
IT University of Copenhagen 1 

Practical Concurrent and 
Parallel Programming 6 

Peter Sestoft 
IT University of Copenhagen 

 
Friday 2014-10-03* 



IT University of Copenhagen 2 

Plan for today 
•  Pipelines with Java 8 streams 

– Easy and efficient parallelization 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  Tool: ThreadSafe, static checking 
 



Recall from last week: 
A pipeline connected by queues 

3 

UrlProducer 

PageGetter 

LinkScanner 

LinkPrinter 

•  All stages run in parallel 
•  Two stages communicate 

via a blocking queue 

BlockingQueue<Link> 

BlockingQueue<Webpage> 

BlockingQueue<String> 

put!

take!

put!

take!

put!

take!

BlockingQueue<String> urls  
  = new OneItemQueue<String>(); 
BlockingQueue<Webpage> pages  
  = new OneItemQueue<Webpage>(); 
BlockingQueue<Link> refPairs  
  = new OneItemQueue<Link>(); 
Thread  
  t1 = new Thread(new UrlProducer(urls)), 
  t2 = new Thread(new PageGetter(urls, pages)), 
  t3 = new Thread(new LinkScanner(pages, refPairs)), 
  t4 = new Thread(new LinkPrinter(refPairs)); 
t1.start(); t2.start(); t3.start(); t4.start();  

Te
st

Pi
pe

lin
e.

ja
va

 



Using Java 8 streams instead 
•  Package java.util.stream 
•  A Stream<T> is a source of T values 

– Lazily generated 
– Can be transformed with map(f) and flatMap(f)!
– Can be filtered with filter(p)!
– Can be consumed by forEach(action)!

•  Generally simpler than concurrent pipeline 

4 

Stream<String> urlStream  
  = Stream.of(urls); 
Stream<Webpage> pageStream  
  = urlStream.flatMap(url -> makeWebPageOrNone(url, 200)); 
Stream<Link> linkStream  
  = pageStream.flatMap(page -> makeLinks(page)); 
linkStream.forEach(link ->  
    System.out.printf("%s links to %s%n", link.from, link.to)); 

Te
st

S
tr

ea
m

s.
ja

va
 



IT University of Copenhagen 

Making the stages run in parallel 

•  Magic?  No! 
•  Divides streams into substream chunks 
•  Evaluates the chunks in tasks 
•  Runs tasks on an executor called ForkJoinPool 

– Using a thread pool and work stealing queues 
– More precisely ForkJoinPool.commonPool() 

5 

Stream<String> urlStream  
  = Stream.of(urls).parallel(); 
Stream<Webpage> pageStream  
  = urlStream.flatMap(url -> makeWebPageOrNone(url, 200)); 
Stream<Link> linkStream  
  = pageStream.flatMap(page -> makeLinks(page)); 
linkStream.forEach(link ->  
    System.out.printf("%s links to %s%n", link.from, link.to)); 

Te
st

S
tr

ea
m

s.
ja

va
 



So easy.  Why learn about threads? 
•  Parallel streams use tasks, run on threads 
•  Should be side effect free and take no locks 
•  Otherwise all the usual thread problems: 

– updates must be made atomic (by locking) 
– updates must be made visible (by locking, volatile) 
– deadlock risk if locks are taken 

6 Java 8 class library documentation 



Counting primes on Java 8 streams 
•  Our old standard Java for loop: 

•  Sequential Java 8 stream: 

•  Parallel Java 8 for loop 

7 

int count = 0; 
for (int i=0; i<range; i++) 
  if (isPrime(i))  
    count++; 

IntStream.range(0, range) 
.filter(i -> isPrime(i)) 
.count() 

IntStream.range(0, range) 
.parallel() 
.filter(i -> isPrime(i)) 
.count() 

Pure functional 
programming ... 

... and thus 
parallelizable and 

thread-safe 

Classical efficient 
imperative loop 



IT University of Copenhagen 

Performance results (!!) 
•  Counting the primes in 0 ...99,999 

•  Functional streams give the simplest solution 
•  Nearly as fast as tasks, or faster: 

–  Intel i7 (4 cores) speed-up: 3.6 x 
– AMD Opteron (32 cores) speed-up: 24.2 x 

•  The future is parallel – and functional J 
8 

Method Intel i7 (us) AMD Opteron (us) 
Sequential for-loop 9962 40548 
Sequential stream 9933 40772 
Parallel stream 2752 1673 
Best thread-parallel 2969 4885 
Best task-parallel 2631 1874 



IT University of Copenhagen 9 

Plan for today 
•  Pipelines with Java 8 streams 

– Easy and efficient parallelization 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  Tool: ThreadSafe, static checking 
 



IT University of Copenhagen 

Bank accounts and transfers 
•  An Account object à la Java monitor pattern: 

•  Naively add method for transfers: 

10 

Acc A 

class Account { 
  private long balance = 0; 
  public synchronized void deposit(long amount) { 
    balance += amount; 
  } 
  public synchronized long get() { 
    return balance; 
  } 
} 

public synchronized void transferA(Account that, long amount) { 
  this.balance = this.balance - amount; 
  that.balance = that.balance + amount; 
} 

Te
st

A
cc

ou
nt

U
ns

af
e.

ja
va

 

Bad 



IT University of Copenhagen 

Two clerks working concurrently 

•  Main thread occasionally prints balance sum: 

 
•  Method transferA may seem OK, but is not 
•  Why? 

11 

account1.deposit(3000); account2.deposit(2000); 
Thread clerk1 = new Thread(new Runnable() { public void run() {  
  for (int i=0; i<transfers; i++)  
    account1.transferA(account2, rnd.nextInt(10000)); 
}}); 
Thread clerk2 = new Thread(new Runnable() { public void run() {  
  for (int i=0; i<transfers; i++)  
    account2.transferA(account1, rnd.nextInt(10000)); 
}}); 
clerk1.start(); clerk2.start(); 

Transfer 
ac1 to ac2 

Transfer 
ac2 to ac1 

for (int i=0; i<40; i++) { 
  try { Thread.sleep(10); } catch (InterruptedException exn) { } 
  System.out.println(account1.get() + account2.get()); 
} 

Acc A 



Losing updates with transferA 

12 

Clerk 1 Account 1 Clerk 2 

ac2.trA(ac1,200)!

lock(ac2) 
read 2000 from ac2 
write 2000-200 to ac2 

ac1.trA(ac2,500)!

Te
st

A
cc

ou
nt

U
ns

af
e.

ja
va

 

lock(ac1) 
read 3000 from ac1 

write 3000+200 to ac1 
unlock ac2 

Account 2 
3000 2000 

1800 

read 3000 from ac1 

write 3000-500 to ac1 
2500 

3200 

read 1800 from ac2 
write 1800+500 to ac2 

unlock ac1 2300 

Sum is 
5000 

Sum is 
5500 !! 

Non-
atomic 

ac1 
update 

N
ot

 h
ol

di
ng

 
lo

ck
 o

n 
ac

1 

Acc A 



TestAccounts version B 
•  TransferA was bad: Only one thread locks ac1 

– This does not achieve atomic update 
•  Attempt at atomic update of each account: 

•  But a transfer is still not atomic 
–  so wrong, non-5000, account sums are observed: 

13 

Acc B 

Te
st

A
cc

ou
nt

U
ns

af
e.

ja
va

 

public void transferB(Account that, long amount) { 
  this.deposit(-amount); 
  that.deposit(+amount); 
} 

... 
12919 
-8826 
-11648 
-10716 
Final sum is 5000 



IT University of Copenhagen 

Must lock both accounts 
•  Atomic transfers and account sums require all 

accesses to lock on both account objects: 

•  But this may deadlock: 
– Clerk1 gets lock on ac1 
– Clerk2 gets lock on ac2 
– Clerk1 waits for lock on ac2 
– Clerk2 waits for lock on ac1 
–  ... forever 

14 

public void transferC(Account that, long amount) { 
  synchronized (this) { synchronized(that) {  
    this.balance = this.balance - amount; 
    that.balance = that.balance + amount; 
  } } 
} 

Te
st

A
cc

ou
nt

D
ea

dl
oc

k.
ja

va
 

Bad 

Acc C 



Deadlocking with transferC 

15 

Clerk 1 Account 1 Clerk 2 

ac2.trA(ac1,200)!

acquire lock on ac2 
ac1.trA(ac2,500)!

Te
st

A
cc

ou
nt

D
ea

dl
oc

k.
ja

va
 

acquire lock on ac1 

Account 2 
3000 2000 

Deadlock 

try to get lock on ac1 

Blocked 
forever Blocked 

forever 

try to get lock on ac2 

Acc C 



Avoiding deadlock, serial no. 
•  Always take multiple locks in the same order 

– Give each account a unique serial number: 

– Take locks in serial number order: 

16 

Acc D 

public void transferD(Account that, final long amount) { 
  Account ac1 = this, ac2 = that; 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
  else 
    synchronized (ac2) { synchronized (ac1) { // ac2 < ac1 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
} 

class Account { 
  private static final AtomicInteger intSequence = new AtomicInteger(); 
  private final int serial = intSequence.getAndIncrement(); 
  ... 
} 

Te
st

A
cc

ou
nt

Lo
ck

O
rd

er
.j

av
a 

Atomic 
and 

deadlock 
free 



IT University of Copenhagen 

Avoiding deadlock, lock order 
•  All accesses must lock in the same order 

•  Cumbersome, we may encapsulate lock-taking 
 

17 

public static long balanceSumD(Account ac1, Account ac2) { 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2 
      return ac1.balance + ac2.balance; 
    } } 
  else 
    synchronized (ac2) { synchronized (ac1) { // ac2 < ac1 
      return ac1.balance + ac2.balance; 
    } } 
} 

static void lockBothAndRun(Account ac1, Account ac2, Runnable action) { 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { action.run(); } } 
  else 
    synchronized (ac2) { synchronized (ac1) { action.run(); } } 
} 

Te
st

A
cc

ou
nt

Lo
ck

O
rd

er
.j

av
a 

Acc D 
Acc F 



IT University of Copenhagen 

Avoiding deadlock, hashcode 
•  Every object has an almost-unique hashcode 

– Hence no need to give accounts a serial number 
–  Instead take locks in hashcode order: 

•  Small risk of equal hashcodes and so deadlock 
•  See Goetz 10.1.2 + exercise how to eliminate 

18 

Acc E 

public void transferE(Account that, final long amount) { 
  Account ac1 = this, ac2 = that; 
  if (System.identityHashCode(ac1) <= System.identityHashCode(ac2)) 
    synchronized (ac1) { synchronized (ac2) { // ac1 <= ac2 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
  else 
    synchronized (ac2) { synchronized (ac1) { // ac2 < ac1 
      ac1.balance = ac1.balance - amount; 
      ac2.balance = ac2.balance + amount; 
    } } 
} 

Te
st

A
cc

ou
nt

Lo
ck

O
rd

er
.j

av
a 

Almost unbad 



IT University of Copenhagen 

jvisualvm: Runtime Java thread 
state visualization 

•  Included with Java JDK since version 6 
•  Command-line tool: jvisualvm!
•  Can give graphical overview of thread history 

– As in TestCountPrimes.java (50m, 4 threads) 
•  Can display and diagnose most deadlocks 

– As in TestAccountDeadlock.java 
•  But not that in TestPipelineSolution.java 

– The tasks are blocked in Waiting, not in Locking 

•  Can produce much other information 

19 



IT University of Copenhagen 

Using jvisualvm on 
TestAccountDeadlock.java 

20 



IT University of Copenhagen 

Thread dump  
points to deadlock scenario 

21 

transferC 
method is 
involved 



IT University of Copenhagen 

Sources of deadlock 
•  Taking multiple locks in different orders 

– TestAccounts example 
•  Dependent tasks on too-small thread pool 

– Eg running last week’s 4-stage pipeline on a 
FixedThreadPool with only 3 threads 

– Or on a WorkStealingPool when only 2 cores 
•  Synchronizing on too much 

– Use synchronized on statements, not methods 
– The reason C# has lock on statement, not methods 

•  When possible, use only open calls 
– Don’t hold a lock when calling an unknown method 

22 



Deadlocks may be hard to spot 

23 

class Taxi { 
  private Point location, destination; 
  private final Dispatcher dispatcher; 
  public synchronized Point getLocation() { return location; } 
  public synchronized void setLocation(Point location) { 
    this.location = location; 
    if (location.equals(destination)) 
      dispatcher.notifyAvailable(this); 
  } 
} 
 
class Dispatcher { 
  private final Set<Taxi> taxis; 
  private final Set<Taxi> availableTaxis; 
  public synchronized void notifyAvailable(Taxi taxi) { 
    availableTaxis.add(taxi); 
  } 
  public synchronized Image getImage() { 
    Image image = new Image(); 
    for (Taxi t : taxis) 
      image.drawMarker(t.getLocation()); 
    return image; 
  } 
} 

G
oe

tz
 p

. 
21

2 

Lock taxi  

Call notify..., 
locks dispatcher 

Lock dispatcher 

Call getLocation, 
locks taxi 

Deadlock risk! Deadlock risk! 

Taxi A 

Bad 



Locking less to remove deadlock 

24 

class Taxi { 
  public synchronized Point getLocation() { return location; } 
  public void setLocation(Point location) { 
    boolean reachedDestination; 
    synchronized (this) { 
      this.location = location; 
      reachedDestination = location.equals(destination); 
    } 
    if (reachedDestination) 
      dispatcher.notifyAvailable(this); 
  } 
} 
class Dispatcher { 
  public synchronized void notifyAvailable(Taxi taxi) { ... } 
  public Image getImage() { 
    Set<Taxi> copy; 
    synchronized (this) { 
      copy = new HashSet<Taxi>(taxis); 
    } 
    Image image = new Image(); 
    for (Taxi t : copy) 
      image.drawMarker(t.getLocation()); 
    return image; 
} } 

G
oe

tz
 p

. 
21

4 

Lock taxi, make test, release lock  

Call notify... 
with no lock held 

Lock dispatcher, copy 
set, release lock 

Call getLocation 
with no lock held 

Taxi B 



Locks for atomicity do not compose 
•  We use locks and synchronized for atomicity 

– when working with mutable shared data 
•  But this is not compositional 

– Atomic access of each of ac1 and ac2 does not 
mean atomic access to their combination, eg. sum 

•  Locks are pessimistic, there are alternatives: 
•  No mutable data 

–  immutable data, functional programming 
•  No shared data 

– message passing, Akka library, week 13-14 
•  Accept mutable shared data, but avoid locks 

– optimistic concurrency, transactional memory, 
Multiverse library, week 10 

25 



IT University of Copenhagen 26 

Plan for today 
•  Pipelines with Java 8 streams 

– Easy and efficient parallelization 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  Tool: ThreadSafe, static checking 
 



Using explicit (and try-able) locks 
•  Namespace java.util.concurrent.locks 
•  New Account class with explicit locks: 

27 

class Account { 
  private final Lock lock = new ReentrantLock(); 
 
  public void deposit(long amount) { 
    lock.lock(); 
    try {  
      balance += amount; 
    } finally { 
      lock.unlock(); 
    } 
  } 
 
  public long get() { 
    lock.lock();     
    try {  
      return balance; 
    } finally { 
      lock.unlock(); 
    } 
  } 
} 

Te
st

A
cc

ou
nt

Tr
yL

oc
k.

ja
va

 

Acquire lock 

Always 
release it 

Acquire lock 

Always 
release it 

Acc G 



IT University of Copenhagen 

Avoiding deadlock by retrying 
•  The Java runtime does not discover deadlock 
•  Unlike database servers 

– They typically lock tables automatically 
–  In case of deadlock, abort and retry 

•  Similar idea can be used in Java 
– Try to take lock ac1 

•  If successful, try to take lock on ac2 
–  If successful, do action, release both locks, we are done 
–  Else release lock on ac1, and start over 

•  Else start over 

•  Main (small) risk: may forever “start over” 
•  Related to optimistic concurrency 

– and to software transactional memory, week 10 
28 



IT University of Copenhagen 

Taking two locks, using tryLock() 

29 

public void transferG(Account that, final long amount) { 
  Account ac1 = this, ac2 = that; 
  while (true) { 
    if (ac1.lock.tryLock()) { 
      try { 
        if (ac2.lock.tryLock()) { 
          try { 
            ac1.balance = ac1.balance - amount; 
            ac2.balance = ac2.balance + amount; 
            return; 
          } finally { 
            ac2.lock.unlock(); 
          } 
        } 
      } finally { 
        ac1.lock.unlock(); 
      } 
    } 
    try { Thread.sleep(0, (int)(500 * Math.random())); } 
    catch (InterruptedException exn) { } 
  } 
} 

Acc G 

Te
st

A
cc

ou
nt

Tr
yL

oc
k.

ja
va

 

Actual work 

Sleep 0-500 ns 
before retry to 
save CPU time 

Li
ke

 G
oe

tz
 p

. 
28

0 

Try locking ac1 

Try locking ac2 

In any case, release 
acquired locks 

In any case, release 
acquired locks 

If success, do work 
and exit; else retry 



IT University of Copenhagen 

Livelock: nobody makes progress 
•  The transferG method never deadlocks 
•  In principle it can livelock: 

– Thread 1 locks ac1 
– Thread 2 locks ac2 
– Thread 1 tries to lock ac2 but discovers it cannot 
– Thread 2 tries to lock ac1 but discovers it cannot 
– Thread 1 releases ac1, sleeps, starts over 
– Thread 2 releases ac2, sleeps, starts over 
–  ... forever ... 

•  Extremely unlikely 
–  requires the sleep periods to be the same always 
–  requires the operation interleaving to be the same 

30 



Correctness = Safety + Liveness 
•  Safety: nothing bad happens 

–  Invariants are preserved, no updates lost, etc 
•  Liveness: something happens 

– No deadlock, no livelock 
•  You must be able to use these concepts: 

31 

Bloch p. 276 while (<condition> is false) { 
  try { this.wait(); }  
  catch (InterruptedException exn) { } 
} // Now <condition> is true 

Lecture 5 
blocking queue 



IT University of Copenhagen 32 

Plan for today 
•  Pipelines with Java 8 streams 

– Easy and efficient parallelization 
•  Locking on multiple objects 
•  Deadlock and locking order 
•  Tool: jvisualvm, a JVM runtime visualizer 
•  Explicit locks, lock.tryLock()!
•  Liveness 
•  Concurrent correctness: safety + liveness 
•  Tool: ThreadSafe, static checking 
 
 



IT University of Copenhagen 

The ThreadSafe tool 

•  Download zip file, put files somewhere, eg.  
~/lib/ts/ 

•  Download license file threadsafe.properties 
from LearnIT, put it the same place 

•  You may use ThreadSafe  
–  from the command line (as we do here) 
– as Eclipse plugin (may be more convenient) 

•  Interpreting ThreadSafe’s reports 
•  Apply ThreadSafe to Accounts 

– with @GuardedBy and no locking 
– with inadequate locking on transfers 

33 



Compiling @GuardedBy annotations 
•  Download jsr305-3.0.0.jar, link on homepage 
•  Put it somewhere, eg ~/lib/jsr305-3.0.0.jar 

•  Compile like this: 

•  NB: javac does NOT check @GuardedBy 34 

import javax.annotation.concurrent.GuardedBy; 
 
class LongCounter { 
  @GuardedBy("this") 
  private long count = 0; 
  public synchronized void increment() { count++; } 
  public synchronized long get() { return count; } 
} 

$ javac -g -cp ~/lib/jsr305-3.0.0.jar TestGuardedBy.java  

ts
/g

ua
rd

ed
by

/T
es

tG
ua

rd
ed

B
y.

ja
va

 

Class path of jar file 

Defined in jar file 

Emit debug info 



IT University of Copenhagen 

Checking @GuardedBy annotations 
•  Run ThreadSafe to check @GuardedBy 
•  Put a threadsafe-project.properties file in 

same directory: 

•  Compile, run ThreadSafe, inspect report: 

35 

projectName=counterTest 
sources=. 
binaries=. 
outputDirectory=threadsafe-html 

$ javac -g -cp ~/lib/jsr305-3.0.0.jar TestGuardedBy.java  
$ java -jar ~/lib/ts/threadsafe.jar 
INFO: Running analysis... 
INFO: Analysis completed 
$ open threadsafe-html/index.html  

ts
/g

ua
rd

ed
by

/t
hr

ea
ds

af
e-

pr
oj

ec
t.

pr
op

er
tie

s 



Add method, forget synchronized 

36 

Violation 



IT University of Copenhagen 

Analysing unsafe account transfer 
•  Problem found, but message is subtle: 

37 

Acc A 

ts
/a

cc
ou

nt
s/

U
ns

af
eA

cc
ou

nt
.j

av
a 



IT University of Copenhagen 

Using ThreadSafe 
•  Use ThreadSafe to check @GuardedBy 
•  Does a rather admirable job 

– Better on large projects than on small examples 
•  Is not perfect; Java is very difficult to analyse 

– False negatives: may fail to spot real unsafe code 
– False positives: may complain on safe code 

•  Rarely identifies actual deadlock risks 
•  Does not understand higher-order code well: 

38 

public static void lockBothAndRun(Account ac1, Account ac2, Runnable action) { 
  if (ac1.serial <= ac2.serial) 
    synchronized (ac1) { synchronized (ac2) { action.run(); } } 
  else 
    synchronized (ac2) { synchronized (ac1) { action.run(); } } 
} 

Te
st

A
cc

ou
nt

Lo
ck

O
rd

er
.j

av
a 



Thread scheduler, priorities, ...  
•  Controls the “scheduled” and “preempted” 

arcs in Java Thread states diagram, lecture 5 

•  Thread priorities: Don’t use them 
– except to make GUIs responsive by giving 

background worker threads lower priority 
•  Don’t fix liveness or performance problems 

using .yield() and .sleep(0); not portable 
39 

Bloch p. 286 



IT University of Copenhagen 

This week 
•  Reading 

– Goetz et al chapter 10 + 13.1 
– Bloch item 67 

•  Exercises week 6 = mandatory hand-in 3 
– Show that you can write non-deadlocking code, 

and that you can use tools such as jvisualvm and 
ThreadSafe 

•  Read before next week’s lecture 
– Goetz et al chapter 11 

40 


