
PCPP IT University, E2014

Exercises week 1
Friday 29 August 2014

Goal of the exercises
The goal of this week’s exercises is to make sure that you can use Java inner classes, Java threads, synchronized
methods, and the synchronized statement on small examples.

The following abbreviations are used in the exercise sheets:

• “Goetz” means Goetz et al.: Java Concurrency in Practice, Addison-Wesley 2006.

• “Bloch” means Bloch: Effective Java. Second edition, Addison-Wesley 2008.

• “Herlihy” means Herlihy and Shavit: The Art of Multiprocessor Programming. Revised reprint, Morgan
Kaufmann 2012.

The exercises let you try yourself the ideas and concepts that were introduced in the lectures. Some exercises may
be challenging, but they are not supposed to require days of work.

If you get stuck with an exercise outside the exercise sessions, you may use the News Forum for the course
in LearnIT https://learnit.itu.dk/mod/forum/view.php?id=32825 to ask for help. This is better than emailing the
teaching assistants individually.

Exercises may be solved and solutions handed in in groups of 1 or 2 students.
Exercise solutions should be handed in through LearnIT no later than 23:55 on the Thursday following the

exercise date.

How to hand in
You should make hand-ins as simple as possible for you and for the teaching assistants. For instance, hand in
a zip-file containing the Java source files written to answer the programming questions. Use Java comments to
clearly indicate which part of the code relates to which exercise.

You may also use Java comments in the source files to reply to the text questions of the exercises, and to present
output from experiments. Alternatively use simple text files for this purpose, but then name the files to make it
completely clear what files contain solutions to what questions. In general, do not waste your time formatting
everything beautifully with LaTeX or MS Word, unless this is actually faster for you.

Do not submit code in the form of screenshots. Do not hand in rar files and other exotic archive formats. Do
not hand in zip-files of complete Eclipse workspaces and similar; they contain extraneous junk.

Do this first
Make sure you have a recent version of the Java Development Kit installed: Java 8 is clearly preferable, but Java
7 will work for most of the course. Type java -version in a console on Windows, MacOS or Linux to see
what version you have. From inside Eclipse you may instead inspect Preferences > Java > Installed
JREs.

You may want to install a recent version of an integrated development environment such as Eclipse Luna (4.4).
Get and unpack this week’s example code in zip file pcpp-week01.zip on the course homepage.

1

PCPP IT University, E2014

Exercise 1.1 Consider the lecture’s LongCounter example found in file TestLongCounterExperiments.java, and
remove the synchronized keyword from method increment so you get this class:

class LongCounter {
private long count = 0;
public void increment() {

count = count + 1;
}
public synchronized long get() {

return count;
}

}

1. The mainmethod creates a LongCounter object. Then it creates and starts two threads that run concurrently,
and each increments the count field 10 million times by calling method increment.

What kind of final values do you get when the increment method is not synchronized?

2. Reduce the counts value from 10 million to 100, recompile, and rerun the code. It is now likely that
you get the correct result (200) in every run. Explain how this could be. Would you consider this software
correct, in the sense that you would guarantee that it always gives 200?

3. The increment method in LongCounter uses the assignment

count = count + 1;

to add one to count. This could be expressed also as count += 1 or as count++.

Do you think it would make any difference to use one of these forms instead? Why? Change the code and
run it, do you see any difference in the results for any of these alternatives?

4. Extend the LongCounter class with a decrement() method which subtracts 1 from the count field.

Change the code in main so that t1 calls decrement 10 million times, and t2 calls increment 10
million times, on a LongCounter instance. In particular, initialize main’s counts variable to 10 million
as before.

What should the final value be, after both threads have completed?

Note that decrement is called only from one thread, and increment is called only from another thread.
So do the methods have to be synchronized for the example to produce the expected final value? Explain
why (or why not).

5. Make four experiments: (i) Run the example without synchronized on any of the methods; (ii) with
only decrement being synchronized; (iii) with only increment being synchronized; and (iv) with both
being synchronized. List some of the final values you get in each case. Explain how they could arise.

Exercise 1.2 This exercise concerns anonymous inner classes and has nothing to do with concurrency. Consider
a method doTwice(r) that takes a Runnable instance r and executes it twice:

public static void doTwice(Runnable r) {
r.run();
r.run();

}

1. Write a call to doTwice that uses an anonymous inner class (one that implements Runnable) to print the
same string twice, like this:

Hello, World!
Hello, World!

2. Define a static method doNTimes(r, n) that takes a Runnable instance r and executes it n times:

2

PCPP IT University, E2014

public static void doNTimes(Runnable r, int n) {
... some code ...

}

3. Write a call to doNTimes that prints the same string 14 times.

4. Define a static method write14Times(s) that uses doNTimes to print given string s 14 times.

5. Optional exercise: Write the above calls to doTwice and doNTimes using Java 8 lambdas, or anonymous
functions, instead of anonymous inner classes that implement Runnable.

Exercise 1.3 Consider this class, whose print method prints a dash “-”, waits for 50 milliseconds, and then
prints a vertical bar “|”:

class Printer {
public void print() {

System.out.print("-");
try { Thread.sleep(50); } catch (InterruptedException exn) { }
System.out.print("|");

}
}

1. Write a program that creates a Printer object p, and then creates and starts two threads. Each thread must
call p.print() forever. You will observe that most of the time the dash and bar symbols alternate neatly
as in -|-|-|-|-|-|-|.

But occasionally two bars are printed in a row, or two dashes are printed in a row, creating small “weaving
faults” like those shown below:

-	-	-	-	-	-		--	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		--
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-		--	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Since each thread always prints a dash after printing a bar, and vice versa, this phenomenon can be caused
only by one thread printing a bar and then the other thread printing a bar before the first one gets to print its
dash.

Describe a scenario involving the two threads where this happens.

2. Making method print synchronized should prevent this from happening. Explain why. Compile and run
the improved program to see whether it works.

3. Rewrite print to use a synchronized statement in its body instead of the method being synchronized.

4. Make the print method static, and change the synchronized statement inside it to lock on the Print
class’s reflective Class object instead.

For beauty, you should also change the threads to call static method Print.print() instead of instance
method p.print().

3

