specific threats coming from the exam roles we specified
above.
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• Corrupted candidates, who may want to register for an exam without
being eligible or on behalf of someone else; or be assigned with a mark
higher than what the examiner assigns to their test.

• Corrupted authorities (i.e., administrator, invigilator, and examiner), who
may want to assign an unfair mark to a specific candidate, namely to over-
mark or under-mark her, or assign no mark at all.

• An attacker, who may want to get any private information or tamper with
tests and marks.

Like any other security protocol, ours is not designed to withstand every
possible threat. For example, it cannot cope with plagiarism, but assumes ap-
propriate invigilation during testing. Principals may still collude and communi-
cate via subliminal channels, for example by using steganography. Although it
is hard to rule out completely such a threat, steganalysis techniques can be of
some help here. Other countermeasures may be needed against collusion attacks
that exploit covert channels. We thus specify five assumptions conveniently for
the goals of our protocol. In particular, we assume that:

1. Administrator and examiner hold a long-term public/private pair of keys.

2. The candidate is invigilated during testing to mitigate cheating.

3. The model answers are kept secret from the candidates until after testing.
The examiners may be provided with the model answers at marking.

4. An authenticated append-only bulletin board is available. It guarantees
everyone to see the same data, though write access might be restricted to
appropriate entities [38]. (An implementation of a bulletin board and its
formal analysis exists [39].)

5. A TLS channel that ensures integrity and confidentiality of messages is
available. Remote communications between administrator and candidate
occur via TLS.

While we do not focus on a particular form of written exam (e.g., multiple
choice, short answer, essay), we assume that the administrator populates each
test with a set of questions, and that the pile of tests is available at exam
venue. Each candidate will pick a random test from the pile and will answer
the corresponding questions while supervised by an invigilator.

We note that if a candidate and the administrator collude, the latter may
reveal the exam questions in advance, a scenario that is difficult to address in
a security protocol, and that collides with our assumption 4. However, some
methods can mitigate the effect of such scenario. One is to generate different
piles of tests. Tests belonging to the same pile contain the same questions.
At exam venue, one pile is randomly chosen and its tests serve for the exam.
In doing so, each candidate receives the same set of questions, but without
knowing which one until after testing. Another solution is to populate each test
with different questions that are chosen from a very large, possibly public, set
of questions. In doing so, each candidate receives a different set of questions.
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4.5. Description of the protocol in detail

We describe our protocol in reference to the four exam phases. In the de-
scription we assume a few public parameters, namely:

n length of the candidate’s pseudonym
Σ = {s1, . . . , sk} alphabet of pseudonym’s characters
cj ∈ {0,1}t×u, j = 1, . . . , k (t × u)-pixel representation of a character
idC candidate ID
ex exam code
SPKA signing key of the administrator
SPKE signing key of the examiner
M set of possible marks
g, h ∈R Gq generators for bit-commitments

4.6. Preparation

The goal of preparation is to generate a candidate’s pseudonym, which is
a string of n characters taken from alphabet Σ, and to encode it into two
visual cryptographic shares. No one can know the pseudonym until candidate
and invigilator meet at testing, when the candidate learns her pseudonym by
overlapping the administrator’s share with hers. The underlying idea is that the
candidate provides a commitment to an index into an array. The administrator
fills the array with a secret permutation of the characters, and only when the
two secrets are brought together is the selection of a character determined.

Part of this phase is inspired by one of the schemes used to print a secret,
proposed by Essex et al. [40]. We tailor that scheme so that it can generate a
pseudonym as detailed in Figure 3. This modification also supports the dispute
resolution algorithm, as we shall see below. The main technical differences
between our preparation phase and the original scheme to print a secret are:
(a) a modified oblivious transfer protocol that copes with several secret messages
in only one protocol run; (b) the generation of signatures that will be used for
accountability in the resolution of disputes.

In the following, we refer to the steps described in Figure 3. The protocol
begins with the candidate providing a sequence of l commitments yi to an
index into an array of length k (steps 1-2). More precisely, the parameter l
is chosen so that the l − n elements can be later used for a cut-and-choose
audit. The administrator can challenge the candidate to check whether the
committed choices are in fact in the interval [1, k]. Otherwise, the administrator
generates a sequence of randomly chosen t × u images, indicated as α1, . . . , αl in
Figure 3. A sequence of k images βi1, . . . , βik are generated from αi and each
possible character cj . The sequence is randomly permuted and repeated for
all i, resulting in l sequences of images (β11, . . . , β1k), . . . , (βl1, . . . , βlk). The
secret permutation and the commitment allow the selection of a character to be
determined only when the two secrets are brought together.

The administrator then generates the obfuscation ωij from each βij and a
commitment on each αi, indicated as com (step 3), which is signed and sent with
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the sequences of obfuscations (ω11, . . . , ω1k),. . . , (ωl1, . . . , ωlk) to the candidate
(step 4). The obfuscation allows the candidate to retrieve only the elements
whose indexes correspond to the choices y1, . . . , yl she committed to in step 1.

The candidate performs a cut-and-choose audit, selecting a random set of
l − n sequences amongst the ω. By doing so, she can check whether the admin-
istrator generated the sequence of images correctly. The remaining substitu-
tions σ1, σ2, . . . , σn select the indexes of the images that make the pseudonym.
Thus, the visual share of the administrator consists of the concatenated images
ασ1 , . . . , ασn (steps 5-6).

The administrator then generates the proofs for the cut-and-choose audit
and prints the visual share and the candidate’s details in the transparency
printout transp. This also includes the secret value s used for the commit-
ment of all the elements α1, . . . , αl (step 7). The secret value is represented
in the form of a QR code. The administrator generates a signature that con-
tains the candidate’s commitments y1, . . . , yl, the sequence of images used for
the cut-and-choose audit α1, . . . , αm, and the sequences of selected obfuscations
(ωσ11, . . . , ωσ1k), . . . (ωσn1, . . . , ωσnk). The administrator then sends the signa-
ture and the proofs to the candidate (step 8). In turn, the candidate checks
the signature and the proofs, de-obfuscates the elements ω, and retrieves the
visual share consisting of the concatenated image βσ1 , βσ2 , . . . , βσn . She finally
prints the share, together with the two signatures, on a paper printout (step
9). At this point, both candidate and administrator have a visual share each;
it is these two shares that, once overlapped, return an intelligible sequence of
characters that serves as candidate’s pseudonym.

The candidate’s paper printout includes two QR codes (QR1 and QR2 )
while the administrator’s transparency only one (QR3 ). All these codes refer to
the same candidate identity idC and exam identifier ex. The QR codes QR1 and
QR2 notably encode the two signatures of the administrator respectively, while
QR3 encodes the secret value s. This phase concludes with the administrator
handing the transparency to the invigilator (step 10).

4.7. Testing

The steps of this phase are described in Figure 4. The invigilator leaves a pile
of tests on a desk at the exam venue. The candidate brings the paper printout
at exam venue, while the invigilator brings the transparencies. The invigilator
authenticates the candidate by checking her identity document (steps 11-12).
He then gives the candidate her corresponding transparency and invites the
candidate to pick a test randomly (steps 13-14). The candidate overlaps her
paper printout with the transparency and learns her pseudonym, which she
writes on the test. If no pseudonym appears, then this may happen only if
the candidate or the administrator misprinted their printouts, and the Testing
Dispute Resolution algorithm outlined in Algorithm 1 reveals the principal that
is accountable for the misbehaviour. At the end of the phase, the candidate
returns the filled test by inserting it anywhere in the pile of tests (step 15), and
takes both transparency and paper printouts home. The randomness exercised
in dispatching the tests (to the candidates) and in returning the filled tests (to
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the invigilator) thwarts the risk that the invigilator builds visual associations
between a test and a candidate.

4.8. Marking

At marking (see Figure 5), the invigilator hands the filled tests to an exam-
iner (step 16). For each filled test, the latter evaluates the answers, assigns a
mark, and generates a signature on the triplet formed by pseudonym, answers
and mark (step 17). Then, the examiner sends the triplet and the signature to
the administrator (step 18). The administrator generates a commitment on the
assigned mark (step 19), signs pseudonym, answers, and the commitment, and
finally publishes the signature on the bulletin board (step 20).

4.9. Notification

We refer to the steps described in Figure 6 for notification. This phase
opens for a fixed time during which the candidate can remotely request to
learn her mark and having it registered. She has to send the ordered sequences
of β1, . . . , βn, her pseudonym, and all the signatures she collected so far to
the administrator (step 21). The administrator checks the signatures, overlaps
the given sequence with the corresponding sequences of α1, . . . , αn, and checks
the pseudonym. Again, if no registered pseudonym appears, Dispute Resolu-
tion can reveal the principal who misbehaved. The administrator signs mark,
pseudonym, and the secret parameter used to commit the mark (step 22), and
sends the signature to the candidate (step 23). By doing so, the candidate can
verify the correctness of the mark by looking at the bulletin board.

4.10. Dispute resolution

An interesting feature of our protocol is the support for dispute resolution
during testing. The combination of signatures and visual cryptography guaran-
tees an easy procedure to find the culprit if the candidate and/or the adminis-
trator misbehave. Therefore, Dispute Resolution qualifies as an accountability
requirement as it enables a judge to blame the principal who misbehaved in the
execution of the protocol.

In our protocol the judge is the invigilator, and the dispute originates if no
intelligible pseudonym can be read when the candidate overlaps the paper sheet
with the transparency sheet. Should such a dispute arise, the invigilator could
then quickly resolve it by following Algorithm 1, which corrects the previous
version [8] in case both principals misbehave. We assume that an electronic
device with a camera is available at the exam venue. It could be a smartphone
or a tablet, and it should store the public key of the administrator. The input
of the algorithm are the two QR codes printed on the paper printout (QR1
and QR2) and the QR code printed on the transparency (QR3), all scanned
with the camera of the electronic device. Note that the trustworthiness of
dispute resolution comes from the correctness (soundness and completeness) of
the algorithm, which is open to anyone for checking. Some trust is still required
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on the device used to resolve the dispute; however, it is always possible to run
dispute resolution on any other device.

The goal of the algorithm is to reconstruct the correct visual shares, if pos-
sible. First, the algorithm checks the correctness of the signatures encoded in
QR1 and QR2. If any of the checks fails, then the correct visual shares cannot
be reconstructed. However, this reveals that the candidate misprinted her pa-
per printout, thus she is the culprit. Otherwise, the algorithm reconstructs the
correct visual share of the candidate by checking the candidate’s commitments
and the obfuscation — both signed by the administrator. If the check reveals
that the reconstructed visual share matches the one printed by the candidate,
then the culprit is the administrator. Otherwise, the algorithm reconstructs the
administrator’s visual share by checking the correctness of the administrator’s
commitment using the secret value encoded in QR3. If the check succeeds, then
the candidate is the culprit, otherwise both candidate and examiner misprinted
their visual shares.

Algorithm 1: Testing dispute resolution

Data: Public parameters: (C,n, gi, h, idC, ex,SPKA)
- paper = (βσ1 , βσ2 , . . . , βσn), idC, ex, sign1 , sign2 , (xσ1 , xσ2 , . . . , xσn),

(γσ1 , γσ2 , . . . , γσn) where

- sign1 = SignSSKA{idC, ex, comA}.

- sign2 = SignSSKA{idC , ex , (yσ1 , yσ2 , . . . , yσn), (αχ1 , αχ2 , . . . , αχm),
(ωσ11, . . . , ωσ1k), . . . (ωσn1, . . . , ωσnk)}.

- transp = (ασ1 , ασ2 , . . . , ασn), idC, ex, s.

Result: Corrupted participant(s)
if sign1 is verifiable with SPKA and sign2 is verifiable with SPKA then

if yσj ≠ g
xσj hγσj or βσj ≠

bσjγj

(aσjγj )
xσj

[j = 1,2, . . . n] then

if comA ≠ hs
l

∏
i=1
gi
αi then

return Administrator and Candidate
else

return Candidate
else

return Administrator
else

return Candidate
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5. Analysis

We analyse our protocol in ProVerif1, a security protocol verifier that sup-
ports the automatic analysis of authentication and privacy properties in the
Dolev-Yao attacker model [41]. The input language of ProVerif is a variant of
the applied π-calculus.

5.1. Modelling Choices

We model TLS and face-to-face communications between the roles using the
cryptographic primitive of probabilistic symmetric encryption rather than us-
ing ProVerif’s private channels. The attacker cannot monitor communications
via ProVerif’s private channels and cannot even know if any communication
takes place, and we think this would be an overly strong assumption that could
miss attacks. By renouncing to private channels, we achieve stronger security
guarantees for the analysis of the protocol. Moreover, our choice has a triple
advantage: i) it gives the attacker more discretional power because he can ob-
serve when a candidate registers for the exam, when she is given the test, when
she submits the answers, and when she is notified with a mark; ii) it allows
modelling either corrupted candidate or examiner by just sharing the private
key with the attacker; iii) it increases the chances that verification attempts in
ProVerif terminate.

We use the equational theory illustrated in Table 1 to model the crypto-
graphic primitives of the protocol. The theory for probabilistic symmetric key
consists of two functions senc and sdec. A message encrypted with a private key
can only be decrypted using the same private key. Note that the randomness
r on the encryption algorithm causes that the same message encrypted sev-
eral times outputs different ciphertexts. The equational theory for the digital
signature is rather standard in ProVerif.

We introduce a novel theory to model oblivious transfer and visual cryptogra-
phy. The function obf allows the examiner to obfuscate the elements β1, . . . , βi,
while the function deobf returns the correct element βsel to the candidate, de-
pending on the choice she committed to. We also provide the theory for the
Pedersen commitment scheme with the function commit . Finally, we model the
generation of a visual cryptography share with gen share, and their overlapping
with the function overlap.

We model an unbounded number of corrupted candidates who can register
for the exam. All the processes are augmented with the events that allow for
the verification of authentication requirements.

5.2. Verification Choices

We verify Anonymous Examiner in presence of corrupted candidates and
Anonymous Marking in presence of corrupted administrator, examiner and co-

1The full ProVerif code is available at https://sites.google.com/site/sarogiustolisi/

cose16.tar.gz
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candidates, which means that the attacker can control an unbounded num-
ber of candidates while some are honest. To verify Question Indistinguishabil-
ity, we consider corrupted candidates, while for both Mark Privacy and Mark
Anonymity we consider corrupted eligible candidates who can register for the
exam but cannot participate at testing.

To verify Mark Integrity Verifiability, we model the verifiability-test testMI
as in Figure 2. It takes in, via a private channel, the pseudonym pid, the secret
value v, and the mark notified to the candidate. It also takes as input the signed
notification sign3 containing the pseudonym, the answers, and the committed
mark from the bulletin board. The verifiability-test checks if the administrator’s
signature is correct and the disclosure of the commitment contained in the signed
notification reveals the mark provided by the candidate. We verify the soundness
of the test in the presence of corrupted administrator, examiner, invigilator, and
co-candidates. The verifiability-test testTIV depicted in Figure 3 takes in the
pseudonym pid and the answer submitted by the candidate. It also takes as
input the signed notification sign3 containing the pseudonym, the answers and
the committed mark from the bulletin board. The verifiability-test checks if the
administrator’s signature is correct and the signed answer matches the answer
submitted by the candidate. We also verify the soundness of this test in the
presence of corrupted administrator, examiner, invigilator, and co-candidates.

Algorithm 2: The verifiability-test for Mark Integrity Verifiability

Data: Public parameters: (g, h,SPKA)
- sign3 = SignSSKA

(pid , answers, c)

- idC ,pid ′,mark , v.

Result: Whether the candidate was notified with the mark assigned to
her test.

if pid = pid ′ and c = gvhmark then
return true

else
return false

5.3. Limitations

A limitation of the formal model is the specification of the cut-and-choose
audit due to the powerful ProVerif’s attacker model. In fact, if the attacker
plays the cutter’s role, he might cut the set of elements such that the subset
audited by the chooser is correct, while the other subset is not. Although in
reality the probability of success of this attack for a large set of elements is
small, it is a valid attack in ProVerif irrespective of the number of elements. In
our case, the chooser is the candidate and the cutter is the examiner. ProVerif
thus finds a false attack when the examiner is corrupted, namely controlled by
the attacker. We resolve this false-positive by allowing the candidate to check
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Algorithm 3: The verifiability-test for Test Integrity Verifiability

Data: Public parameters: (g, h,SPKA)
- sign3 = SignSSKA

(pid , answers, c)

- idC ,pid ′,answers ′, v.

Result: Whether the candidate was notified with the mark assigned to
her test.

if pid = pid ′ and answers = answers′ then
return true

else
return false

all the elements of the set. This is sound because the candidate plays the role
of the chooser, thus she is honest and follows the protocol although she knows
the extra information.

Another limitation concerns the analysis of the soundness of dispute resolu-
tion with respect to corrupted administrator and candidate. The classic way to
model the scenario of corrupted principals is to let the attacker control them.
However, we observe that such a modelling does not work in this case because
the conflicting goals of administrator and candidate are prerequisites for dispute
resolution. Ideally, we would need administrator and candidate to be controlled
by two different attackers that are only limited by the conflicting goals. Unfor-
tunately, this scenario cannot be specified in ProVerif as the tool operates in the
Dolev-Yao attacker model. Thus, we check the soundness of dispute resolution
in the case of corrupted administrator and candidate by generating two correct
printouts and by sharing both with the attacker. We then prove that if the
attacker feeds dispute with any two printouts that are both different from the
correct ones, the events Cguilty and Aguilty are emitted in no execution trace
of the exam protocol.

5.4. Results

Table 2 outlines the results of our analysis and the execution times of
ProVerif over an Intel Core i7 2.6 GHz machine with 8 GB RAM. ProVerif
confirms that the protocol guarantees all the authentication requirements even
under an unbounded number of corrupted, eligible co-candidates. Thus, the
protocol ensures authentication although the attacker can register to the exam.
Partitioning the examiner role as administrator, examiner and invigilator en-
ables a finer analysis: we can now prove in ProVerif that the protocol ensures
most of the authentication requirements when considering both corrupted ad-
ministrator and examiners. This was not possible to prove in the conference
version [8] of the present article. However, we cannot still prove Candidate
Authorisation and Mark Authentication because it is not possible to model in
ProVerif the related correspondence assertions assuming corrupted administra-
tors.
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Regarding privacy, ProVerif proves that the protocol guarantees all the pri-
vacy requirements. In particular, the protocol meets Anonymous Marking con-
sidering corrupted administrator and examiner, and Anonymous Examiner con-
sidering corrupted candidates;

ProVerif confirms that the verifiability-tests testMIV and testTIV are sound
and complete, thus it can be claimed that the exam protocol is Mark Integrity
and Test Integrity verifiable.

Finally, the exam protocol ensures Dispute Resolution: ProVerif shows that
the protocol does not blame honest principals when the dispute algorithm
is executed or blames those who are corrupted (soundness). In particular, it
blames both administrator and examiner when they are both corrupted. This
result is possible thanks to the updates to the exam protocol. ProVerif also
shows that the pseudonym is always revealed, namely the dispute algorithm is
not run, when both examiner and candidate are honest (completeness).

6. Conclusions and Future Work

This paper draws its motivation by observing that exam security has a major
role in the widespread acceptance of exams, especially when they are assisted by
computers. It has found that it is possible to provide a secure exam protocol with
the design principle of minimising the reliance on the trusted parties. Notably,
the protocol guarantees some form of accountability without relying on a TTP.
The underlying idea of the protocol is to combine oblivious transfer and visual
cryptography to generate a pseudonym that anonymises the tests while they
are marked. This protocol is more detailed than the previous one and meets
a larger set of security requirements with only minimal assumptions; this was
confirmed using a formal approach whereby the security of the protocol was
analysed extensively.

Future work can be envisaged over various directions. One is to analyse
the protocol in the computational model to achieve finer security guarantees,
perhaps using computer-assisted tools like CryptoVerif [42] or EasyCrypt [43].
It should be possible to study compositional proofs that integrate computational
proofs of the cryptographic primitives used in our protocol with the symbolic
ones obtained in ProVerif. Another direction is to complement the protocol
with techniques to detect plagiarism and candidate cheating at testing. This is
important when testing is done via computers. For example, techniques similar
to those described by Pieczul and Foley [44] could be useful for this purpose.
Another extension may be the support for collaborative marking, in which the
questions are categorised by subject, and examiners evaluate only the answers
that pertain to the examiner subject area.

We believe that the idea behind the protocol may be useful for the design of
similar systems, such as for public tenders, project reviews, and conference man-
agement systems. We feel that, by promoting a fairer assessment of knowledge
and skills through the many application scenarios that award a qualification or
a post to people, this line of research can significantly contribute to advancing
modern meritocracy.
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[43] G. Barthe, B. Grégoire, S. Zanella Béguelin, Formal certification of code-
based cryptographic proofs, SIGPLAN Not. 44 (1) (2009) 90–101. doi:

10.1145/1594834.1480894.

[44] O. Pieczul, S. Foley, Collaborating as normal: detecting systemic anoma-
lies in your partner, in: Proc. of 22nd Int. Security Protocols Workshop,
Cambridge, 2014.

Primitive Equation

Prob. symmetric enc. sdec(senc(m,k, r), k) =m

Digital signature
getmess(sign(m,ssk)) =m

checksign(sign(m,ssk), spk(ssk)) =m
Oblivious transfer deobf (obf (r,m,sel, commit(r′,sel)), r′) =m

Visual cryptography
overlap(share, gen share(m,share)) =m

overlap(share, share) = share

Table 1: Equational theory to model our protocol
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Figure 1: A graphical representation of the authentication requirements for exams
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Figure 2: Representation of bits using visual cryptography

No. Requirement name Result Time
1. Candidate Authorisation ✓ 6 s
2. Answer Authenticity ✓ 5 s
3. Test Origin Authentication ✓ 5 s
4. Test Authenticity ✓ 6 s
5. Mark Authenticity ✓ 6 s
6. Notification Request Auth. ✓ 6 s
7. Mark Authentication ✓ 6 s
8. Question Indistinguishability ✓ <1 s
9. Anonymous Marking ✓ 1m 5s
10. Anonymous Examiner ✓ 2 m 19 s
11. Mark Privacy ✓ 32 m 23 s
12. Mark Anonymity ✓ 9 m 12 s
13. Mark Integrity Verifiability ✓ <1s
14. Test Integrity Verifiability ✓ <1s
15. Dispute Resolution ✓ <1s

Table 2: Summary of the analysis of our protocol
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1. C calculates yi = gxihγi where:

- xi ∈R Z∗q .

- γi ∈R [1, k].
- i = 1,2, . . . , l with l > n.

2. C→A: y1, y2, . . . , yl.

3. A calculates βij ←πR (αi ⊕ cj), ωij = ⟨aij , bij⟩← ⟨grij , βij ( yihj )
rij ⟩,

comA = hs
l

∏
i=1
gi
αi , and sign1 = SignSSKA

(idC , ex , comA) where:

- αi ∈R [0,1]t×u.

- s, rij ∈R Z∗q .

- gi ∈R Gq.
- i = 1,2, . . . , l.

- j = 1,2, . . . , k.

or runs the challenge procedure against y1, y2, . . . , yl.

4. A→C : (ω11, . . . , ω1k), . . . (ωl1, . . . , ωlk) and sign1 .

5. C calculates χi ∈ [1, l] and σj ∈ [1, l] where:

- i = 1,2, . . . ,m.

6. C→A: χ1, χ2, . . . , χm and σ1, σ2, . . . , σn.

7. A calculates evχi = ⟨αχi , (βχi1, βχi2, . . . , βχik), (rχi1, rχi2, . . . , rχik)⟩ and
sign2 = SignSSKA

(idC , ex , (yσ1 , yσ2 , . . . , yσn), (αχ1 , αχ2 , . . . , αχm),
(ωσ11, . . . , ωσ1k), . . . (ωσn1, . . . , ωσnk)} where

- i = 1,2, . . . ,m.

- j = 1,2, . . . , k.

and prints transp = ⟨(ασ1 , ασ2 , . . . , ασn), idC , ex ,QR3⟩ where

- QR3 = idC , ex , s.

8. A→C : evχ1 , evχ2 , . . . , evχm and sign2 .

9. C checks evχi , calculates βσj =
bσjγj

(aσjγj )
xσj

where

- i = 1,2, . . . ,m.

- j = 1,2, . . . , n.

and prints paper = ⟨(βσ1 , βσ2 , . . . , βσn), idC , ex ,QR1,QR2⟩ where

- QR1 = idC , ex , sign1 , comA, (xσ1 , xσ2 , . . . , xσn), (γσ1 , γσ2 , . . . , γσn).
- QR2 = idC , ex , sign2 , (yσ1 , yσ2 , . . . , yσn), (αχ1 , αχ2 , . . . , αχm),
(ωσ11, . . . , ωσ1k), . . . (ωσn1, . . . , ωσnk).

10. A
handsÐÐÐ→K : transp,test

Figure 3: Preparation phase
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11. C
handsÐÐÐ→K : id doc

12. K checks id doc

13. K
handsÐÐÐ→C : transp

14. C picks a random test, calculates pid = (α1, α2, . . . , αn)⊕(β1, β2, . . . , βn)
and
if pid is unintelligible then C writes testfilled = (questions,answers,pid)
otherwise C runs the Testing Dispute Resolution algorithm.

15. C
handsÐÐÐ→K : testfilled

Figure 4: Testing phase

16. K
handsÐÐÐ→E : testfilled

17. E calculates signE = SignSSKE
(pid ,answers,mark) where:

- mark ∈M .

18. E→A: pid ,answers,mark, signE

19. A calculates c = gvhmark and sign3 = SignSSKA
(pid ,answers, c)

- v ∈R Z∗q .

20. A→ BB: pid ,answers, c, sign3

Figure 5: Marking phase

21. C→A: (β1, β2, . . . , βn), pid, sign1 , sign2 , sign3

22. A calculates sign4 = SignSSKA
(idC , ex , pid,mark , v)

23. A→C : idC , ex , pid,mark , v, sign4

Figure 6: Notification phase
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