C#/.Net Project Cluster

Other new C# 2.0 features
and

Simple WinForms user interfaces

Peter Sestoft
KVL and IT University of Copenhagen

ITU C#/.Net Project Cluster, May 2005 C# 2.0 News-1
C#/.Net project cluster
Wednesday 4 May 2005
e [terators: the y i e ld statement.
e Partial types
e Anonymous methods: de legate expressions.
e SQL-style nullable value types: int?, bool?, and so on.
e Graphical user interfaces (GUIs) with WinForms.
ITU C#l/.Net Project Cluster, May 2005 C# 2.0 News-2

New in C# 2.0: Anonymous methods: del egat e expressions
Advanced API's often have methods that take delegates as arguments, for instance:

class IntList {
public IntList Filter(IntPredicate p);

}

del egate bool IntPredicate(int x);
The Fi I'ter method may return a list containing only those elements X for which p is true.

We can define a method Even that is true for even integers, make a delegate, and apply Fi lter toit:

static bool Even(int x) { return x%® == 0; }
iiét.Fi I'ter(Even);

C# 2.0 allows us to define Fi I ter’s delegate argument inline, as an anonymous method:
list.Filter(delegate(int x) { return x% == 0; });

An anonymous method delegate(...) {. ..} isan expression that evaluates to a delegate.

Like anonymous functions (fn X => __.) in Standard ML or lambda in Scheme or \ in the A-calculus.

In Java one would use methods in anonymous inner classes, but they are (even) more verbose.

C#/.Net Project Cluster, May 2005 C# 2.0 News-3

Using an anonymous method to specify sorting order
A quicksort method QSOrt may take a delegate as argument to specify the sorting order:
public del egate int DConmparer<T>(T vl, T v2);
private static void Qort<T>(T[] arr, DConparer<T> cnp, int a, int b) {

whil e (cnp(arr[i], x) < 0) i++;
while (cnp(x, arr[j]) <0) j--;

}

The Qsort method may be called with a delegate created from a method:

static int StringReverseConmpare(String sl1, String s2) {
return String. Conpare(s2, sl);
}

sort(sa, StringReverseConpare, 0, sa.lLength-1);

Or it may be called with a delegate created by an anonymous method expression:

sort(sa,
del egate(String s1, String s2) { return String. Conpare(s2, sl1); },
0,
sa. Length-1);

This is often convenient, but abuse leads to incomprehensibility.

C#l/.Net Project Cluster, May 2005 C# 2.0 News-4

An anonymous method can use the enclosing method’s variables

Assume the hypothetical INtL ISt class has a method App 1y that applies a delegate to all elements:
class IntList {
public void Apply(lntApplier p);

}
del egate void IntApplier(int x);

Then we can write a method to compute the sum of all list elements, using an anonymous method:

static int Sum(IntList list) {
int res = 0;
list.Apply(delegate(int x) { res +=x; });
return res;

}

Note that the anonymous method uses the Sum method’s local variable res.

Powerful, but ...
For this to be possible, the C# compiler must turn the SUm method into a member method of a new (hidden) class.

Now multiple threads can access a local variable of a method; otherwise unheard of. Could cause surprises.

ITU C#/.Net Project Cluster, May 2005 C# 2.0 News-5

Fancy uses of anonymous methods

A Fun<A,R> is a one-argument delegate, a FUN<A1,A2 ,R> is a two-argument delegate:
public del egate R Fun<A R>(A X);
public del egate R Fun<Al, A2, R>(Al x1, A2 x2);

Method MakeAdder (X) returns a delegate that returns the sum of X and its argument Y:

public Fun<int,int> MakeAdder(int x) {
return delegate(int y) { return x+y; }

}

We can use it like this:

Fun<int,int> addSeven = MakeAdder (7;
int z1 = addSeven(10), z2 = addSeven(35);

Just to scare you: Method CUF Ty turns a two-argument delegate T into a delegate that returns a delegate:

public static Fun<A, Fun<B, C>> Curry<A, B, C(Fun<A B, C f) {
return del egate(A x) {
return del egate(By) {
return f(x, y);

ITU C#l/.Net Project Cluster, May 2005 C# 2.0 News-6

New in C# 2.0: Iterators and the yi el d statement

A C# enumerator is traditionally written as a (nested) class, just like a Java iterator.
This is cumbersome, and easy to get wrong.

Example: Enumerate the integers m,m + 1,...,n:

class MyTest {
public static void Main(String[] args) {
foreach (int i in FronTo(13, 17))
Consol e. WiteLine(i);

public static | Enunerabl e<int> FronTo(int m int n) {
return new FronifoEnunerabl e(m n);

}
private class FronifoEnunmerable : |Enunerable<int> { ... }
private class FronToEnuner at or | Enunerator<int> { ... }

C#/.Net Project Cluster, May 2005 C# 2.0 News-7

The enumerable class and the enumerator class

private class FroniToEnunerable : /] Static menber class
internal readonly int m n;
public FronifoEnunerable(int m int n) { this.m=m this.n = n;

public | Enunerator<int> GetEnunerator() { return new FronToEnunerator(this); }

| Enuner abl e<i nt > {

private class FronToEnumner at or | Enuner at or <i nt > { // Static menber class
private readonly FroniloEnunerabl e ebl e;

private int i;

publ i ¢ FronToEnuner at or (FronToEnunerabl e eble) { this.eble = eble; i = eble.m
public int Current {
get {
if (ebleem<=1i &% i <= eble.n)
return i;
el se

throw new I nval i dOper ati onException();

}

}
public bool MveNext () {
if (i <= eble.n)
i ++;
return i <= eble.n;

}
public void Dispose() { eble = null; }

C#l/.Net Project Cluster, May 2005 C# 2.0 News-8

1;

C# 2.0: Writing an enumerable using the yi el d statement
With the y i e 1 d statement, the FromTo method can be written like this:

public static | Enunmerabl e<int> Fronifo(int m int n) {
for (int i=m i<=n; i++)
yield return i;

}

The FromToEnumerable and FromToEnumerator classes are no longer needed!

An iterator method is one that contains at least one Y i€ ld statement.and has return type
IEnumerable<T>or IEnumerator<T>.

The yield statement can be used only in iterator methods.

There are two forms of the y i€ 1 d statement:

e yield return e; causes the next value of the enumerator to be that of €.

e yield break; signals that the enumerator has no more values.

Same as returning from or reaching the end of the iterator method.

ITU C#/.Net Project Cluster, May 2005 C# 2.0 News-9
New in C# 2.0: Partial type declarations
In C# 2.0, a class, interface or struct may be declared in several parts, contained in separate source files.
Useful if one part is generated by a program generator, and another part contains manual adaptations.
Regenerating the generated part will not destroy the manual adaptations.
Example: Two files, each containing part of the declarations of interface I and class C:
partial interface | { | partial interface | {
void M2(C.S n); | void M(C.S n);
} | }
seal ed partial class C: | { | public partial class C{
public void M(S n) { | public partial struct S {
if (n.x >0) | public int x;
M2(n. Decr()); | public S Decr() { x--; return this; }
} | }
public partial struct S { | public void M(S n) {
public S(int x) { this.x = x; } | Consol e. WiteLine("n.x={0} ", n.x);
} | ML(n);
public static void Main() { | }
Cc = new ¢(); | }
c. Ml(new S(5)); |
} |
} |
A modifier on one part applies to all parts of a class, interface or struct.
ITU C#l.Net Project Cluster, May 2005 C# 2.0 News-10

New in C# 2.0: SQL-style nullable types
In SQL, any value, such as an integer, may be nul I.

Calculations preserve Nul l's, so 17 + nul I gives nul .

C# will be used for stored procedures in Microsoft SQL Server. This requires support for nul I values.

If tis a value type, then t? is a nullable type over t. The notation t? is shorthand for Nul lable<t>.

The nullable type t? has the values of t and the additional value null I.

There is an implicit conversion from T to T2, and an explicit conversion (cast) from t? to t.

The usual arithmetic (+, —, *, ...) and logical (&, |, !, ...) operators are lifted to work on nullable simple values:

nt?[] iarr = { i1, i2, i3, i4, i5};
2 +=i1; /'l Result 33 =22 + 11

A nullable type Nul lab 1e<T> implements interface INullableValue.

If X has type Nul lable<T> then X . HasValue means x!=nul I and X.Value of type T is defined only

when x1=null.

int? i1=11, i2=22, i3=null, i4=i1+i2, i5=i1l+3; /1 11 22 null 33 null
int i6 = (int)il; /1 Legal: cast fromint? to int
int i7 = (int)ib; /1 Legal but fails at run-tine

int i8 =1i1; /1 Illegal, no inplicit conversion
i

i

ITU C#/.Net Project Cluster, May 2005 C# 2.0 News-11
The nul | -test operator ?? is a way to provide a fallback value
el e2 | el ?? e2
null v2 v2
vl v2 vl
Assume that §arr of type INt?[] holds { 11, 22, null, 33, null }.
Compute the product of the non-nul I elements (namely, 7986 = 11 - 22 - 33):
int prod = 1;
for (int i=0; i<iarr.Length; i++)
prod *=iarr[i] ?? 1;
Print the non-nu l I elements greater than 11 (namely, 22 33):
for (int i=0; i<iarr.Length; i++)
if (iarr[i] > 11) /1l true if non-null and > 11
Console. Wite("[{0}] ", iarr[i]);
Print the elements different from 11 (namely, 22 null 33 null):
for (int i=0; i<iarr.Length; i++)
if (iarr[i] !'= 11) /1l true if null or != 11
Console. Wite("[{0}] ", iarr[i]);
Convenient, but now we have both the nul | reference, and the absent value nul I of a value type.
ITU C#l.Net Project Cluster, May 2005 C# 2.0 News-12

The bool ? type and three-valued logic
The nullable type boo 1 ? has three values: False, true, and null (= don’t know).
Most lifted operators (+, *, 7, <, ...) are null L-strict: they give the result null I if any argumentis nul 1.

But the lifted strict logical operators (&) and (]) produce true or Fal se whenever possible:

X&y null false true x|y null false true
null null false null null null null true
false | false false false false | null false true
true null false true true true true true

The null I value is considered false in conditional expressions (?-) and
in conditional statements (i f, whi le, do-whi le and for).

Consequence: it no longer holds that (€1 ? e2 : e3)and (('el) ? e3 : e2) areequivalent.

WinForms example (file Theat r e. cs)

A Form in WinForms is a windows that can contain other components; it corresponds to a JFrame in Java Swing:

usi ng System
usi ng System W ndows. For ns;
usi ng System Dr awi ng;

class MyTest {
public static void Main(String[] args) {
Form form = new Forn();
form Text = "Inferial Bio";
Theat r ePanel panel = new TheatrePanel (10, 15);
form Controls. Add(panel);
formdientSize = panel.Size;
form StartPosition = FornttartPosition.CenterScreen;
f orm Showhi al og();
}
}

The form has a single ‘control’, a TheatrePanel (see next slide).

C#/.Net Project Cluster, May 2005

C# 2.0 News-13

C#/.Net Project Cluster, May 2005

Basics of graphical user interfaces (GUI) in .Net

The current technology for making GUIs in .Net is called WinForms.

See namespaces System.Drawing and System.Windows.Forms and their neighbours.
GUI components — forms, buttons, menus, tables, textboxes — are created as objects.

It is similar in many respects to Java's Swing library (but seems to have little automatic layout management).

The next version of Microsoft Windows, codenamed Longhorn, has a new GUI system called Avalon.
See http://msdn._microsoft.com/longhorn/
Avalon is declarative and uses XAML, an XML-language, to describe the the structure and functionality of GUIs.

The rendering model is very similar to Scalable Vector Graphics (SVG) from WWW Consortium.

WinForms will remain supported also in Longhorn, and Avalon components can be included in a WinForms GUI.

But Avalon is recommended for Longhorn-only development.

C#l.Net Project Cluster, May 2005

C# 2.0 News-14

A panel on which to draw the cinema seats
We declare a TheatrePanel to display the seating in a cinema. It is a subclass of Panel.

A Panel can contain other panels, buttons and so on, and one can paint on it. Similar to JPanel.

public class TheatrePanel : Panel {
private int sw = 20, sh = 20;
private bool[,] seats;

public TheatrePanel (int rows, int cols) {
this.seats = new bool [rows,cols]; // false = free, true = sold
t hi s. BackCol or = Col or. Wi te;
this.Size = new Si ze(seats. GetLength(1l) * sw, seats. GetLength(0) * sh);
/'l Use double buffering in graphics to avoid flickering on repaint:
this.SetStyl e(Control Styl es. Al'l Pai ntingl nWrPai nt
| Control Styl es. User Pai nt
| Control Styl es. Opti m zedDoubl eBuffer, true);

protected override void OnPai nt (Pai nt Event Args e) {
cal |l ed when the TheatrePanel needs to be redrawn ...

protected override void OnMused i ck(MuseEvent Args e) {
call ed when a mouse click happens wi thin the panel
}
}

The seats array represents the state of cinema seats (false = free, true = sold).

C#l.Net Project Cluster, May 2005

C# 2.0 News-15

C# 2.0 News-16

Drawing the cinema’s seats
The OnPaint method is called (by the window system) when the TheatrePanel needs to be redrawn.
As in Java, drawings are made on the panel's Graphics object.

We draw a free seat as a green blob, a sold seat as a red blob.

protected override void OnPaint (Pai nt EventArgs e) {
if (seats !'= null) {
Graphics g = e. Graphics;
Sol i dBrush brush = new Sol i dBrush(Col or. Gray);
for (int row=0; row<seats.GetLength(0); rowt+) {
for (int col=0; col<seats.GetLength(1); col++) {
Rectangl e rect = new Rectangl e(col *sw, row-sh, 15, 15);
brush. Col or = seats[row,col] ? Color.Red : Col or.Geen;
g.FillEllipse(brush, rect);
}
}
}
}

This could be improved in a zillion ways: automatically scale seats when window is resized etc.

C#/.Net Project Cluster, May 2005 C# 2.0 News-17

Reacting to mouse clicks

The OnMouseCl i ck method is called when a mouse click happens within the panel.

The € argument carries the (:r:7 y) coordinates of the mouse click.

When a click happens within the rectangle containing a seat, we change the seat from free to sold, or back.

The call to Inval idate causes the panel to be redrawn, so OnPaint gets called.

protected override void OnMused i ck(MuseEvent Args e) {
if (seats != null) {
int col =e.X/ sw, row=-e.Y / sh;
if (0 <= row & row < seats. CGetlLength(0) &&
0 <= col && col < seats.Getlength(1)) {
seats[row, col] = !I'seats[row,col];
Invalidate();
}
}
}

C#l.Net Project Cluster, May 2005 C# 2.0 News-18

Winforms example: Displaying a data grid (file Sheet . ¢s)

A DataGridView is a spreadsheet-style GUI component, but without any underlying functionality.

Form form = new Forn();
form Text = "SuperCal c 2005";
Dat aGri dVi ew dgv = new DataGr i dView();
dgv. ShowEdi ti ngl con = fal se;
dgv. Col umCount = 70;
dgv. RowCount = 40;
dgv. Al | owlser ToAddRows = f al se;
/1 Put |abels on colums and rows:
for (int col=0; col<dgv.ColumCount; col ++)
dgv. Col ums[col]. Nane = Col ummNane(col) ;
for (int row=0; row<dgv.RowCount; rowt+)
dgv. Rows[row] . Header Cel | . Val ue = (row+l).ToString();
/] Set data grid size, add to form and display:
dgv. Si ze = new System Drawi ng. Si ze(800, 500) ;
form Controls. Add(dgv);
formdientSize = dgv. Si ze;
form StartPosition = FornftartPosition.CenterScreen;
f orm ShowDi al og();

This creates and displays a 40-row, 70-column data grid with row and column headers, scrollbars etc.

The ColumnName method (not shown) converts 01 2 ...to column names AB ...Z AAAB...AZBABSB ...

C#/.Net Project Cluster, May 2005 C# 2.0 News-19

Event handlers: reacting to cell entry and exit etc.

Add an event handler to show current cell’s coordinates in top lefthand corner.
An event handler is a delegate.

The Cel IEnter event is raised when the used gives focus to a cell.

The effect of raising an event is to call the delegates associated with it.

dgv. Cel | Enter +=

del egat e(Obj ect sender, DataGidViewCel | EventArgs arg) {
int row = arg. Row ndex, col = arg. Col uml ndex;
dgv. TopLeft Header Cel | . Val ue = Col utmNane(col) + (row+l);

h

Class System.Windows.Forms.Control has events (MouseClick, Paint) and corresponding methods
(OnMousecClick, OnPaint) as seen in TheatrePanel.

Creating forms with the Visual Studio designer

The normal way to create WinForms is to use the Visual Studio graphical GUI designer.
Choose File | New | Projectand Windows Application.

When you switch from design view to code view, you get a partial class!

Your code (event handlers) go in file FOrm. cs; auto-generated code goes into file Forml.Designer.cs.

C#l.Net Project Cluster, May 2005 C# 2.0 News-20

