
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 2

Peter Sestoft
IT University of Copenhagen

Friday 2014-09-05**

IT University of Copenhagen 2

Plan for today
•  ”concurrent” and ”parallel”, what difference?
•  Using threads for performance
•  Processes, threads, tasks
•  Atomically updating multiple fields
•  Visibility of writes between threads
•  java.util.concurrent.atomic.AtomicLong
•  Safe publication
•  Thread and stack confinement
•  Immutability

IT University of Copenhagen

Exercises
•  Last week, problems with LearnIT, now fixed

•  Hand-ins this week:
– Must put yourself into a group, maybe 1-person
– Your hand-in will automatically count for the group

•  Last week’s exercises:
– Too easy?
– Too hard?
– Too time-consuming?
– Too confusing?
– Any particular problems?

3

IT University of Copenhagen

Why “concurrent” and “parallel”?
•  Informally both mean “at the same time”
•  But some people distinguish

– Concurrent: related to correctness
– Parallel: related to performance

•  Soccer (fodbold) analogy, by P. Panangaden
– The referee (dommer) is concerned with

concurrency: the soccer rules must be followed
– The coach (træner) is concerned with parallelism:

the best possible use of the team’s 11 players

•  This course is concerned with correctness as
well as performance: concurrent and parallel

4

IT University of Copenhagen

Recall: Creating a thread, Java 1-7
•  A Thread t is created from a Runnable
•  The thread’s behavior is in the run method

5

final LongCounter lc = new LongCounter();
Thread t =
 new Thread(
 new Runnable() {
 public void run() {
 while (true)
 lc.increment();
 }
 }
);

An anonymous inner
class, and an
instance of it

When started, the
thread will do this:
increment forever

NB!

IT University of Copenhagen

New: Java 8 allows simpler syntax
•  Java 8 anonymous functions may look better

•  Use this if you want, else forget about it
•  In Java 8, the final is sometimes not needed

–  If the captured variable (lc) is effectively final
– That is, not assigned after initialization

6

final LongCounter lc = new LongCounter();
Thread t = new Thread(
 () ->
 {
 while (true)
 lc.increment();
 }
);

An anonymous
void function

Function body

IT University of Copenhagen

Using threads for performance
Example: Count primes 2 3 5 7 11 ...
•  Count primes in 0...9999999

•  Takes 6.4 sec to compute on 1 CPU core
•  Why not use all my computer’s 4 (x 2) cores?

– Eg. use two threads t1 and t2 and divide the work:
t1: 0...4999999 and t2: 5000000...9999999

7

static long countSequential(int range) {
 long count = 0;
 final int from = 0, to = range;
 for (int i=from; i<to; i++)
 if (isPrime(i))

 count++;
 return count;
}

Te
st

C
ou

nt
Pr

im
es

.j
av

a

Result is 664579

Using two threads to count primes

•  Takes 4.2 sec real time, so already faster
•  Q: Why not just use a long count variable?
•  Q: What if we want to use 10 threads?

•  Takes 6.4 sec to compute on 1 processor
•  Why not use all processors in my computer?

– Using two threads t1 and t2 and divide the work:
t1: 0...4999999 and t2: 5000000...9999999

8

final LongCounter lc = new LongCounter();
final int from1 = 0, to1 = perThread;
Thread t1 = new Thread(new Runnable() { public void run() {
 for (int i=from1; i<to1; i++)
 if (isPrime(i))

 lc.increment();
}});
final int from2 = perThread, to2 = perThread * 2;
Thread t2 = new Thread(new Runnable() { public void run() {
 for (int i=from2; i<to2; i++)
 if (isPrime(i))

 lc.increment();
}});
t1.start(); t2.start();

Same code twice,
bad practice

Using N threads to count primes

•  Takes 1.8 sec real time with threadCount 10
– Approx 3.3 times faster than sequential solution
– Q: Why not 4 times, or 10 times faster?
– Q: What if we just put to=perThread * (t+1)?

9

final LongCounter lc = new LongCounter();
Thread[] threads = new Thread[threadCount];
for (int t=0; t<threadCount; t++) {
 final int from = perThread * t,
 to = (t+1==threadCount) ? range : perThread * (t+1);
 threads[t] = new Thread(new Runnable() { public void run() {
 for (int i=from; i<to; i++)

 if (isPrime(i))
 lc.increment();

 }});
}
for (int t=0; t<threadCount; t++)
 threads[t].start();

Thread processes
segment [from,to)

Last thread has
to==range!

IT University of Copenhagen

Reflections: threads for performance
•  This code can be made better in many ways

– Eg better distribution of work on the 10 threads
– Eg less use of the synchronized LongCounter

•  Proper performance measurements, week 4
•  Very bad idea to use many (> 500) threads

– Each thread takes much memory for the stack
– Each thread slows down the garbage collector

•  Better use tasks and Java “executors”, week 5
•  More advice on scalability, week 7
•  How to avoid locking, week 11 and 12
•  (Prime numbers used as example for simplicity)

10

IT University of Copenhagen

Processes, threads, and tasks
•  An operating system process running Java is

– a Java Virtual Machine that executes code
– an object heap, managed by a garbage collector
– one or more running Java threads

•  A Java thread
– has its own method call stack, takes much memory
–  shares the object heap with other threads

•  A task (or future) (or actor)
– does not have a call stack, so takes little memory
–  is run by an executor, using a thread pool, week 5

11

Java threads communicate
through mutable shared state

12

Thread “main”
(active)

Object lc
(passive)

Thread t1
(active)

increment()!

increment()!

increment()!

get()!

get()!

get()!

increment()!

La
st

 w
ee

k’
s

Lo
ng

C
ou

nt
er

IT University of Copenhagen

Why synchronize just to read data?

•  The synchronized keyword has two effects:
– Mutual exclusion: only one thread can hold a lock

(execute a synchronized method or block) at a time
– Visibility of memory writes: All writes by thread A

before releasing a lock (exit synchr) are visible to
thread B after acquiring the lock (enter synchr)

13

class LongCounter {
 private long count = 0;
 public synchronized void increment() {
 count = count + 1;
 }
 public synchronized long get() {
 return count;
 } } Why needed?

Te
st

Lo
ng

C
ou

nt
er

.j
av

a

Visibility is really important

•  Looks OK, no needed for synchronization?
•  But thread t may loop forever in this scenario:

•  Two possible fixes:
– Add synchronized to methods get and set, OR!
– Add volatile to field value

14

class MutableInteger {
 private int value = 0;
 public void set(int value) { this.value = value; }
 public int get() { return value; }
}

WARNING: Useless

Thread t = new Thread(new Runnable() { public void run() {
 while (mi.get() == 0) { }
}});
t.start();
...
mi.set(42);

Loop while zero

This write by thread ”main” may
be forever invisible to thread t

Te
st

M
ut

ab
le

In
te

ge
r.j

av
a

IT University of Copenhagen

Visibility by synchronization

15

G
oe

tz
 p

.
37

lock = acquire

exit synchronized!

unlock = release

enter synchronized!

IT University of Copenhagen

Communication through mutable
shared state fails if no visibility

16

Thread “main”
(active)

Object mi
(passive)

Thread t
(active)

get()!

get()!

get()!

set(42)!

get()!

get()!

0

0

0

0

0

BAD: does
not see

the write

IT University of Copenhagen

The volatile field modifier
•  The volatile field modifier can be used to

ensure visibility (but not mutual exclusion)

•  All writes by thread A before writing a
volatile field are visible to thread B when,
and after, reading the volatile field

•  Note: A single volatile write+read makes
writes to all other fields visible also!
•  A bit mysterious, but a consequence of the implementation
•  This is Java semantics; C and C++ volatile is different

17

class MutableInteger {
 private volatile int value = 0;
 public void set(int value) { this.value = value; }
 public int get() { return value; }
}

OK

IT University of Copenhagen

Goetz advice on volatile

•  Rule 1: Use synchronized!
•  Rule 2: If circumstances are right, and you

are an expert, maybe use volatile instead
•  Rule 3: There are few experts

18

Use volatile variables only when they simplify
your synchronization policy; avoid it when
verifying correctness would require subtle
reasoning about visibility.

Locking can guarantee both visibility and
atomicity; volatile variables can only
guarantee visibility.

G
oe

tz
 p

.
38

,
39

IT University of Copenhagen

That was Java.
What about C# and .NET?

•  C# Language Specification 17.3.4 Volatile Fields
•  CLI Ecma-335 standard section I.12.6.7:

–  "A volatile write has release semantics ... the write is
guaranteed to happen after any memory references
prior to the write instruction in the CIL instruction
sequence"

–  "volatile read has acquire semantics ... the read is
guaranteed to occur prior to any references to memory
that occur after the read instruction in the CIL
instruction sequence"

•  So same as Java: volatile write+read has the

visibility effect of lock release+acquire
–  (but not the mutual exclusion effect, of course)

19

IT University of Copenhagen

Ways to ensure visibility
•  Unlocking followed by locking the same lock
•  Writing a volatile field and then reading it
•  Calling one method on a concurrent collection

and another method on same coll.
–  java.util.concurrent.*

•  Calling one method on an atomic variable and
then another method on same variable
–  java.util.concurrent.atomic.*

•  Finishing a constructor that initializes final or
volatile fields

•  Calling t.start() before anything in thread t!
•  Anything in thread t before t.join() returns

(Java Language Specification 8 §17.4, and the Javadoc for concurrent collection
classes etc, give the full and rather complicated details; week 11)

20

IT University of Copenhagen

Goetz examples use servlets

•  Because a webserver is naturally concurrent
– So servlets should be thread-safe

•  We use similar, simpler examples:

21

public class StatelessFactorizer implements Servlet {
 public void service(ServletRequest req, ServletResponse resp) {
 BigInteger i = extractFromRequest(req);
 BigInteger[] factors = factor(i);
 encodeIntoResponse(resp, factors);
 }
} G

oe
tz

 p
.

19

class StatelessFactorizer implements Factorizer {
 public long[] getFactors(long p) {
 long[] factors = PrimeFactors.compute(p);
 return factors;
 }
} Te

st
Fa

ct
or

iz
er

.j
av

a

IT University of Copenhagen

A “server” for computing prime
factors 2 3 5 7 11 ... of a number

•  Could replace the example by this

•  Call the server from multiple threads:

22

interface Factorizer {
 public long[] getFactors(long p);
 public long getCount();
}

final Factorizer factorizer = new StatelessFactorizer();
for (int t=0; t<threadCount; t++) {
 threads[t] = new Thread(new Runnable() { public void run() {
 for (int i=2; i<range; i++) {

 long[] result = factorizer.getFactors(i);
 }
}});

IT University of Copenhagen

Stateless objects are thread-safe

•  Local variables are never shared btw threads
–  two getFactors calls can execute at the same time

23

class StatelessFactorizer implements Factorizer {
 public long[] getFactors(long p) {
 long[] factors = PrimeFactors.compute(p);
 return factors;
 }
 public long getCount() { return 0; }
} Li

ke
 G

oe
tz

 p
.

18

IT University of Copenhagen

Bad attempt to count calls

•  Not thread-safe
•  Q: Why?
•  Q: How could we repair the code?

24

class UnsafeCountingFactorizer implements Factorizer {
 private long count = 0;
 public long[] getFactors(long p) {
 long[] factors = PrimeFactors.compute(p);
 count++;
 return factors;
 }
 public long getCount() { return count; }
} Li

ke
 G

oe
tz

 p
.

19

IT University of Copenhagen

Thread-safe server counting calls

•  java.util.concurrent.atomic.AtomicLong

supports atomic thread-safe arithmetics
•  Similar to an improved LongCounter class

25

class CountingFactorizer implements Factorizer {
 private final AtomicLong count = new AtomicLong(0);
 public long[] getFactors(long p) {
 long[] factors = PrimeFactors.compute(p);
 count.incrementAndGet();
 return factors;
 }
 public long getCount() { return count.get(); }
} Li

ke
 G

oe
tz

 p
.

23

IT University of Copenhagen

Bad attempt to
cache last factorization

•  Bad performance: no parallelism at all
•  Q: Why? Q: What is an invariant?

26

class TooSynchronizedCachingFactorizer implements Factorizer {
 private long lastNumber = 1;
 private long[] lastFactors = new long[0];
 // Invariant: product(lastFactors) == lastNumber

 public synchronized long[] getFactors(long p) {
 if (p == lastNumber)
 return lastFactors.clone();
 else {
 long[] factors = PrimeFactors.compute(p);
 lastNumber = p;
 lastFactors = factors;
 return factors;
} } }

Li
ke

 G
oe

tz
 p

.
26

Without synchronized the
two fields could be written

by different threads

cache

IT University of Copenhagen

Atomic operations
•  We want to atomically update lastNumber

and lastFactors

27

Operations A and B are atomic with respect to
each other if, from the perspective of a thread
executing A, when another thread executes B,
either all of B has executed or none of it has.

An atomic operation is one that is atomic with
respect to all operations, including itself, that
operate on the same state.

G
oe

tz
 p

.
22

,
25

IT University of Copenhagen

Lack of atomicity:
overlapping reads and writes

28

Thread t1
(active)

Object lc
(passive)

Thread t2
(active)

increment()!

increment()!

increment()!

increment()!

increment()!

increment()!

OK

BAD

increment()!
not atomic

Te
st

Lo
ng

C
ou

nt
er

Ex
pe

ri
m

en
ts

.j
av

a

Atomic update
without excess locking

•  Correct but subtle
29

class CachingFactorizer implements Factorizer {
 private long lastNumber = 0;
 private long[] lastFactors = new long[0];
 public long[] getFactors(long p) {
 long[] factors = null;
 synchronized (this) {
 if (p == lastNumber)

 factors = lastFactors.clone();
 }
 if (factors == null) {
 factors = PrimeFactors.compute(p);
 synchronized (this) {

 lastNumber = p;
 lastFactors = factors.clone();

 }
 }
 return factors;
} }

Li
ke

 G
oe

tz
 p

.
31

Atomic
test-then-act

Atomic write
of both fields

IT University of Copenhagen

Using locks for atomicity

30

For each mutable state variable that may be
accessed by more than one thread, all
accesses to that variable must be performed
with the same lock held. Then the variable is
guarded by that lock.

For every invariant that involves more than
one variable, all the variables involved in that
invariant must be guarded by the same lock.

G
oe

tz
 p

.
28

,
29

•  Common mis-reading and mis-reasoning:
– The purpose of synchronized is to get atomicity
– So synchronized roughly means “atomic”
– True only if all other accesses are synchronized!!!

IT University of Copenhagen

Wrapping the state
in an immutable object

•  Immutable, so automatically thread-safe

31

class OneValueCache {
 private final long lastNumber;
 private final long[] lastFactors;
 public OneValueCache(long p, long[] factors) {
 this.lastNumber = p;
 this.lastFactors = factors.clone();
 }
 public long[] getFactors(long p) {
 if (lastFactors == null || lastNumber != p)
 return null;
 else
 return lastFactors.clone();
 }
}

Li
ke

 G
oe

tz
 p

.
49

Nothing can
change between
test and return

Q: Why?

NB!

IT University of Copenhagen

Make the state a single field,
referring to an immutable object

•  Only one mutable field, atomic assignment
•  Easy to implement, easy to see it is correct
•  Drawback: cost of creating cache objects

– Not a problem with modern garbage collectors
32

class VolatileCachingFactorizer implements Factorizer {
 private volatile OneValueCache cache
 = new OneValueCache(0, null);
 public long[] getFactors(long p) {
 long[] factors = cache.getFactors(p);
 if (factors == null) {
 factors = PrimeFactors.compute(p);
 cache = new OneValueCache(p, factors);
 }
 return factors;
 }
} Li

ke
 G

oe
tz

 p
.

50

Single-field state,
atomic assignment

Atomic assignment

NB!

IT University of Copenhagen

Immutability
•  OOP: An object has state, held by its fields

– Fields should be private for encapsulation
–  It is common to define getters and setters

•  But mutable state causes lots of problems
– So make fields final and remove the setters

33

Immutable objects are always thread-safe.

An object is immutable if:
•  Its state cannot be modified after construction
•  All its fields are final
•  It is properly constructed (this does not escape)

G
oe

tz
 p

.
46

,
47

Bloch: Effective Java, item 15

34 Bloch p. 73

A serious Java (or
C#) developer
should own and
use this book

Josh Bloch
designed the Java
collection classes

IT University of Copenhagen

Safe publication: visibility
•  The final field modifier has two effects

– Un-updatability can be checked by the compiler
– Visibility from other threads of the fields’ values

after the OneValueCache constructor returns
•  So final has visibility effect like volatile
•  Without final or synchronization, another

thread may not see the given field values

•  That was Java. What about C#/.NET?

– No visibility effect of readonly field modifier
– So must be ensured by volatile or synchronization
– Seems a little dangerous?

35

IT University of Copenhagen

Avoiding shared mutable state
•  Avoiding sharing between threads:

– Ad hoc thread confinement: Swing GUI
components are accessed only by the GUI thread

– Thread confinement via ThreadLocal objects
– Stack confinement: Local variables are never

shared between threads
•  Avoiding mutable state:

– Make fields final as far as possible
– Replace multiple mutable fields by a single

mutable reference to an immutable object

36

IT University of Copenhagen

Why .clone() in the factorizers?

•  Because Java array elements are mutable
•  So unsafe to share an array with anybody
•  Must defensively clone the array when passing

a reference to some other part of the program
•  This is a problem in sequential code too, only

much worse in concurrent code
– Minimize Mutability! More about this next week ...

•  PCPP is an advert for functional programming

37

public long[] getFactors(long p) {
 ...
 factors = lastFactors.clone();
 ...
 lastFactors = factors.clone();
 ...
}

IT University of Copenhagen

This week
•  Reading

– Goetz et al chapters 2 and 3
– Bloch item 15

•  Exercises
– Mandatory hand-in Thursday at 23:55
– Goals: Understand and use multiple threads for

performance; visibility of concurrent writes;
atomicity by locking; advantages of immutability

•  Reading for next week
– Goetz chapters 4 and 5
 38

