
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 1

Peter Sestoft
IT University of Copenhagen

Friday 2014-08-29**

IT University of Copenhagen 2

Plan for today
•  Why this course?
•  Course contents, learning goals
•  Practical information
•  Mandatory exercises, examination

•  Java threads
•  Java inner classes
•  Java locking, the synchronized keyword

•  Quizzes

IT University of Copenhagen

The teachers
•  Course responsible: Peter Sestoft

– MSc 1988 and PhD 1991, Copenhagen University

•  Co-teacher: Claus Brabrand
•  Exercises

–  Iago Abal Rivas, ITU PhD student
– Florian Biermann, research assistant, ex-ITU MSc
– Håkan Lane, PhD, external teaching assistant

1993 2002 & 2005 2004 & 2012 2007 2012 2014

IT University of Copenhagen

Why this course?
•  Parallel programming is necessary

– For responsiveness in user interfaces etc.
– The real world is parallel

•  Think of the atrium lifts: lifts move, buttons are pressed
•  Think of handling a million online banking customers

– For performance: The free lunch is over
•  It is easy, and disastrous, to get it wrong

– Testing is even harder than for sequential code
– You should learn how to make correct parallel code

•  in a real language, used in practice

– You should learn how to make fast parallel code
•  and measure whether one solution is faster than another
•  and understand why

4

IT University of Copenhagen

Example: 2 lifts, 7 floors, 26 buttons

5

Lots of concurrency:
-  lifts move
-  buttons are pressed
-  doors open & close

b_1

−1

0

1

4

5

2

3

f_0

f_1

f_2

f_4

f_3

Lift A

f_5

Lift B

The free lunch is over:
No more growth in single-core speed

6

H
er

b
S
ut

te
r:

 T
he

 f
re

e
lu

nc
h

is
 o

ve
r,

D
r

D
ob

bs
,

20
05

.
Fi

gu
re

 u
pd

at
ed

 A
ug

us
t

20
09

.
ht

tp
:/

/w
w

w
.g

ot
w

.c
a/

pu
bl

ic
at

io
ns

/c
on

cu
rr

en
cy

-d
dj

.h
tm

Moore’s law

Clock speed

At 3 GHz
light travels
10 cm/cycle

IT University of Copenhagen

Course contents
•  Threads, locks, mutual exclusion, scalability
•  Performance measurements
•  Tasks, the Java executor framework
•  Safety, liveness, deadlocks
•  Testing concurrent programs, ThreadSafe
•  Transactional memory, Multiverse
•  Lock-free data structures, Java mem. model
•  Message passing, Akka

7

IT University of Copenhagen

Learning objectives
After the course, the successful student can:
•  ANALYSE the correctness of concurrent Java

software, and RELATE it to the Java memory model
•  ANALYSE the performance of concurrent Java

software
•  APPLY Java threads and related language features

(locks, final and volatile fields) and libraries
(concurrent collections) to CONSTRUCT correct and
well-performing concurrent Java software

•  USE software tools for accelerated testing and
analysis of concurrency problems in Java software

•  CONTRAST different communication mechanisms
(shared mutable memory, transactional memory,
message passing)

8

IT University of Copenhagen

Expected prerequisites
•  From the ITU course base:

“Students must know the Java programming
language very well, including inner classes
and a first exposure to threads and locks,
and event-based GUIs as in Swing or AWT.”

•  Today we will review the basics of
–  Java threads
–  Java synchronized methods and statements
–  Java’s final keyword
–  Java inner classes

9

IT University of Copenhagen 10

Standard Friday plan
•  Fridays until 5 December (except 17 Oct)
•  Lectures 0800-1000
•  Exercise startup

– either 1000-1200 (Iago, Florian)
– or 1200-1400 (Håkan)

•  Exercise hand-in: 6.5 days after lecture
– That is, the following Thursday at 23:55

IT University of Copenhagen 11

Course information online

•  Course LearnIT page, restricted access:
https://learnit.itu.dk/course/view.php?id=3000701
–  Exercises and hand-ins, deadlines, feedback
–  Mandatory exercises and hand-ins, deadlines, feedback
–  Discussion forum
–  Non-public reading materials

•  Course homepage, public access:
http://www.itu.dk/people/sestoft/itu/SPPP/E2014/
–  Overview of lectures and exercises
–  Lecture slides and exercise sheets
–  Example code
–  List of all mandatory reading materials

IT University of Copenhagen

Exercises
•  There are 13 sets of weekly exercises
•  Hand in the solutions through LearnIT
•  You can work in teams of 1 or 2 students
•  The teaching assistants will provide feedback
•  Six of the 13 weekly exercise sets are mandatory
•  At least five of those must be approved

–  otherwise you cannot take the course examination
–  failing to get 5 approved costs an exam attempt (!!)

•  Exercise may be approved even if not fully solved
–  It is possible to resubmit
–  Make your best effort
–  What is important is that you learn

12

IT University of Copenhagen

The exam [CHANGED 12 SEP]
•  A 37 hour take-home written exam/project

– Start at 0900 on Wednesday 7 January 2015
– End at 2200 on Thursday 8 January
– Electronic submission

•  Expected exam workload is 16 hours
•  Individual exam, no collaboration
•  All materials, including Internet, allowed
•  Always credit the sources you use
•  Plagiarism is forbidden – as always

13

IT University of Copenhagen

Stuff you need
•  Goetz et al: Java Concurrency in Practice

– From 2006, still the best on Java concurrency
– Almost everything is relevant for C#/.NET too

•  Free lecture notes and papers, see homepage
•  A few other book chapters, see LearnIT

•  Java 7 or 8 SDK installed on your computer

•  Various optional materials, see homepage:
– Bloch: Effective Java, 2008, highly recommended
– Sestoft: Java Precisely, 2005
– more ...

14

IT University of Copenhagen

What about other languages?
•  .NET and C# are very similar to Java

– We will point out differences on the way
•  Clojure, Scala, F#, ... build on JVM or .NET

– So thread concepts are very similar too
•  C and C++ have some differences (ignore)
•  Haskell has transactional memory

– We will see this in Java too (Multiverse)
•  Erlang, Scala, F# have message passing

– We will see this in Java too (Akka)
•  Dataflow, CSP, CCS, Pi-calculus, Join, Cω, ...

– Zillions of other concurrency mechanisms

15

Salary and jobs by language

16 https://msgooroo.com/GoorooTHINK/Article/16191/Which-language-wins-in-terms-of-salarydemand-July-2014

IT University of Copenhagen

Threads and concurrency in Java
•  A thread is

– a sequential activity executing Java code
–  running at the same time as other activities

•  Concurrent = at the same time = in parallel
•  Threads communicate via fields

– That is, by updating shared mutable state

17

IT University of Copenhagen

A thread-safe class for counting
•  A thread-safe long counter:

•  The state (field count) is private!
•  Only synchronized methods read and write it

18

class LongCounter {
 private long count = 0;
 public synchronized void increment() {
 count = count + 1;
 }
 public synchronized long get() {
 return count;
 }
} Te

st
Lo

ng
C
ou

nt
er

.j
av

a

A thread that increments the counter
•  A Thread t is created from a Runnable
•  The thread’s behavior is in the run method

•  This only creates the thread, does not start it
•  Q: What does final mean? 19

final LongCounter lc = new LongCounter();
Thread t =
 new Thread(
 new Runnable() {
 public void run() {
 while (true)
 lc.increment();
 }
 }
);

An anonymous inner
class, and an
instance of it

When started, the
thread will do this:
increment forever

NB!

Starting the thread in parallel
with the main thread

20

public static void main(String[] args) ... {
 final LongCounter lc = new LongCounter();
 Thread t = new Thread(new Runnable() { ... });
 t.start();
 System.out.println("Press Enter ... ");
 while (true) {
 System.in.read();
 System.out.println(lc.get());
 }
}

Press Enter to get the current value:
60853639
103606384
263682708
...

IT University of Copenhagen

Creating and starting a thread

21

Thread “main”
(active)

Object lc
(passive)

Thread t
(active)

increment()!

increment()!

get()!

increment()!

t = new Thread(...)!

lc = new LongCounter()!

t.start()!

Java (1-7) anonymous inner classes
•  A statement must be in a method, eg. run

•  An anonymous inner class is a quick way to
–  create a class that implements Runnable and
–  create an instance of it

 22

public interface Runnable {
 public void run();
}

Runnable r =
 new Runnable() {
 public void run() {
 ... some code we want to execute ...
 }
 };

Anonymous inner class
and instance

IT University of Copenhagen

Locks and the synchronized keyword
•  Any Java object can be used for locking
•  The synchronized statement

– Blocks until the lock on obj is available
– Takes (acquires) the lock on obj!
– Executes the body block
– Releases the lock, also on return or exception

•  By consistently locking on the same object
– one can obtain mutual exclusion, so
– at most one thread can execute the code at a time

23

synchronized (obj) {
 ... body ...
}

IT University of Copenhagen

A synchronized method is just
one with a synchronized body

•  A synchronized instance method

really uses a synchronized statement:

•  Q: What is being locked? (The entire class,
the method, the instance, the Java system)?

24

class C {
 public synchronized void method() { ... }
}

class C {
 public void method() {
 synchronized (this) { ... }
 }
}

IT University of Copenhagen

What about
static synchronized methods?

•  A synchronized static method in class C

locks on the reflected Class object for C:

•  Not important to understand C.class because
– Dangerous to share static fields between threads

•  Except possibly in factory methods

25

class C {
 public static synchronized void method() {...}
}

class C {
 public static void method() {
 synchronized (C.class) { ... }
 }
}

IT University of Copenhagen

Multiple threads, locking
•  Two threads incrementing counter in parallel:

•  Q: How many threads are running now?

26

final int counts = 10_000_000;
Thread t1 = new Thread(new Runnable() { public void run() {
 for (int i=0; i<counts; i++)
 lc.increment();
}});
Thread t2 = new Thread(new Runnable() { public void run() {
 for (int i=0; i<counts; i++)
 lc.increment();
}});

TestLongCounterExperiments.java

IT University of Copenhagen

Starting the threads,
and waiting for their completion

•  A thread completes when run returns
•  To wait for thread t completing, call t.join()!
•  May throw InterruptedException!

!

•  What is lc.get() after threads complete?

– Each thread calls lc.increment() ten million times
– So it gets called 20 million times
!

27

t1.start(); t2.start();

try { t1.join(); t2.join(); }
catch (InterruptedException exn) { ... }

System.out.println("Count is " + lc.get());

IT University of Copenhagen

Removing the locking
•  Non-thread-safe counter class:

•  Produces very wrong results, not 20 million:

•  Q: Why?

28

class LongCounter2 {
 private long count = 0;
 public void increment() {
 count = count + 1 ;
 }
 public long get() { return count; }
}

Count is 10041965
Count is 19861602
Count is 18939813

IT University of Copenhagen

The operation
count = count + 1 is not atomic

 means:
read count, add 1, write result to count!
•  Possible scenario when count is 42, and two

threads call lc.increment() at the same time

•  Two increments but count only increased by 1
•  So-called lost update

29

count = count + 1

Thread 1 Thread 2
Read 42 from count

Read 42 from count
Add 1, giving 43

Add 1, giving 43
Write 43 to count

Write 43 to count

Why does locking help?

•  Locking can achieve mutual exclusion
– When used on all state accesses
– Unfortunately, quite easy to get it wrong

30

Thread 1 Thread 2
Try to lock, get lock
Read 42 from count

Try to lock, cannot, must block
Add 1, giving 43 (blocked)
Write 43 to count (blocked)
Release lock (blocked)

Get lock
Read 43 from count
Add 1, giving 44
Write 44 to count
Release lock

IT University of Copenhagen

Reads must be synchronized also
•  A very small bank with two accounts:

•  Common mistake to believe that only writes,
method transfer, must be synchronized

•  But we need synchronized on both methods!
 31

class Bank {
 private long account1 = 3000, account2 = 2000;
 public synchronized void transfer(long amount) {
 account1 -= amount;
 account2 += amount;
 }
 public synchronized long getSum() {
 return account1 + account2;
 }
}

Transfer, should
preserve sum

Count sum of
bank’s money

TestAccountTransfer.java

IT University of Copenhagen

Transferring money,
and counting it, at the same time

•  Transfer money, and concurrently count it:

•  Q: Why must both Bank methods be synchr.?
•  Even a single field read must be synchronized

– But for another reason, see next week’s lecture
32

final Bank bank = new Bank();
final int transfers = 10_000_000;
final Thread clerk = new Thread(new Runnable() {
 public void run() {
 for (int i=0; i<transfers; i++)
 bank.transfer(rnd.nextInt(10000));
 }});
clerk.start();
for (int i=0; i<100; i++)
 System.out.println(bank.getSum());

Make many
transfers

Print sum

IT University of Copenhagen

Transferring money concurrently
•  With a single clerk, final sum is 5000 always
•  With two clerks, the final sum may be wrong

– When transfer is not synchronized

•  Q: What scenario may give wrong final sum?
•  Simplified take-home message:

– All reads and writes must be synchronized
33

final Thread clerk1 = new Thread(new Runnable() {
 public void run() {
 for (int i=0; i<transfers; i++)
 bank.transfer(rnd.nextInt(10000));
 }});
final Thread clerk2 = ... exact same code ...
clerk1.start(); clerk2.start();

IT University of Copenhagen

Other concurrency models
•  Java threads interact via shared mutable fields

– Shared: Visible to multiple threads
– Mutable: The fields can be updated, assigned to

•  This is a source of many problems
•  Alternatives exist:
•  No sharing: interact via message passing

– Erlang, Scala, MPI, F#, Go ... and Java Akka library
•  No mutability: use functional programming

– Haskell, F#, ML, Google MapReduce, ...
•  Allow shared mutable mem., but avoid locks

– Transactional memory, optimistic concurrency
–  In Haskell, Clojure, ... and Java Multiverse library

34

IT University of Copenhagen

Other parallel hardware
•  We focus on multicore (standard) hardware

– Typically 2-32 general cores on a CPU chip
–  (Instruction-level parallelism, invisible to software)

•  Other types of parallel hardware exist
•  Vector instructions (SIMD, SSE, AVX) on core

– Typically 2-8 floating-point operations/CPU cycle
– Soon available through .NET JIT and hence C#

•  General purpose graphics processors GPGPU
– Such as Nvidia CUDA, up to 2500 cores on a chip
– We’re using those in a research project

•  Clusters, cloud: servers connected by network

35

IT University of Copenhagen

This week
•  Reading

– Goetz chapters 1 and 2
– Sutter paper
– Bloch item 66

•  Exercises week 1, on homepage and LearnIT
– Make sure you are familiar with Java threads and

locks and inner classes
– Make sure that you can compile, run and explain

programs that use these features
•  Read before next week’s lecture

– Goetz chapters 2 and 3
– Bloch item 15

36

