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Plan for today 
•  ”concurrent” and ”parallel”, what difference? 
•  Using threads for performance 
•  Processes, threads, tasks 
•  Atomically updating multiple fields 
•  Visibility of writes between threads 
•  java.util.concurrent.atomic.AtomicLong 
•  Safe publication 
•  Thread and stack confinement 
•  Immutability 
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Exercises 
•  Last week, problems with LearnIT, now fixed 

•  Hand-ins this week: 
– Must put yourself into a group, maybe 1-person 
– Your hand-in will automatically count for the group 

•  Last week’s exercises: 
– Too easy? 
– Too hard? 
– Too time-consuming? 
– Too confusing? 
– Any particular problems? 
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Why “concurrent” and “parallel”? 
•  Informally both mean “at the same time” 
•  But some people distinguish 

– Concurrent: related to correctness 
– Parallel: related to performance 

•  Soccer (fodbold) analogy, by P. Panangaden 
– The referee (dommer) is concerned with 

concurrency: the soccer rules must be followed 
– The coach (træner) is concerned with parallelism: 

the best possible use of the team’s 11 players 

•  This course is concerned with correctness as 
well as performance: concurrent and parallel 
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Recall: Creating a thread, Java 1-7 
•  A Thread t is created from a Runnable 
•  The thread’s behavior is in the run method 
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final LongCounter lc = new LongCounter(); 
Thread t =  
  new Thread( 
    new Runnable() { 
      public void run() { 
        while (true)    
          lc.increment(); 
      } 
    } 
  ); 

An anonymous inner 
class, and an 
instance of it 

When started, the 
thread will do this: 
increment forever 

NB! 
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New: Java 8 allows simpler syntax 
•  Java 8 anonymous functions may look better 

 
•  Use this if you want, else forget about it 
•  In Java 8, the final is sometimes not needed 

–  If the captured variable (lc) is effectively final 
– That is, not assigned after initialization 
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final LongCounter lc = new LongCounter(); 
Thread t = new Thread( 
    () ->  
      { 
        while (true)    
          lc.increment(); 
      } 
  ); 

An anonymous 
void function 

Function body 
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Using threads for performance 
Example: Count primes 2 3 5 7 11 ... 
•  Count primes in 0...9999999 

•  Takes 6.4 sec to compute on 1 CPU core 
•  Why not use all my computer’s 4 (x 2) cores? 

– Eg. use two threads t1 and t2 and divide the work: 
t1: 0...4999999 and t2: 5000000...9999999 
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static long countSequential(int range) { 
  long count = 0; 
  final int from = 0, to = range; 
  for (int i=from; i<to; i++) 
    if (isPrime(i)) 

  count++; 
  return count; 
} 
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Result is 664579 



Using two threads to count primes 

•  Takes 4.2 sec real time, so already faster 
•  Q: Why not just use a long count variable? 
•  Q: What if we want to use 10 threads? 

•  Takes 6.4 sec to compute on 1 processor 
•  Why not use all processors in my computer? 

– Using two threads t1 and t2 and divide the work: 
t1: 0...4999999 and t2: 5000000...9999999 
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final LongCounter lc = new LongCounter(); 
final int from1 = 0, to1 = perThread; 
Thread t1 = new Thread(new Runnable() { public void run() { 
  for (int i=from1; i<to1; i++) 
    if (isPrime(i)) 

 lc.increment(); 
}}); 
final int from2 = perThread, to2 = perThread * 2; 
Thread t2 = new Thread(new Runnable() { public void run() { 
  for (int i=from2; i<to2; i++) 
    if (isPrime(i)) 

 lc.increment(); 
}}); 
t1.start(); t2.start(); 

Same code twice, 
bad practice 



Using N threads to count primes 

•  Takes 1.8 sec real time with threadCount 10 
– Approx 3.3 times faster than sequential solution 
– Q: Why not 4 times, or 10 times faster? 
– Q: What if we just put to=perThread * (t+1)? 
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final LongCounter lc = new LongCounter(); 
Thread[] threads = new Thread[threadCount]; 
for (int t=0; t<threadCount; t++) { 
  final int from = perThread * t,  
    to = (t+1==threadCount) ? range : perThread * (t+1);  
  threads[t] = new Thread(new Runnable() { public void run() { 
    for (int i=from; i<to; i++) 

 if (isPrime(i)) 
   lc.increment(); 

    }}); 
} 
for (int t=0; t<threadCount; t++)  
  threads[t].start(); 

Thread processes 
segment [from,to) 

Last thread has 
to==range!
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Reflections: threads for performance 
•  This code can be made better in many ways 

– Eg better distribution of work on the 10 threads 
– Eg less use of the synchronized LongCounter 

•  Proper performance measurements, week 4 
•  Very bad idea to use many (> 500) threads 

– Each thread takes much memory for the stack 
– Each thread slows down the garbage collector 

•  Better use tasks and Java “executors”, week 5 
•  More advice on scalability, week 7 
•  How to avoid locking, week 11 and 12 
•  (Prime numbers used as example for simplicity) 

10 
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Processes, threads, and tasks 
•  An operating system process running Java is 

– a Java Virtual Machine that executes code 
– an object heap, managed by a garbage collector 
– one or more running Java threads 

•  A Java thread 
– has its own method call stack, takes much memory 
–  shares the object heap with other threads 

•  A task (or future) (or actor) 
– does not have a call stack, so takes little memory 
–  is run by an executor, using a thread pool, week 5 

11 



Java threads communicate 
through mutable shared state 
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Thread “main” 
(active) 

Object lc 
(passive) 

Thread t1 
(active) 

increment()!

increment()!

increment()!

get()!

get()!

get()!

increment()!
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Why synchronize just to read data? 

•  The synchronized keyword has two effects: 
– Mutual exclusion: only one thread can hold a lock 

(execute a synchronized method or block) at a time 
– Visibility of memory writes: All writes by thread A 

before releasing a lock (exit synchr) are visible to 
thread B after acquiring the lock (enter synchr) 
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class LongCounter { 
  private long count = 0; 
  public synchronized void increment() { 
    count = count + 1; 
  } 
  public synchronized long get() {  
    return count;  
  } } Why needed? 
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Visibility is really important 

•  Looks OK, no needed for synchronization? 
•  But thread t may loop forever in this scenario: 

•  Two possible fixes: 
– Add synchronized to methods get and set, OR!
– Add volatile to field value 
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class MutableInteger { 
  private int value = 0;    
  public void set(int value) { this.value = value; } 
  public int get() { return value; } 
} 

WARNING: Useless 

Thread t = new Thread(new Runnable() { public void run() { 
  while (mi.get() == 0) { } 
}}); 
t.start(); 
... 
mi.set(42); 

Loop while zero 

This write by thread ”main” may 
be forever invisible to thread t 
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Visibility by synchronization 
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lock = acquire 

exit synchronized!

unlock = release 

enter synchronized!
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Communication through mutable 
shared state fails if no visibility 
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Thread “main” 
(active) 

Object mi 
(passive) 

Thread t 
(active) 

get()!

get()!

get()!

set(42)!

get()!

get()!

0

0

0

0

0

BAD: does 
not see 

the write 
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The volatile field modifier 
•  The volatile field modifier can be used to 

ensure visibility (but not mutual exclusion) 

 
•  All writes by thread A before writing a 
volatile field are visible to thread B when, 
and after, reading the volatile field 

•  Note: A single volatile write+read makes 
writes to all other fields visible also! 
•  A bit mysterious, but a consequence of the implementation 
•  This is Java semantics; C and C++ volatile is different 
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class MutableInteger { 
  private volatile int value = 0;    
  public void set(int value) { this.value = value; } 
  public int get() { return value; } 
} 

OK 
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Goetz advice on volatile 

•  Rule 1: Use synchronized!
•  Rule 2: If circumstances are right, and you 

are an expert, maybe use volatile instead  
•  Rule 3: There are few experts 

18 

Use volatile variables only when they simplify 
your synchronization policy; avoid it when 
verifying correctness would require subtle 
reasoning about visibility. 

Locking can guarantee both visibility and 
atomicity; volatile variables can only 
guarantee visibility. 
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That was Java.   
What about C# and .NET? 

•  C# Language Specification 17.3.4 Volatile Fields 
•  CLI Ecma-335 standard section I.12.6.7: 

–  "A volatile write has release semantics ... the write is 
guaranteed to happen after any memory references 
prior to the write instruction in the CIL instruction 
sequence" 

–  "volatile read has acquire semantics ... the read is 
guaranteed to occur prior to any references to memory 
that occur after the read instruction in the CIL 
instruction sequence" 

 
•  So same as Java: volatile write+read has the 

visibility effect of lock release+acquire 
–  (but not the mutual exclusion effect, of course) 

19 
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Ways to ensure visibility 
•  Unlocking followed by locking the same lock 
•  Writing a volatile field and then reading it 
•  Calling one method on a concurrent collection 

and another method on same coll. 
–  java.util.concurrent.* 

•  Calling one method on an atomic variable and 
then another method on same variable 
–  java.util.concurrent.atomic.* 

•  Finishing a constructor that initializes final or 
volatile fields 

•  Calling t.start() before anything in thread t!
•  Anything in thread t before t.join() returns 
 
(Java Language Specification 8 §17.4, and the Javadoc for concurrent collection 
classes etc, give the full and rather complicated details; week 11) 

20 
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Goetz examples use servlets 

•  Because a webserver is naturally concurrent 
– So servlets should be thread-safe 

•  We use similar, simpler examples: 
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public class StatelessFactorizer implements Servlet { 
  public void service(ServletRequest req, ServletResponse resp) { 
    BigInteger i = extractFromRequest(req); 
    BigInteger[] factors = factor(i); 
    encodeIntoResponse(resp, factors); 
  } 
} G

oe
tz

 p
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class StatelessFactorizer implements Factorizer { 
  public long[] getFactors(long p) { 
    long[] factors = PrimeFactors.compute(p); 
    return factors; 
  } 
} Te
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A “server” for computing prime 
factors 2 3 5 7 11 ... of a number 

•  Could replace the example by this 

 
•  Call the server from multiple threads: 
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interface Factorizer { 
  public long[] getFactors(long p); 
  public long getCount(); 
} 

final Factorizer factorizer = new StatelessFactorizer(); 
for (int t=0; t<threadCount; t++) { 
  threads[t] = new Thread(new Runnable() { public void run() {  
    for (int i=2; i<range; i++) { 

 long[] result = factorizer.getFactors(i); 
    } 
}}); 
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Stateless objects are thread-safe 

•  Local variables are never shared btw threads 
–  two getFactors calls can execute at the same time 
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class StatelessFactorizer implements Factorizer { 
  public long[] getFactors(long p) { 
    long[] factors = PrimeFactors.compute(p); 
    return factors; 
  } 
  public long getCount() { return 0; } 
} Li
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Bad attempt to count calls 

•  Not thread-safe 
•  Q: Why? 
•  Q: How could we repair the code? 
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class UnsafeCountingFactorizer implements Factorizer { 
  private long count = 0; 
  public long[] getFactors(long p) { 
    long[] factors = PrimeFactors.compute(p); 
    count++; 
    return factors; 
  } 
  public long getCount() { return count; } 
} Li
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Thread-safe server counting calls 

 
•  java.util.concurrent.atomic.AtomicLong 

supports atomic thread-safe arithmetics 
•  Similar to an improved LongCounter class 
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class CountingFactorizer implements Factorizer { 
  private final AtomicLong count = new AtomicLong(0); 
  public long[] getFactors(long p) { 
    long[] factors = PrimeFactors.compute(p); 
    count.incrementAndGet(); 
    return factors; 
  } 
  public long getCount() { return count.get(); } 
} Li

ke
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Bad attempt to  
cache last factorization 

•  Bad performance: no parallelism at all 
•  Q: Why?                 Q: What is an invariant? 
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class TooSynchronizedCachingFactorizer implements Factorizer { 
  private long lastNumber = 1; 
  private long[] lastFactors = new long[0]; 
  // Invariant: product(lastFactors) == lastNumber 
 
  public synchronized long[] getFactors(long p) { 
    if (p == lastNumber) 
      return lastFactors.clone(); 
    else { 
      long[] factors = PrimeFactors.compute(p); 
      lastNumber = p; 
      lastFactors = factors; 
      return factors; 
} } } 
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Without synchronized the 
two fields could be written 

by different threads 

cache 
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Atomic operations 
•  We want to atomically update lastNumber 

and lastFactors  

27 

Operations A and B are atomic with respect to 
each other if, from the perspective of a thread 
executing A, when another thread executes B, 
either all of B has executed or none of it has. 

An atomic operation is one that is atomic with 
respect to all operations, including itself, that 
operate on the same state. 
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Lack of atomicity:  
overlapping reads and writes 

28 

Thread t1 
(active) 

Object lc 
(passive) 

Thread t2 
(active) 

increment()!

increment()!

increment()!

increment()!

increment()!

increment()!

OK 

BAD 

increment()!
not atomic 
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Atomic update  
without excess locking 

•  Correct but subtle 
29 

class CachingFactorizer implements Factorizer { 
  private long lastNumber = 0; 
  private long[] lastFactors = new long[0]; 
  public long[] getFactors(long p) { 
    long[] factors = null; 
    synchronized (this) { 
      if (p == lastNumber) 

  factors = lastFactors.clone(); 
    } 
    if (factors == null) { 
      factors = PrimeFactors.compute(p); 
      synchronized (this) { 

  lastNumber = p; 
  lastFactors = factors.clone(); 

      } 
    } 
    return factors; 
} } 
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Atomic  
test-then-act 

Atomic write 
of both fields 



IT University of Copenhagen 

Using locks for atomicity 

30 

For each mutable state variable that may be 
accessed by more than one thread, all 
accesses to that variable must be performed 
with the same lock held. Then the variable is 
guarded by that lock. 

For every invariant that involves more than 
one variable, all the variables involved in that 
invariant must be guarded by the same lock. 
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•  Common mis-reading and mis-reasoning: 
– The purpose of synchronized is to get atomicity 
– So synchronized roughly means “atomic” 
– True only if all other accesses are synchronized!!! 
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Wrapping the state  
in an immutable object 

•  Immutable, so automatically thread-safe 

31 

class OneValueCache { 
  private final long lastNumber; 
  private final long[] lastFactors; 
  public OneValueCache(long p, long[] factors) { 
    this.lastNumber = p; 
    this.lastFactors = factors.clone(); 
  } 
  public long[] getFactors(long p) { 
    if (lastFactors == null || lastNumber != p) 
      return null; 
    else  
      return lastFactors.clone(); 
  } 
} 
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Nothing can 
change between 
test and return 

Q: Why? 

NB! 



IT University of Copenhagen 

Make the state a single field, 
referring to an immutable object 

•  Only one mutable field, atomic assignment 
•  Easy to implement, easy to see it is correct 
•  Drawback: cost of creating cache objects 

– Not a problem with modern garbage collectors 
32 

class VolatileCachingFactorizer implements Factorizer { 
  private volatile OneValueCache cache  
    = new OneValueCache(0, null); 
  public long[] getFactors(long p) { 
    long[] factors = cache.getFactors(p); 
    if (factors == null) { 
      factors = PrimeFactors.compute(p); 
      cache = new OneValueCache(p, factors); 
    } 
    return factors; 
  } 
} Li

ke
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Single-field state, 
atomic assignment 

Atomic assignment 

NB! 
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Immutability 
•  OOP: An object has state, held by its fields 

– Fields should be private for encapsulation 
–  It is common to define getters and setters 

•  But mutable state causes lots of problems 
– So make fields final and remove the setters 

33 

Immutable objects are always thread-safe. 

An object is immutable if: 
•  Its state cannot be modified after construction 
•  All its fields are final 
•  It is properly constructed (this does not escape) 
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Bloch: Effective Java, item 15 

34 Bloch p. 73 

A serious Java (or 
C#) developer 
should own and 
use this book 

Josh Bloch 
designed the Java 
collection classes  
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Safe publication: visibility 
•  The final field modifier has two effects 

– Un-updatability can be checked by the compiler 
– Visibility from other threads of the fields’ values 

after the OneValueCache constructor returns 
•  So final has visibility effect like volatile 
•  Without final or synchronization, another 

thread may not see the given field values 
 
•  That was Java.  What about C#/.NET?   

– No visibility effect of readonly field modifier 
– So must be ensured by volatile or synchronization 
– Seems a little dangerous? 

35 
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Avoiding shared mutable state 
•  Avoiding sharing between threads: 

– Ad hoc thread confinement: Swing GUI 
components are accessed only by the GUI thread 

– Thread confinement via ThreadLocal objects 
– Stack confinement: Local variables are never 

shared between threads 
•  Avoiding mutable state:  

– Make fields final as far as possible 
– Replace multiple mutable fields by a single 

mutable reference to an immutable object 

36 
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Why .clone() in the factorizers? 

•  Because Java array elements are mutable 
•  So unsafe to share an array with anybody 
•  Must defensively clone the array when passing 

a reference to some other part of the program 
•  This is a problem in sequential code too, only 

much worse in concurrent code 
– Minimize Mutability!  More about this next week ... 

•  PCPP is an advert for functional programming 

37 

public long[] getFactors(long p) { 
  ... 
  factors = lastFactors.clone(); 
  ... 
  lastFactors = factors.clone(); 
  ... 
} 
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This week 
•  Reading 

– Goetz et al chapters 2 and 3 
– Bloch item 15 

•  Exercises 
– Mandatory hand-in Thursday at 23:55 
– Goals: Understand and use multiple threads for 

performance; visibility of concurrent writes; 
atomicity by locking; advantages of immutability 

•  Reading for next week 
– Goetz chapters 4 and 5 
 38 


