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Plan for today 
•  Pipelines with Java 8 streams 

– Easy and efficient parallelization 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  Tool: ThreadSafe, static checking 
 



Recall from last week: 
A pipeline connected by queues 
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UrlProducer 

PageGetter 

LinkScanner 

LinkPrinter 

•  All stages run in parallel 
•  Two stages communicate 

via a blocking queue 

BlockingQueue<Link> 

BlockingQueue<Webpage> 

BlockingQueue<String> 

put!

take!

put!

take!

put!

take!

BlockingQueue<String> urls  
  = new OneItemQueue<String>(); 
BlockingQueue<Webpage> pages  
  = new OneItemQueue<Webpage>(); 
BlockingQueue<Link> refPairs  
  = new OneItemQueue<Link>(); 
Thread  
  t1 = new Thread(new UrlProducer(urls)), 
  t2 = new Thread(new PageGetter(urls, pages)), 
  t3 = new Thread(new LinkScanner(pages, refPairs)), 
  t4 = new Thread(new LinkPrinter(refPairs)); 
t1.start(); t2.start(); t3.start(); t4.start();  
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Using Java 8 streams instead 
•  Package java.util.stream 
•  A Stream<T> is a source of T values 

– Lazily generated 
– Can be transformed with map(f) and flatMap(f)!
– Can be filtered with filter(p)!
– Can be consumed by forEach(action)!

•  Generally simpler than concurrent pipeline 
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Stream<String> urlStream  
  = Stream.of(urls); 
Stream<Webpage> pageStream  
  = urlStream.flatMap(url -> makeWebPageOrNone(url, 200)); 
Stream<Link> linkStream  
  = pageStream.flatMap(page -> makeLinks(page)); 
linkStream.forEach(link ->  
    System.out.printf("%s links to %s%n", link.from, link.to)); 
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Making the stages run in parallel 

•  Magic?  No! 
•  Divides streams into substream chunks 
•  Evaluates the chunks in tasks 
•  Runs tasks on an executor called ForkJoinPool 

– Using a thread pool and work stealing queues 
– More precisely ForkJoinPool.commonPool() 
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Stream<String> urlStream  
  = Stream.of(urls).parallel(); 
Stream<Webpage> pageStream  
  = urlStream.flatMap(url -> makeWebPageOrNone(url, 200)); 
Stream<Link> linkStream  
  = pageStream.flatMap(page -> makeLinks(page)); 
linkStream.forEach(link ->  
    System.out.printf("%s links to %s%n", link.from, link.to)); 
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So easy.  Why learn about threads? 
•  Parallel streams use tasks, run on threads 
•  Should be side effect free and take no locks 
•  Otherwise all the usual thread problems: 

– updates must be made atomic (by locking) 
– updates must be made visible (by locking, volatile) 
– deadlock risk if locks are taken 

6 Java 8 class library documentation 



Counting primes on Java 8 streams 
•  Our old standard Java for loop: 

•  Sequential Java 8 stream: 

•  Parallel Java 8 for loop 
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int count = 0; 
for (int i=0; i<range; i++) 
  if (isPrime(i))  
    count++; 

IntStream.range(0, range) 
.filter(i -> isPrime(i)) 
.count() 

IntStream.range(0, range) 
.parallel() 
.filter(i -> isPrime(i)) 
.count() 

Pure functional 
programming ... 

... and thus 
parallelizable and 

thread-safe 

Classical efficient 
imperative loop 
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Performance results (!!) 
•  Counting the primes in 0 ...99,999 

•  Functional streams give the simplest solution 
•  Nearly as fast as tasks, or faster: 

–  Intel i7 (4 cores) speed-up: 3.6 x 
– AMD Opteron (32 cores) speed-up: 24.2 x 

•  The future is parallel – and functional J 
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Method Intel i7 (us) AMD Opteron (us) 
Sequential for-loop 9962 40548 
Sequential stream 9933 40772 
Parallel stream 2752 1673 
Best thread-parallel 2969 4885 
Best task-parallel 2631 1874 
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Plan for today 
•  Pipelines with Java 8 streams 

– Easy and efficient parallelization 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  Tool: ThreadSafe, static checking 
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Bank accounts and transfers 
•  An Account object à la Java monitor pattern: 

•  Naively add method for transfers: 
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Acc A 

class Account { 
  private long balance = 0; 
  public synchronized void deposit(long amount) { 
    balance += amount; 
  } 
  public synchronized long get() { 
    return balance; 
  } 
} 

public synchronized void transferA(Account that, long amount) { 
  this.balance = this.balance - amount; 
  that.balance = that.balance + amount; 
} 
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Bad 
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Two clerks working concurrently 

•  Main thread occasionally prints balance sum: 

 
•  Method transferA may seem OK, but is not 
•  Why? 
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account1.deposit(3000); account2.deposit(2000); 
Thread clerk1 = new Thread(new Runnable() { public void run() {  
  for (int i=0; i<transfers; i++)  
    account1.transferA(account2, rnd.nextInt(10000)); 
}}); 
Thread clerk2 = new Thread(new Runnable() { public void run() {  
  for (int i=0; i<transfers; i++)  
    account2.transferA(account1, rnd.nextInt(10000)); 
}}); 
clerk1.start(); clerk2.start(); 

Transfer 
ac1 to ac2 

Transfer 
ac2 to ac1 

for (int i=0; i<40; i++) { 
  try { Thread.sleep(10); } catch (InterruptedException exn) { } 
  System.out.println(account1.get() + account2.get()); 
} 

Acc A 



Losing updates with transferA 
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Clerk 1 Account 1 Clerk 2 

ac2.trA(ac1,200)!

lock(ac2) 
read 2000 from ac2 
write 2000-200 to ac2 

ac1.trA(ac2,500)!
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lock(ac1) 
read 3000 from ac1 

write 3000+200 to ac1 
unlock ac2 

Account 2 
3000 2000 

1800 

read 3000 from ac1 

write 3000-500 to ac1 
2500 

3200 

read 1800 from ac2 
write 1800+500 to ac2 

unlock ac1 2300 

Sum is 
5000 

Sum is 
5500 !! 

Non-
atomic 

ac1 
update 
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TestAccounts version B 
•  TransferA was bad: Only one thread locks ac1 

– This does not achieve atomic update 
•  Attempt at atomic update of each account: 

•  But a transfer is still not atomic 
–  so wrong, non-5000, account sums are observed: 
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Acc B 
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public void transferB(Account that, long amount) { 
  this.deposit(-amount); 
  that.deposit(+amount); 
} 

... 
12919 
-8826 
-11648 
-10716 
Final sum is 5000 
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Must lock both accounts 
•  Atomic transfers and account sums require all 

accesses to lock on both account objects: 

•  But this may deadlock: 
– Clerk1 gets lock on ac1 
– Clerk2 gets lock on ac2 
– Clerk1 waits for lock on ac2 
– Clerk2 waits for lock on ac1 
–  ... forever 
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public void transferC(Account that, long amount) { 
  synchronized (this) { synchronized(that) {  
    this.balance = this.balance - amount; 
    that.balance = that.balance + amount; 
  } } 
} 
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Bad 

Acc C 



Deadlocking with transferC 
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Clerk 1 Account 1 Clerk 2 

ac2.trA(ac1,200)!

acquire lock on ac2 
ac1.trA(ac2,500)!
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acquire lock on ac1 

Account 2 
3000 2000 

Deadlock 

try to get lock on ac1 

Blocked 
forever Blocked 

forever 

try to get lock on ac2 

Acc C 



Avoiding deadlock, serial no. 
•  Always take multiple locks in the same order 

– Give each account a unique serial number: 

– Take locks in serial number order: 
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Acc D 

public void transferD(Account that, final long amount) { 
  Account ac1 = this, ac2 = that; 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
  else 
    synchronized (ac2) { synchronized (ac1) { // ac2 < ac1 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
} 

class Account { 
  private static final AtomicInteger intSequence = new AtomicInteger(); 
  private final int serial = intSequence.getAndIncrement(); 
  ... 
} 
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Atomic 
and 

deadlock 
free 
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Avoiding deadlock, lock order 
•  All accesses must lock in the same order 

•  Cumbersome, we may encapsulate lock-taking 
 

17 

public static long balanceSumD(Account ac1, Account ac2) { 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2 
      return ac1.balance + ac2.balance; 
    } } 
  else 
    synchronized (ac2) { synchronized (ac1) { // ac2 < ac1 
      return ac1.balance + ac2.balance; 
    } } 
} 

static void lockBothAndRun(Account ac1, Account ac2, Runnable action) { 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { action.run(); } } 
  else 
    synchronized (ac2) { synchronized (ac1) { action.run(); } } 
} 
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Acc F 



IT University of Copenhagen 

Avoiding deadlock, hashcode 
•  Every object has an almost-unique hashcode 

– Hence no need to give accounts a serial number 
–  Instead take locks in hashcode order: 

•  Small risk of equal hashcodes and so deadlock 
•  See Goetz 10.1.2 + exercise how to eliminate 
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Acc E 

public void transferE(Account that, final long amount) { 
  Account ac1 = this, ac2 = that; 
  if (System.identityHashCode(ac1) <= System.identityHashCode(ac2)) 
    synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
  else 
    synchronized (ac2) { synchronized (ac1) { // ac2 < ac1 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
} 
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jvisualvm: Runtime Java thread 
state visualization 

•  Included with Java JDK since version 6 
•  Command-line tool: jvisualvm!
•  Can give graphical overview of thread history 

– As in TestCountPrimes.java (50m, 4 threads) 
•  Can display and diagnose most deadlocks 

– As in TestAccountDeadlock.java 
•  But not that in TestPipelineSolution.java 

– The tasks are blocked in Waiting, not in Locking 

•  Can produce much other information 

19 
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Using jvisualvm on 
TestAccountDeadlock.java 

20 
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Thread dump  
points to deadlock scenario 

21 

transferC 
method is 
involved 
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Sources of deadlock 
•  Taking multiple locks in different orders 

– TestAccounts example 
•  Dependent tasks on too-small thread pool 

– Eg running last week’s 4-stage pipeline on a 
FixedThreadPool with only 3 threads 

– Or on a WorkStealingPool when only 2 cores 
•  Synchronizing on too much 

– Use synchronized on statements, not methods 
– The reason C# has lock on statement, not methods 

•  When possible, use only open calls 
– Don’t hold a lock when calling an unknown method 

22 



Deadlocks may be hard to spot 
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class Taxi { 
  private Point location, destination; 
  private final Dispatcher dispatcher; 
  public synchronized Point getLocation() { return location; } 
  public synchronized void setLocation(Point location) { 
    this.location = location; 
    if (location.equals(destination)) 
      dispatcher.notifyAvailable(this); 
  } 
} 
 
class Dispatcher { 
  private final Set<Taxi> taxis; 
  private final Set<Taxi> availableTaxis; 
  public synchronized void notifyAvailable(Taxi taxi) { 
    availableTaxis.add(taxi); 
  } 
  public synchronized Image getImage() { 
    Image image = new Image(); 
    for (Taxi t : taxis) 
      image.drawMarker(t.getLocation()); 
    return image; 
  } 
} 
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Lock taxi  

Call notify..., 
locks dispatcher 

Lock dispatcher 

Call getLocation, 
locks taxi 

Deadlock risk! Deadlock risk! 

Taxi A 

Bad 



Locking less to remove deadlock 

24 

class Taxi { 
  public synchronized Point getLocation() { return location; } 
  public void setLocation(Point location) { 
    boolean reachedDestination; 
    synchronized (this) { 
      this.location = location; 
      reachedDestination = location.equals(destination); 
    } 
    if (reachedDestination) 
      dispatcher.notifyAvailable(this); 
  } 
} 
class Dispatcher { 
  public synchronized void notifyAvailable(Taxi taxi) { ... } 
  public Image getImage() { 
    Set<Taxi> copy; 
    synchronized (this) { 
      copy = new HashSet<Taxi>(taxis); 
    } 
    Image image = new Image(); 
    for (Taxi t : copy) 
      image.drawMarker(t.getLocation()); 
    return image; 
} } 
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Lock taxi, make test, release lock  

Call notify... 
with no lock held 

Lock dispatcher, copy 
set, release lock 

Call getLocation 
with no lock held 

Taxi B 



Locks for atomicity do not compose 
•  We use locks and synchronized for atomicity 

– when working with mutable shared data 
•  But this is not compositional 

– Atomic access of each of ac1 and ac2 does not 
mean atomic access to their combination, eg. sum 

•  Locks are pessimistic, there are alternatives: 
•  No mutable data 

–  immutable data, functional programming 
•  No shared data 

– message passing, Akka library, week 13-14 
•  Accept mutable shared data, but avoid locks 

– optimistic concurrency, transactional memory, 
Multiverse library, week 10 

25 
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Plan for today 
•  Pipelines with Java 8 streams 

– Easy and efficient parallelization 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  Tool: ThreadSafe, static checking 
 



Using explicit (and try-able) locks 
•  Namespace java.util.concurrent.locks 
•  New Account class with explicit locks: 
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class Account { 
  private final Lock lock = new ReentrantLock(); 
 
  public void deposit(long amount) { 
    lock.lock(); 
    try {  
      balance += amount; 
    } finally { 
      lock.unlock(); 
    } 
  } 
 
  public long get() { 
    lock.lock();     
    try {  
      return balance; 
    } finally { 
      lock.unlock(); 
    } 
  } 
} 
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Acquire lock 

Always 
release it 

Acquire lock 

Always 
release it 

Acc G 
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Avoiding deadlock by retrying 
•  The Java runtime does not discover deadlock 
•  Unlike database servers 

– They typically lock tables automatically 
–  In case of deadlock, abort and retry 

•  Similar idea can be used in Java 
– Try to take lock ac1 

•  If successful, try to take lock on ac2 
–  If successful, do action, release both locks, we are done 
–  Else release lock on ac1, and start over 

•  Else start over 

•  Main (small) risk: may forever “start over” 
•  Related to optimistic concurrency 

– and to software transactional memory, week 10 
28 
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Taking two locks, using tryLock() 
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public void transferG(Account that, final long amount) { 
  Account ac1 = this, ac2 = that; 
  while (true) { 
    if (ac1.lock.tryLock()) { 
      try { 
        if (ac2.lock.tryLock()) { 
          try { 
            ac1.balance = ac1.balance - amount; 
            ac2.balance = ac2.balance + amount; 
            return; 
          } finally { 
            ac2.lock.unlock(); 
          } 
        } 
      } finally { 
        ac1.lock.unlock(); 
      } 
    } 
    try { Thread.sleep(0, (int)(500 * Math.random())); } 
    catch (InterruptedException exn) { } 
  } 
} 

Acc G 
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Actual work 

Sleep 0-500 ns 
before retry to 
save CPU time 

Li
ke
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Try locking ac1 

Try locking ac2 

In any case, release 
acquired locks 

In any case, release 
acquired locks 

If success, do work 
and exit; else retry 
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Livelock: nobody makes progress 
•  The transferG method never deadlocks 
•  In principle it can livelock: 

– Thread 1 locks ac1 
– Thread 2 locks ac2 
– Thread 1 tries to lock ac2 but discovers it cannot 
– Thread 2 tries to lock ac1 but discovers it cannot 
– Thread 1 releases ac1, sleeps, starts over 
– Thread 2 releases ac2, sleeps, starts over 
–  ... forever ... 

•  Extremely unlikely 
–  requires the sleep periods to be the same always 
–  requires the operation interleaving to be the same 

30 



Correctness = Safety + Liveness 
•  Safety: nothing bad happens 

–  Invariants are preserved, no updates lost, etc 
•  Liveness: something happens 

– No deadlock, no livelock 
•  You must be able to use these concepts: 

31 

Bloch p. 276 while (<condition> is false) { 
  try { this.wait(); }  
  catch (InterruptedException exn) { } 
} // Now <condition> is true 

Lecture 5 
blocking queue 
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Plan for today 
•  Pipelines with Java 8 streams 

– Easy and efficient parallelization 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  Tool: ThreadSafe, static checking 
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The ThreadSafe tool 

•  Download zip file, put files somewhere, eg.  
~/lib/ts/ 

•  Download license file threadsafe.properties 
from LearnIT, put it the same place 

•  You may use ThreadSafe  
–  from the command line (as we do here) 
– as Eclipse plugin (may be more convenient) 

•  Interpreting ThreadSafe’s reports 
•  Apply ThreadSafe to Accounts 

– with @GuardedBy and no locking 
– with inadequate locking on transfers 

33 



Compiling @GuardedBy annotations 
•  Download jsr305-3.0.0.jar, link on homepage 
•  Put it somewhere, eg ~/lib/jsr305-3.0.0.jar 

•  Compile like this: 

•  NB: javac does NOT check @GuardedBy 34 

import javax.annotation.concurrent.GuardedBy; 
 
class LongCounter { 
  @GuardedBy("this") 
  private long count = 0; 
  public synchronized void increment() { count++; } 
  public synchronized long get() { return count; } 
} 

$ javac -g -cp ~/lib/jsr305-3.0.0.jar TestGuardedBy.java  
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Class path of jar file 

Defined in jar file 

Emit debug info 
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Checking @GuardedBy annotations 
•  Run ThreadSafe to check @GuardedBy 
•  Put a threadsafe-project.properties file in 

same directory: 

•  Compile, run ThreadSafe, inspect report: 

35 

projectName=counterTest 
sources=. 
binaries=. 
outputDirectory=threadsafe-html 

$ javac -g -cp ~/lib/jsr305-3.0.0.jar TestGuardedBy.java  
$ java -jar ~/lib/ts/threadsafe.jar 
INFO: Running analysis... 
INFO: Analysis completed 
$ open threadsafe-html/index.html  
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Add method, forget synchronized 

36 

Violation 
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Analysing unsafe account transfer 
•  Problem found, but message is subtle: 
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Using ThreadSafe 
•  Use ThreadSafe to check @GuardedBy 
•  Does a rather admirable job 

– Better on large projects than on small examples 
•  Is not perfect; Java is very difficult to analyse 

– False negatives: may fail to spot real unsafe code 
– False positives: may complain on safe code 

•  Rarely identifies actual deadlock risks 
•  Does not understand higher-order code well: 
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public static void lockBothAndRun(Account ac1, Account ac2, Runnable action) { 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { action.run(); } } 
  else 
    synchronized (ac2) { synchronized (ac1) { action.run(); } } 
} 
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Thread scheduler, priorities, ...  
•  Controls the “scheduled” and “preempted” 

arcs in Java Thread states diagram, lecture 5 

•  Thread priorities: Don’t use them 
– except to make GUIs responsive by giving 

background worker threads lower priority 
•  Don’t fix liveness or performance problems 

using .yield() and .sleep(0); not portable 
39 

Bloch p. 286 
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This week 
•  Reading 

– Goetz et al chapter 10 + 13.1 
– Bloch item 67 

•  Exercises week 6 = mandatory hand-in 3 
– Show that you can write non-deadlocking code, 

and that you can use tools such as jvisualvm and 
ThreadSafe 

•  Read before next week’s lecture 
– Goetz et al chapter 11 

40 


