
Local Differential Privacy in Voting
Bernardo David, Rosario Giustolisi, Victor Mortensen and Morten Pedersen

IT University of Copenhagen, Denmark

Abstract
Voting allows groups of people to make collective decisions. Privacy is an important part of voting as it
helps to prevent the manipulation of voters and control the outcome of an election. Local differential
privacy (LDP) allows users to share private data with an aggregator and strictly limits how much
information an aggregator can gain about individuals in a dataset. In this work, we test the potential use
of multiple LDP mechanisms in a binary First-Past-The-Post voting system and a multiple option setting
that, when combined with the binary setting, corresponds to a Two-Round voting system. Results show
that Randomized Response works well in the binary setting for population sizes of 100.000 voters or more,
with 𝜖-values between 0.1-1. By allowing the system to reject close votes, the Randomized Response
mechanism never altered the outcome of a vote, meaning that integrity was not broken. Results are
different in the multi-option setting, which we test against data from the 2019 Danish general election.
By using Basic One-Time RAPPOR with a population size of at least 1.000.000, and allowing for the
mechanism to reject votes that are too close, it may be possible to use LDP in this setting as well. This
will, however, depend on how often such a mechanism would end up rejecting a held vote.

1. Introduction

Elections are typically held in order for a group to make collective decisions. When the opinions
of individuals within the group are seen as sensitive, the voting system needs to ensure privacy
for its voters, as otherwise issues of coercion or self-censoring might arise. Traditionally, this is
ensured by having people vote in secret and then dropping their ballot in a closed box, where
it is mixed with the ballots of other voters. When voting electronically, this becomes slightly
more complex, since a system needs to both verify the identity of the voter and keep their vote
private [1].

Differential privacy (DP) is a method that offers rigorous privacy guarantees to individuals in
a dataset by introducing noise [2]. It allows for a mathematical quantification of the privacy
budget, independent of any external data that might exist. DP assumes that there exists a trusted
data aggregator who stores the raw dataset and applies DP before releasing it. For voting, the
repercussions for the voter might be grave if the aggregator misuses their data or accidentally
leaks it. Local differential privacy (LDP) allows users to anonymize their data before sending
it to the aggregator. LDP gives users plausible deniability for the values they report to the
aggregator. This means that by the time the aggregator receives data from a user, they do not
gain a significant amount of information about any individual user. However, this comes with
the cost of greater levels of noise [3, 2]. This raises some questions about whether or not LDP
can be used for voting systems, or if the introduced noise poses a too high risk of changing the

ITASEC 2023: The Italian Conference on CyberSecurity, May 03–05, 2023, Bari, Italy
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


result of the vote.

Contribution. This work examines the potential of applying LDP to voting, to see if it is
possible to do so without violating the integrity of an election. In particular, we try to find
suitable LDP mechanisms as well as make recommendations towards what values of 𝜖 should
be used in combination with the number of voters needed. We discuss whether or not it makes
sense to create LDP voting systems in practice, as well as how such systems should be applied.
Although optimality and information theoretic bounds of LDP mechanisms have been studied,
LDP mechanisms include constants and parameters that can affect the feasibility of a mechanism
in a domain, such as voting. The goal is to examine empirically whether and when it makes
sense to apply LDP to voting.

We test the performance of five different LDP mechanisms on synthetically generated voting
data. The mechanisms are tested for two different voting settings: a binary First-Past-The-Post
system and a multiple option system that, if combined with the binary setting, could represent a
Two-Round voting system. We find Randomized Response works best in the binary setting, and
that Basic One-Time RAPPOR works best in the multi-option setting. In the binary setting, we
suggest having a population size of at least 105 and increasing this to 106 in the multi-option
setting. 𝜖-values of 0.5 to 1 work well depending on population size and voting setting. However,
in both settings we find that close votes will have to be rejected, which poses further challenges.

1.1. Background

In the LDP model, each individual data holder adds noise to their own data before sending
it to the aggregator. The drawback is that the total noise will be much larger than for the
classic central differential privacy (CDP) model, which requires a trusted data aggregator to
add noise. This means that either more users or lower privacy guarantees are required to get
accurate results. LDP essentially ensures that even if a participant’s data is leaked, they still have
plausible deniability as the LDP mechanism might have changed the values of their original data.
In practice, each participant applies a randomization mechanism on their dataset of size 𝑛 = 1
before sending it to the aggregator. A randomized algorithm, 𝑀 , satisfies 𝜖-local differential
privacy where 𝜖 > 0 for any input 𝑣1 and 𝑣2 iff

∀𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒(𝑀) : 𝑃𝑟[𝑀(𝑣1) = 𝑦] ≤ 𝑒𝜖 · 𝑃𝑟[𝑀(𝑣2) = 𝑦]

The difference between CDP and LDP is thus that in CDP, the randomization mechanism is
applied to a dataset of 𝑛 users, whereas in LDP, each user applies the randomization mechanism
to their own data. The reason why one would prefer LDP to CDP for voting systems is that
it would provide stronger privacy guarantees for each individual voter, as LDP gives them
plausible deniability if the aggregator misuses or accidentally leaks the data. When using LDP
for voting, each participant inputs their vote to an LDP-mechanism, and the locally differentially
private vote is sent to the aggregator. In particular, we test the performance of Randomized
Response [4], Laplacian and Gaussian mechanisms [2], RAPPOR [5], and Local Hashing [6] on
synthetically generated voting data. In each setting, we run several experiments with varying
vote distributions, population sizes and 𝜖-values. We run each experiment multiple times and



measure the average absolute error of each mechanism, as well as how often the mechanisms
successfully rank the voting options in the right order.

2. Related Work

Research on voting has been tackled from many different perspectives. In social choice theory,
Tactical voting [7] examines voter behavior in a First- Past-The-Post and Two-Round system
to see how prevalent tactical voting is within each system. Plenty of research papers have
been focusing on e-voting. A summary of development of e-voting, its current state, as well
as how it might develop in the future is available in [8]. Several proposals for secure and
private e-voting systems have been advanced using cryptographic protocols [9, 10] including
multi-party computation schemes [11, 12]. Few major elections, such as national elections, are
currently conducted using e-voting. One example of a place where e-voting is used in major
elections is Estonia, whose voting system uses ID cards for voter identification and allows voters
to cast their vote multiple times in order to reduce coercion and vote buying [13]. To ensure the
privacy of the voter, no part of the system should posses the digitally signed e-vote and the
private key. This is ensured by key management procedures, which means voters have to trust
that they are followed.

Differential privacy is a technique that allows for rigorous privacy guarantees. An extensive
introduction to the topic can be found in [2] and [3]. LDP is typically used in settings where
the data aggregator cannot be trusted, and many LDP mechanisms have been proposed and
compared in various studies [5, 14, 6]. To the best of our knowledge, there has been no work
that combines LDP with voting. Cryptographic schemes such as secure multi party computation
can be used to build highly secure voting systems, but they are often much slower then LDP
when dealing with million of voters, which is why it would be interesting to examine how much
potential LDP offers in terms of voting.

3. Experiments

In each of the settings, we test multiple LDP mechanisms using different population sizes and
𝜖-values in an attempt to empirically find the settings where LDP could potentially work for
voting. Note that the goal of this work is to examine whether or not it is feasible to apply LDP
to voting data without violating the integrity of the result. Thus, we do not qualitatively test
the viability of applying LDP to voting in the sense that we do not examine the problem from a
user perspective, i.e., we do not test whether or not it is possible to build an LDP voting system
that users understand and trust.

3.1. Assumptions

This work does not consider the complete system one would need to build when implementing
a real-world voting system. It does not attempt to create a real-life voting system with all it
entails, such as the information that would be needed to be given to voters regarding how LDP
works, in order to ensure that people trust the system. Neither does it attempt to deploy a



secure system to hold a vote on. We leave it to others to create a full-scale voting system using
LDP. We foresee that one main challenge is how to make such system end-to-end verifiable
[15]. For simplicity, we also assume that everyone in the voter population casts a vote, and
that no one casts a blank vote. It is also assumed that everyone who participates applies the
LDP mechanism to their vote before sending it to the aggregator. Furthermore, we assume that
only one vote is held such that 𝜖-values do not add up. This simplifies our setup as we do not
need to take composition into account when setting 𝜖-values for our experiments. Using these
simplifications, we test the effect that LDP mechanisms have on the outcome of a vote.

3.2. Setting

For binary voting, we measure the usefulness of a mechanism as the number of times where the
mechanism does not change the overall result of the held vote. The result of a vote is a boolean
measure of whether or not at least 50% of the population has voted in favor of the proposal. For
multi-option voting, we instead focus on how many times the overall ranking of the options
does not change after applying LDP, e.g., if options A, B, and C, are placed first, second, and
third in the original ranking, we want to measure the number of times that our mechanism
also rank parties A, B, and C as first, second, and third respectively. We measure this for all
positions, i.e., we measure the number of times a mechanism gets the order of the ranking up to
position 1, 2, . . . , 𝑑 correct.

The mechanisms are tested on multiple synthetic datasets with varying population sizes. The
level of noise in LDP is generally higher than that of CDP [3], so we expect that a large number
of voters is needed in order to achieve accurate results. In the binary setting, we therefore
test our mechanisms on datasets with population sizes of 103, 105 and 106. Based on results
from the binary setting, we use population sizes of 106 and 107 in the multi-option setting. In
the binary setting, datasets are generated by flipping a biased coin 𝑛 times, where 𝑛 is the
size of the population. This is preferred to storing the datasets locally in order to save storage
space. The bias of the coin is set to different values in order to test how the LDP mechanisms
perform when the vote is skewed in either direction. In this case, the worst-case dataset for
our mechanisms is generated using a fair coin, meaning that the vote is split at roughly 50%.
We expect this to be the worst case since having a close vote means that only a small amount
of noise will be required in order to change the result. In the multi-option setting, we store a
JSON-file where each key is the name of a dataset, and each value is a vector that contains the
percentage of votes each option should receive, e.g., if the first position of the vector is 25, it
means that the first option will get 25% of votes. This also saves storage space as we only need
to store one number for each of the 𝑑 = 10 voting options that a user has, rather than storing
the actual vote of 𝑛 users. In this setting, we create datasets with different distributions that we
select in order to evaluate the performance of the LDP mechanisms. We test the mechanisms
on data generated to have an almost uniform distribution, where there is a 0.1 percentage point
difference between option 𝑖 and 𝑖+1, as well as data generated such that each option gets half
the votes of the previous option. We choose to test the mechanisms on these two datasets as we
expect them to be close to the worst case and best case distributions respectively. We refer to
these datasets as the close dataset and the u_half dataset.

To test the performance of the mechanisms on a more realistic voting distribution, we also



create a dataset consisting of the percentage of votes achieved by the top 10 parties for the 2019
Danish general election. Since there were more than 10 parties to vote for in the 2019 Danish
general election, we distribute the remaining votes evenly between all 10 parties. This dataset
is referred to as the dk_general_election dataset. In Figure 1, we plot the distribution of each
dataset.

Figure 1: Distributions for the datasets used in the multi-option setting.

Finally, we also measure how many times a mechanism gets the top X options correct, where
𝑋 ∈ {1, 2, . . . , 10}. The general idea is that for a mechanism to be suitable, it should not
change the ordering of what options got the most votes, as otherwise the result of the vote will
change.

3.2.1. Application of mechanisms

For RR, we encode votes as integer values. In the binary setting, a vote of 1 correspond to a
vote in favor of the proposal, and a vote of 0 correspond to one against the proposal. In the
multi-option setting, a vote for 𝑖 correspond to a vote for option 𝑖, where 𝑖 is in the range
[0, 𝑑− 1]. In the binary setting, we create a variation of RR which we choose to call Threshold
Randomized Response. The technique could potentially be implemented on any of the tested
mechanisms, but it is only tested on RR as this is the mechanism that performs the best out
of the ones we test. The idea behind the method is to create a threshold around 0.5, e.g., a
threshold could be (0.48, 0.52). Before deciding whether a majority is in favor of the vote, the
mechanism checks whether its estimate of the number of votes in favor of the proposal lies
within the threshold. If this is the case, then the mechanism rejects the vote, corresponding to a
statement saying that the vote is too close for the mechanism to call. E.g., if a threshold of (0.48,
0.52) is used, and the RR mechanism estimates that a 0.485 fraction of people voted in favor of
the proposal, then rather than concluding that the vote was not passed, it refuses to state the
result of the vote. The idea is that a mechanism might be accurate enough for its result to be
within a close threshold of the actual result, but if the actual result is that close to 50% voted in
favor of the vote, then the mechanism might not be accurate enough to call the result of the
election.

For the Laplace mechanism in the multi-option setting, a participant’s vote is initially encoded
as a one-hot vector where all but the ith index is set to 0 if the participant votes for option i. In



this setting, the Laplace mechanism adds noise independently to each of the 𝑑 indexes in the
one-hot vector, i.e., a user first creates a one-hot vector, 𝑣, of length 𝑑, where all numbers are
set to 0 except for the number at position 𝑖 which is set to 1. This vector is passed on to the
Laplace mechanism, which computes 𝑣[𝑗] = 𝑣[𝑗] + 𝐿𝑎𝑝(0, 2𝜖 ) ∀𝑗 ∈ {0, 1, . . . , 𝑑 − 1}. In the
binary setting, we encode each participant’s vote as a single bit, corresponding to whether that
user votes in favor of the vote or not. Here, one can interpret a vote cast by a participant as a
one-hot vector of length 1. Such a vector only has L1-distance 1, which is why the scale of the
added Laplace noise was smaller in this setting.

For the Gaussian mechanism, each vote is encoded in the exact same way as described for the
Laplace mechanism, after which noise drawn from 𝒩 (0, 𝜎) is added. Noise is added in the exact
same way as it is for the Laplace mechanism, and the same unbiased estimator is used. In our

implementation of the mechanism, we first compute c as
√︁
2 · 𝑙𝑛(1.25𝛿 ) after which we compute

the scale of the noise as 𝑐·Δ2𝑓
𝜖 . We set 𝛿 = 1

𝑛 . This is the recommended upper bound for the 𝛿
parameter, but ideally it should be lower in order to reduce the risk of disclosure [3]. We set 𝛿
this high to get an upper bound on the mechanism’s usefulness, as setting it any lower will only
yield more noise. If the mechanism does not work for a 𝛿 this high, then it is unrealistic that it
can be used in a real setting, and hence there would not be a reason to test further values of 𝛿.
It is expected that adding Gaussian noise will yield more noise as compared to adding Laplace
noise due to the shape of the distributions [2].

We test the basic One-Time RAPPOR, since the full version of RAPPOR uses Bloom filters
and hashing because user inputs may be infinitely diverse. However, the number of voting
options is assumed to be well-defined, hence there is no need to use Bloom filters to reduce the
dimensionality of user inputs. Thus, each user hashes their values onto a 𝑑-length vector by
using the hash function that hashes value 𝑖 to index 𝑖 of the array. By using the basic version of
RAPPOR where Bloom filters are not used, we reduce both the complexity of the implementation
as well as the running time of the estimation part. Furthermore, since we assume that only one
vote is held, we do not need to use both permanent and instantaneous randomized response.

Our implementations of the Local Hashing mechanisms use the hash function family con-
sisting of all (g-1)-degree polynomials modulo 𝑔, where 𝑔 is a prime number. For Binary
Local Hashing, 𝑔 = 2, thus our hash function family consists of all first-degree polynomi-
als, i.e., 𝐻(𝑥) = 𝑎0 + 𝑎1 · 𝑥 𝑚𝑜𝑑 2 where the constants of the polynomial are integers in
the range [0, 1]. This means that the universal hash function family used in our implementa-
tion consists of four different hash functions - one for each of the possible polynomials, i.e.
H = {𝐻1(𝑥), 𝐻2(𝑥), 𝐻3(𝑥), 𝐻4(𝑥)} = {(0+0𝑥𝑚𝑜𝑑 2), (0+1𝑥𝑚𝑜𝑑 2), (1+0𝑥𝑚𝑜𝑑 2), (1+
1𝑥 𝑚𝑜𝑑 2)}. In the non-binary setting, we set 𝑔 to be the smallest prime number that is at least
as large as 𝑑. Since we use 𝑑 = 10, it means that our Local Hashing mechanism uses 𝑔 = 11. In
both Binary Local Hashing and Local Hashing, we encoded a vote as an integer in the range
[0, 𝑑−1], where 𝑑 = 2 in the binary setting and 𝑑 = 10 in the multi-option setting. We test both
Binary Local Hashing and Local Hashing in the multi-option setting. For our Local Hashing
mechanism, we set 𝑔 to the smallest prime number that is at least as large as 𝑑 (i.e., 𝑔 = 11 for
𝑑 = 10), since this will allow us to hash every value in [0, 𝑑− 1] into a unique value. For the
case where 𝑑 = 2, this setting is equivalent to Binary Local Hashing.



4. Results

This section covers the results for the various mechanisms tested. It is divided into binary
voting and multi-option voting.

4.1. Binary voting

We measure how many times a mechanism does not change the result of the vote out of the 1000
times that each experiment is run. Results for the tested mechanisms, for the three different
population sizes they were tested at are shown in Figure 2. Note that we only show results for
the synthetic datasets generated where 20, 40, 45 and 50% of voters voted "Yes" to the proposal.
We only display these results since the results are symmetric, e.g., results for the dataset where
80 % of voters voted "Yes" to the proposal are similar to results for the data where 20% did so.

Figure 2: Number of experiments where result of vote was not changed after applying various LDP
mechanisms at different 𝜖-values.

The results generally show that once 𝜖 ≥ 1, then all mechanisms except for Gaussian noise
never change the outcome of the vote, as long as the fraction of people voting in favor of the
vote is within the range [0, 0.48] or [0.52, 1]. With a population size of 105, 𝜖 can be decreased to



0.5 for all mechanisms except Gaussian without the mechanisms altering the result of the vote.
𝜖 can be further lowered to 0.1 when increasing the population size to 106. Since 𝜖-values of
more than 1 provide weaker privacy guarantees, these mechanisms should probably not be used
in a voting system of only 104 people. However, for population sizes of 105 and 106, mechanisms
are able to function somewhat well using 𝜖-values of less than 1. We note that mechanism
performance here correlates with their normalized average absolute error, i.e., Randomized
Response performs the best, then the Laplace mechanism, followed by basic one-time RAPPOR
and Binary Local Hashing, and Gaussian noise performs the worst. While results are promising,
there is still one glaring issue: none of the mechanisms are able to perfectly estimate the result
of the vote if close to 50% of voters are in favor of the proposal, regardless of population size
and 𝜖-value. This would be concerning in a real voting system, seeing as none of our tested
mechanisms would be able to consistently estimate what the result of the vote should be if the
held vote is close. Figure 3 shows the results of Threshold Randomized Response when run on

Figure 3: Number of times threshold randomized response successfully estimated the result of a vote
for population sizes 105, 106 and 107, plotted for various values of 𝜖 and coin biases, and using different
thresholds.

datasets of various sizes. For a population size of 105, we observe that the method only seems
to reliably work when 𝜖 = 1 with a threshold of (0.49,0.51) or wider. When the population size
is 106, it can be seen that when 𝜖 is set to 0.1, the mechanism is unable to correctly estimate the
result of the vote 100% of the time. We do observe that the (0.48,0.52) threshold nearly works,
so by slightly widening the threshold, it might be possible to create a mechanism that functions
at this privacy level with a population size of 106. When increasing 𝜖 to 0.5, the mechanism
is able to use both a threshold of (0.48,0.52) and (0.49,0.51) without wrongly estimating the
result of the vote, but the threshold of (0.495,0.505) is still too tight. At 𝜖 = 1, all thresholds
work. When the population size is increased to 107, we notice that both the (0.48,0.52) and
the (0.49,0.51) thresholds work for 𝜖 = 0.1. This means that as the population size increases,



Figure 4: Number of times each mechanism correctly ranked the first x options of the u_half dataset
for different population sizes and values of 𝜖.

one can increase the privacy guarantees of their voting system by lowering the value of 𝜖. We
also notice that when 𝜖 = 0.5, one would able to use the tightest bound we test for, namely
(0.495,0.505), without violating the integrity of the vote.

4.2. Multi-option voting

It can be seen that all mechanisms achieve similar L2-errors. Basic One-Time RAPPOR performs
the best out of all mechanisms, especially at the low value of 𝜖 = 0.1. At higher values of 𝜖, all
mechanisms seem to perform similarly, although RR and Basic One-Time RAPPOR seem to be a
little better. Finally, we show the results for how often each mechanism got the ranking of the
top x parties correct, where x is in the range of [1,10]. Results for the u_half dataset are shown
in Figure 4. Note that if a mechanism gets the ordering of voting options correct for position 𝑥,
but has made an error in the ranking somewhere earlier, e.g., for 𝑥 > 5, it might have ranked
the option with the 5th most votes as number 4, then we do not count this towards a run where
a mechanism got the top 𝑥 correct. In order to count towards a correct top 𝑥, our mechanism
would need to correctly rank all of the first 𝑥 voting options. Performance-wise, we see similar
results as before: all mechanisms perform similarly, but Basic One-Time RAPPOR seems to
work slightly better than the others. For 𝜖 = 0.1, the mechanisms are only able to consistently
get the first 2 to 4 options correctly, depending on the population size and mechanism used.
At 𝜖 = 0.5, the mechanisms can rank the first 4 to 6 options correctly, which increases to 5
to 7 for 𝜖 = 1. The difference between option 8 and 9 is about 0.2 percentage points, which
suggests that if options are this close to each other, then mechanisms will fail to consistently
make correct estimates of the rankings for the population sizes and 𝜖-values we tested for. This
is supported by results from the close and dk_general_election datasets.



5. Discussion

Our results show that LDP mechanisms producing lower levels of noise change the result of
a vote less often than mechanisms that yield more noise, which intuitively makes sense. If a
mechanism introduces less noise, then its estimate should be closer to the true result. In the
binary setting, we saw that RR gave the best results, and that when combined with our threshold
method, it was possible to create a mechanism that did not change the result of any of the 1000
votes it was run on. Based on our results, it seems that one would need to use a somewhat large
𝜖 of about 1 or higher if run on a population size of 104 or less. This could work, but to provide
stronger privacy guarantees for voters, which is the core idea of using LDP in the first place,
one would need to use a population size of around 105 people or more. For a population of 105,
𝜖-values around 0.5 seem realistic, and for populations of 106 one may even use 𝜖 = 0.1. We
further observed that as the population size increases, not only can one guarantee stronger
privacy for voters, but one is also able to set a tighter threshold around the 50% mark, reducing
the risk of having to reject a vote. For the smaller population size of 105, one would need to
use 𝜖 = 1 with the tested thresholds in order to not violate the integrity of the vote. While we
did not test the threshold method on other mechanisms, it seems plausible that the method
would also work for mechanisms such as Basic One-Time RAPPOR, the Laplace mechanism
and Binary Local Hashing - at least for some combinations of population sizes and 𝜖-values.
Depending on someone’s needs, they can choose a mechanism accordingly.

When speaking of how realistic it would be to implement such an LDP voting system, the
risk of having to reject a vote is something that has to be considered. Firstly, one would need to
build a system that can somehow handle a rejected vote. This could for example be done by
redoing the vote, but this would be inconvenient for voters and expensive for the people who
organize the vote. Ideally, one should somehow build a system that relies on LDP by default,
but where the system has something else to fall back on in case the vote is rejected by the LDP
mechanism.

It should also be considered how often a vote would realistically be rejected. If all held votes
are close, then our system is guaranteed to always reject them, rendering it useless. Looking at
voting data from the US Senate elections, we see that the average margin of victory is around
20 percentage points, with exactly one election per election cycle (out of the around 33) being
lower than 1 percentage point margin of victory. If this generalizes to other countries, then it
seems that the threshold mechanism would not have to reject a lot of votes. However, whether
this generalizes to other countries is currently unclear and would have to be examined further.
We emphasize that having to reject a vote is a major drawback of our LDP system, since we
generally cannot tell how close a vote is going to be before the election.

In the multi-option setting, Basic One-Time RAPPOR performed the best out of the mecha-
nisms tested, although it tied with RR when 𝜖 = 1. We saw that Binary Local Hashing performed
far worse than any of the other mechanisms, and that its normalized average error remained
at similar levels despite increasing both 𝜖 as well as the population size. This was due to the
fact that Binary Local Hashing hashes input into a single bit. This meant that estimates for one
half of the voting options were hashed to one value, and the other half was hashed to another,
resulting in all options within each half having the same estimated number of votes. This makes
the mechanism useless in the multi-option voting setting we tested.



We observed that when two options were close, all mechanisms struggled to consistently
rank them in the proper order. While it was not tested, it seems plausible that the threshold
method could be applied in this setting to correct for this. In a Two-Round system, this would
correspond to checking whether the second-most voted option is too close to the third-most
voted option, since the two most popular candidates move on to the second round in this system.
Whether it would be realistic to use such a mechanism would depend on how votes are typically
distributed in such a system, i.e., ideally the second- and third-most voted options should only
rarely be close. We leave it to future works to examine how votes cast in such a system tend to
be distributed.

Results for the u_half dataset show that for a population size of 106 and 𝜖 = 1, most
mechanisms are able to get the rankings of options up to and including option 6 correct. This
means that mechanisms begin to struggle when the difference in votes between two options is
around 0.4 percentage points. For a population size of 107, mechanisms were able to correctly
rank the first 7 options, meaning that they only began to struggle once the difference between
two options were around 0.2 percentage points. This hints that the threshold method might
work in this case. For a population size of 107, it might even be realistic to use 𝜖 = 0.5, but
this would depend on how many votes would need to be rejected. The same can be said for the
population size of 106 and 𝜖 = 1, as mechanisms performed similarly across those two settings.

6. Conclusion

We examined the possibility of applying LDP to voting data. Privacy is an integral part of
holding anonymous votes, and differential privacy provides rigorous, quantifiable privacy
guarantees for data holders. This work’s aim was to assess whether LDP can be applied to
voting, and if so, make recommendations for the choice of mechanisms, 𝜖-values, and population
sizes. While many voting systems exist, this work mainly focused on two settings: a binary
First-Past-The-Post system, and a multi-option system similar to the first round of a Two-Round
voting system. In both settings, we created synthetic datasets of votes. In the binary setting, RR
was the mechanism that performed the best, although the Laplace mechanism, Basic One-Time
RAPPOR and Binary Local Hashing were not far behind. All mechanisms struggled to correctly
estimate the outcome of a held vote when votes were split almost evenly between the two
options. We therefore created a threshold method which, when combined with RR, provided
a mechanism that would never wrongly estimate the result of the vote. However, this came
with a risk of having to reject the result of a vote entirely. The size of the threshold could be set
based on population sizes and 𝜖-values. In the multi-option setting, Basic One-Time RAPPOR
performed better than all other tested mechanisms, except at 𝜖 = 1, where it tied with RR.

Finally, while it seems technically possible to build LDP voting systems that do not violate
the integrity of a vote, it requires an estimate of the number of people who are going to vote
in order to properly choose an 𝜖-value. If such an estimate cannot be found, one may end up
setting an 𝜖-value that yields too much noise.



Acknowledgments

Rosario Giustolisi is supported by the Villum Foundation, within the project “Enabling User
Accountable Mechanisms in Decision Systems”

References

[1] C. Faulí, K. Stewart, F. Porcu, J. Taylor, A. Theben, B. Baruch, F. Folkvord, F. Nederveen,
A. Devaux, F. Lupiáñez-Villanueva, Study on the benefits and drawbacks of remote voting
(2018).

[2] C. Dwork, A. Roth, The Algorithmic Foundations of Differential Privacy, now publishers
inc., 2014.

[3] S. Vadhan, The Complexity of Differential Privacy, Springer, 2016.
[4] S. L. Warner, Randomized response: A survey technique for eliminating evasive answer

bias, Journal of the American Statistical Association (1965).
[5] U. Erlingsson, V. Pihur, A. Korolova, Rappor: Randomized aggregatable privacy-preserving

ordinal response, CCS (2014).
[6] T. Wang, J. Blocki, N. Li, S. Jha, Locally differentially private protocols for frequency

estimation, USENIX Security Symposium (2017).
[7] A. Blais, S. Labbé-St-Vincent, J.-F. Laslier, N. Sauger, K. Van der Straeten, Strategic vote

choice in one-round and two-round elections: An experimental study, Political Research
Quarterly (2011).

[8] J. P. Gibson, R. Krimmer, V. Teague, J. Pomares, A review of e-voting: the past, present
and future, Annals of Telecommunications (2016).

[9] D. Chaum, P. Y. A. Ryan, S. Schneider, A practical voter-verifiable election scheme, in:
ESORICS, Springer-Verlag, 2005.

[10] B. Adida, Helios: Web-based open-audit voting, in: Proceedings of the 17th Conference
on Security Symposium, SS’08, USENIX Association, 2008.

[11] A. Kiayias, M. Yung, Self-tallying elections and perfect ballot secrecy, in: PKC, Springer,
2002.

[12] F. Hao, P. Y. A. Ryan, P. Zielinski, Anonymous voting by two-round public discussion, IET
Inf. Secur. (2010).

[13] E. Maaten, Towards remote e-voting: Estonian case (2004).
[14] Apple, Learning with privacy at scale (2017).
[15] J. D. C. Benaloh, Verifiable Secret-Ballot Elections, Ph.D. thesis, 1987.


	1 Introduction
	1.1 Background

	2 Related Work
	3 Experiments
	3.1 Assumptions
	3.2 Setting
	3.2.1 Application of mechanisms


	4 Results
	4.1 Binary voting
	4.2 Multi-option voting

	5 Discussion
	6 Conclusion

