Practical Concurrent and
Parallel Programming 8

Peter Sestoft
IT University of Copenhagen

Friday 2014-10-24

IT University of Copenhagen

e Graphical user interface toolkits, eg Swing
- not thread-safe, access from event thread only

e Using SwingWorker for long-running work
— Progress bar
— Cancellation
— Display results as they are generated

e A thread-based lift simulator with GUI
e Atomic long with “thread striping” (week 7)
e Shared mutable data on multicore is slow

IT University of Copenhagen

GUI toolkits are single-threaded

e Java Swing components are not thread-safe
— This is intentional
— Ditto .NET's System.Windows.Forms and others

e Multithreaded GUI toolkits

— are difficult to use

— deadlock-prone, because actions are initiated both

e top-down: from user towards operating system
e bottom-up: from operating system to user interface
¢ locking in different orders ... hence deadlock risk

e In Swing, at least two threads:

— Main Thread — runs main(String[] args)
— Event Thread - runs ActionListeners and so on

IT University of Copenhagen 3

From Graham Hamilton’s blog post
“"Multithreaded toolkits: A failed dream?”

e "In general, GUI operations start at the top of a stack of library
abstractions and go "down". I am operating on an abstract idea
in my application that is expressed by some GUI objects, so I
start off in my application and call into high-level GUI
abstractions, that call into lower level GUI abstractions, that
call into the ugly guts of the toolkit, and thence into the OS.

e In contrast, input events start off at the OS layer and are
progressively dispatched "up" the abstraction layers, until they
arrive in my application code.

e Now, since we are using abstractions, we will naturally be
doing locking separately within each abstraction.

e And unfortunately we have the classic lock ordering nightmare:
we have two different kinds of activities going on that want to
acquire locks in opposite orders. So deadlock is almost
inevitable.” (19 October 2004)

https://weblogs.java.net/blog/kgh/archive/2004/10/multithreaded_t.html

IT University of Copenhagen 4

Java Swing GUI toolkit dogmas

e Dogma 1: "Time-consuming tasks should not
be run on the Event Thread”

— Otherwise the application becomes unresponsive
e Dogma 2: "Swing components should be

accessed on the Event Thread only”

— The components are not thread-safe

javax.swing.SwingWorker documentation

e But if another thread does long-running work,
how can it show the results on the GUI?

— Define the work in SwingWorker subclass instance

- Use execute () to run it on a worker thread
— The Event Thread can pick up the results

IT University of Copenhagen 5

final
final
final

frame.
panel.

A short computation
on the event thread

JFrame frame =
JPanel panel =
JButton button
add (panel) ;
add (button) ;

new JFrame ("TestButtonGui") ;

new JPanel () ;

= new JButton ("Press here");

button.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) ({

}H) g

frame.pack(); frame.setVisible (true) ;

e Main thread may create GUI components

TestButtonGui.java

panel . setBackground (new Color (random.nextInt()))

— But should not change eg. background color later

e Event thread calls the ActionListener
— And can change the background color

IT University of Copenhagen

Main thread and event thread

main thread button panel actionListener event thread
create button I
create panel I I
panel.add (button) >|
< - I
addActionL...() | I _
< > | I [Click
[I I(actionPerformed ()
[
: :<setBackgr...()I
>
I l |
I I | >
I I |
repai I I I
paint()
< : 2 | 5 t
in
I |< P? (9)
>
l I I
repainty() > | I
< repaint/() | |
| > I
< I ;
int
[| ¢ paint(g)

. |
| > 7

B 2

Using the main thread for blinking

final JPanel panel = new JPanel () {
public void paint (Graphics g) ({
super .paint(qg) ;
if (showBar) {
g.setColor (Color.RED) ;
g.fillRect (0, 0, 10, getHeight())

} Y)
final JButton button = ...

frame.pack(); frame.setVisible (true);

while (true) {
try { Thread.sleep(800); } // milliseconds
catch (InterruptedException exn) { }
showBar = !showBar;
panel.repaint () ;

}
e repaint () may be called by any thread

e Causes event thread to call repaint (g) later

IT University of Copenhagen 8

TestButtonBlinkGui.java

Fetching webpages on event threa@

fetchButton.addActionlListener (new ActionListener () {

public void actionPerformed (ActionEvent e) ({
for (String url : urls) {
System.out.println ("Fetching " + url);
String page = getPage (url, 200) ;

}

textArea.append(String.format(..., url, page.length()))

TestFetchWebGui.java

1)

e Occupies event thread for many seconds
— The GUI is unresponsive in the meantime

— Results not shown as they become available
e GUI gets updated only after all fetches

— Cancellation would not work
e Cancel button event processed only after all fetches

— A progress bar would not work
o Gets updated only after all fetches

IT University of Copenhagen

Fetching web with SwingWorker ——
static clas§ DowrmloadWorker extends SwingWor,String> {

TextArea textArea;

doInBackground () {
String der sb = new StringBuilder() ;
for (String url : urls) {
String page = getPage (url, 200),
result = String.format("%$-40s%7d%n", url, page.length()) ;s
sb.append (result) ;
}

return sb.toString() ;

}

public void done() {
try { textArea.append(get()); -

catch (InterruptedException exn) { }
catch (ExecutionException exn) { throw new RuntimeExc...;

}

TestFetchWebGui.java

e SwingWorker<T,V> implements Future<T>

e .NET has System.ComponentModel.BackgroundWorker 0

Fetching web with SwingWorker —

DownloadWorker downloadTask = new DownloadWorker (textArea) ;
fetchButton.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) ({
downloadTask.execute () ;

}})

TestFecthWebGui.java

e Event thread runs execute()

e Worker thread runs doInBackground ()
— which returns the full result when computed

e Event thread runs done ()
— obtains the already-computed result with get ()
— and writes the result to the textArea

IT University of Copenhagen 11

Worker thread and event thread V!

Worker downloadTask textArea event thread
thread
I < downloadTask.gxecute()
[I >
doInBack d
oInBackground () >| I

IgetPage() “A" I
IgetPage() “B" I
| getPage() “C” [
[[

< IIA B Cll I I
[[
[[
[< done () |
, append(“A B C”) ,
[P >
[[>
[[
[[
[[
[[
[[
[] [] 12

IT University of Copenhagen

Add progress notification —

static class DownloadWorker extends SwingWorker<String, String> ({

public String doInBackground() {
int count = 0;
StringBuilder sb = new StringBuilder();
for (String url : urls) {
String page = getPage(url, 200),
result = String.format ("%$-40s%7d%n", url, page.length());
sb.append (result) ;
setProgress ((100 * ++count) / urls.length) ;
}

return sb.toString();

e In the GUI setup, add:

downloadTask.addPropertyChangeListener (new PropertyChangelistener () ({

public void propertyChange (PropertyChangeEvent e) {
if ("progress".equals (e.getPropertyName())) {

progressBar.setValue ((Integer)e.getNewValue()) ;

YrH)

IT University of Copenhagen 13

Add cancellation —

static class DownloadWorker extends SwingWorker<String, String> ({
public String doInBackground() {

for (String url : urls) {
if (isCancelled())
break;

sb.append (result) ;
}

return sb.toString();

}

public void done () {
try { textArea.append(get()); }
catch (InterruptedException exn) { }
catch (ExecutionException exn) { throw new RuntimeExc...; }

catch (CancellationException exn) { textArea.append(”“Yrk”), }

b}

e In the GUI setup, add:

cancelButton.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) ({
downloadTask.cancel (false) ;

Ph)

14

Progress and cancellation W1

Worker downloadTask textArea event thread
thread
[< downloadTask.gxecute()
[I >
doInBack d
oInBackground () >| I

! getPage() “A” [
| setProgress(...) I
! getPage() “B” [
| setProgress(...) I
I I progressBar
I I .setValue(...)
[[
[< cancel (false)
[I >

< IIA Bll I I
[[
[< done () |
I append (“Yrk"”) ,
[P > |
[[
| | >

15

IT University of Copenhagen

public String doInBackground ()
for (String url : urls) {
String page getPage (url,
result String.format ("%
publish (result) ;

}
}

{

2Q0),
-A0s%7d%n", url,

eng

page.

for (String result : resu
textArea.append(result) ;

public void process(List< results) {
(]

e Worker thread calls publish(...) a few times
e Event thread calls process with results from

calls to publish since

last call to process

IT University of Copenhagen

16

Event thread and downloadTask

Worker downloadTask textArea event thread
thread
I < downloadTask.execute()
doInBackground () 51 : >

|getPage() I

publish(“A") |

getPage()

publish(“B") |
I < process([”Ad, “B"1)
| append (“A") !
I< > |
| append (“B") |
I< > |
I | >
IgetPage() I
| publish(“C") I

< = | process ([*c”])

| € |
I append (“C") 51

<€
I | >
I done()I
| < append (“") !
I > | 17

<€
[] >

SwingUtilities static methods

e May be called from any thread:

— boolean isEventDispatchThread()
e True if executing thread is the Event Thread

— void invokeLater (Runnable cmd)
e Execute emd.run() asynchronously on the Event Thread

— void invokeAndWait (Runnable command)
e Execute emd.run() on the Event Thread, wait to complete

e SwingWorker = these + Java executors
— Goetz Listings 9.2 and 9.7 indicate how

e Other methods that any thread may call:

— adding and removing listeners on components
e but the listeners are called only on the Event Thread

— comp.repaint() and comp.revalidate()

IT University of Copenhagen 18

Very proper GUI creation in Swing

as per http://docs.oracle.com/javase/tutorial/uiswing/concurrency/initial.html

public static void main (String[] args) ({
SwingUtilities.invokelater (new Runnable () {
public void run() {
final Random random = new Random() ;
final JFrame frame = new JFrame ("TestButtonGui'") ;
final JPanel panel = new JPanel () ;
final JButton button = new JButton("Press here") ;

TestButtonGuiProper.java

frame.add (panel) ;
panel. add (button) ;
button.addActionlListener (new ActionListener () {
public void actionPerformed (ActionEvent e) ({
panel. setBackground (new Color (random.nextInt()));

11

frame.pack () ; frame.setVisible (true) ;

});
}

e Avoids interaction with a partially constructed GUI
— because the Event Thread is busy constructing the GUI

IT University of Copenhagen 19

e Graphical user interface toolkits, eg Swing
- not thread-safe, access from event thread only

e Using SwingWorker for long-running work
— Progress bar
— Cancellation
— Display results as they are generated

e A thread-based lift simulator with GUI
e Atomic long with “thread striping” (week 7)
e Shared mutable data on multicore is slow

IT University of Copenhagen

Example: 2 lifts, 7 floors, 26 buttons

Lift A Lift B

£S5

f 4

DIV

f3

P D

b 1 N

Modeling and visualizing the lifts

e Use event thread for buttons (obviously)
— Inside requests: this lift must go to floor n

— Outside requests: some lift must go to floor n, and
then up (or down)

e An object for each lift
- to hold current floor, and floors yet to be visited
— to compute time to serve an outside request

e A thread for each lift

— to update its state 16 times a second
— to cause the GUI to display it

e A controller object
— to decide which lift should serve an outside request

IT University of Copenhagen 22

The lift simulator GUI

IT University of Copenhagen

Lift controller algorithm

e When outside button Up on floor n is pressed

— Ask each lift how long it would take to get to floor
n while continuing up afterwards

— Then order the fastest lift to serve floor n

class LiftController {
private final Lift[] lifts;

}

public void someLiftTo(int floor, Direction dir) {
double bestTime = Double.POSITIVE INFINITY;

}

int bestLift = -1;

for (int i=0; i<lifts.length; i++) {
double thisLiftTime = lifts[i].timeToServe (floor, dir);

if (thisLiftTime < bestTime) {
bestTime = thisLiftTime;
bestlLift i;

}

}
lifts[bestLift] .customerAt (floor,

dir) ;

24

TestLiftGui.java

The state of a lift

e Current floor and direction (None, Up, Down)
e required stops and directions, stops[floor]:

—null: no need to stop at this floor

— None: stop, don’t know future direction

— Down: stop, then continue down

— Up: stop, then continue up

— Both: stop, then up (down); stop, then down (up

class Lift implements Runnable ({

}

private double floor;
private Direction direction; // None or Up or Down

// QGuardedBy ("this")
private final Direction[] stops;

public synchronized void customerAt(int floor, Direction thenDir) {
setStop (floor, thenDir.add(getStop(floor))) ;

}

)

25

TestLiftGui.java

The lift’s behavior when going Up

e If at a floor, check whether to stop here
— If so, open+close doors and clear from stops table

e If not yet at highest requested stop
— move up a bit and refresh display
— otherwise stop moving
switch (direction) {

if ((int)floor == floor) { // At a floor, maybe stop here -

case Up:
Direction afterStop = getStop((int) floor) ;
if (afterStop !'= null && (afterStop !'= Down || (int)floor == highestStop())) {

openAndCloseDoors () ;
subtractFromStop ((int) floor, direction)
}
}

if (floor < highestStop()) ({

floor += direction.delta / steps; ©
shaft.moveTo (floor, 0.0);)

} else g
direction = Direction.None; %
break; §
case Down: ... similar to Up

case None: ... if any stops[floor] !'= null, start moving in that direction ...

}

26

Lift GUI thread safety

e Dogma 1, no long-running on event thread:
— sleep () happens on lift threads, not event thread

e Dogma 2, only event thread works on GUI:
— Lift thread calls shaft.moveTo,
— which calls repaint (),
— so event thread calls paint (g), OK

e Lift and event threads access stops[] array
— guarded by lift instance this

e Only lift thread accesses floor and direction
— not guarded

IT University of Copenhagen 27

Seems reasonable to have a thread per lift
— because they move concurrently

Why not a thread for the controller?
— because activated only by the external buttons

- but what about supervising the lifts? e.qg. if the lift
sent to floor 4 going Up gets stuck at floor 3 by
some fool with a lot of boxes?

In Erlang, with message-passing, use
— a 'process” (task) for each lift
— a "process” (task) for each floor, a “local controller”

— NO Central ContrO”er Armstrong et al: Concurrent Programming in Erlang (1993) 11.1

Also Akka library, week 13-14

IT University of Copenhagen

e Graphical user interface toolkits, eg Swing
- not thread-safe, access from event thread only

e Using SwingWorker for long-running work
— Progress bar
— Cancellation
— Display results as they are generated

e A thread-based lift simulator with GUI
o Atomic long with "thread striping” (wk 7)
e Shared mutable data on multicore is slow

IT University of Copenhagen

e Use case: more writes (add) than reads (get)

o Vastly different scalability
— (a) Java 5's AtomiclLong
— (b) Java 8’s LongAdder
- (¢) Home-made synchronized LongCounter

TestLongAdders.java

- (d) Home-made striped long using AtomicLongArray
- (e) Home-made striped long with scattered allocation

e Ideas
— (d,e) Use thread’s hashCode (@ 942 3011
to reduce update collisions (b) 65 24
~ (e) Scatter AtomicLongs to o K
' i - (d) 427 1611
avoid false cache line sharing
(e) 108 922

Wall clock time (ms) for 32 threads making 1 million additions each

Dividing a long into 32 “stripes”

class NewLongAdder ({
private final static int NSTRIPES = 32;
private final AtomicLongArray counters = new AtomicLongArray (NSTRIPES) ;

public void add(long delta) {
counters.addAndGet (Thread.currentThread () .hashCode () % NSTRIPES, delta);

}

public long longValue () {
long result = 0;
for (int stripe=0; stripe<NSTRIPES; stripe++)
result += counters.get(stripe) ;
return result;
}
}

e Two threads unlikely to add to same stripe

e Each stripe has thread-affinity
— if accessed by thread, likely to be accessed again

e S0, fast despite the cost of hashCode ()

TestLongAdders.java

IT University of Copenhagen 31

e Graphical user interface toolkits, eg Swing
- not thread-safe, access from event thread only

e Using SwingWorker for long-running work
— Progress bar
— Cancellation
— Display results as they are generated

e A thread-based lift simulator with GUI
e An atomic long with "thread striping” (week 7)
e Shared mutable data on multicore is slow

IT University of Copenhagen

A typical multicore CPU
with three levels of cache

RAM

.3 Cache

=,

Front side bus

T

l

Memory bus controller

Memory bus controller

Memory bus controller

Memory bus controller

L2 cache L2 cache L2 qache L2 cache
L1-1 | L1-D| 1= |L1-D |} L1-1 | L1-D} L1-1 (L1-D] L1-1 | L1-D} L1~ jLt-D{| L1-1 | L1-D| L1-] {L1-D
Processor | Processor Processor | Processor Processor | Processor Processor | Processor
PO P1 P2 P3 P4 P5 P6 P7

» Floating-point register add or mul: 0.4 ns
« RAM access: > 100 ns

33

Lin & Snyder 2009, p. 16

Fix 1: Each processor core has a cache

e Cache = simple hardware hashtable
e Stores recently accessed values from RAM

e Cache is much faster than RAM ’

Way 0

x0 0x12345000

0x1 0x12345100

CPUO CPU 1 0x2 0x12345200
0x3 0x12345300

0x4 0x12345400

| | 0x5 0x12345500
Cache Cache 0x6 0x12345600
0x7 0x12345700

0x8 0x12345800
0x9 0x12345900
OxA 0x12345A00
0xB 0x12345B00

Interconnect

Memory 0xC 0x12345C00
0xD 0x12345D00
OxE 0x12345E00 0x43210E00
xF

McKenney 2010: Memory barriers

 Two caches may have different
values for a given memory address

34

Fix 2: Get all caches to agree
e Cache coherence; cache line state = M,E,S,I

_State | Cacheline | Excll RAM | __Read | _ Write

Modified Modified by me Y not OK from cache to cache

Exclusive Not modified Y OK from cache to cache -> M
Shared Others have it too N OK from cache send invalidate
Invalid Not in use by me - - elsewhere send invalidate

e A cache line

— has 4 states
— and 12 transitions a-|

e Cache messages

— sent by cores to others

— via memory bus
- to make caches agree

McKenney 2010: Memory barriers

Fast and slow cache cases
e The cache is fast when
— the local core “owns” the data (state M or E), or
— data is shared (S) but local core only reads it
e The cache is slow when

- the data is shared (S) and we want to write it, or

- the data is not in cache (I)
e possibly because “owned” by another core

II This core wants to

Read cache line fast
M M Write cache line 0 fast
E E Read cache line 0 fast
E M Write cache line 0 fast
S S Read cache line 0 fast
I S Read cache line 1+1 slow
S M Write cache line 1+N very slow
I M Write cache line 1+1+N very slow

N cores

36

Transitions and messages

A write in @ non-exclusive state requires
acknowledge ack* from all other cores

‘Shared mutable state is slow on big machlnes‘

llmm-m

M (Send update to RAM) writeback

E b Write - - -

M ¢ Other wants to write - read inv read resp, inv ack
I d Atomic read-mod-write read inv read resp, inv ack* -

S e Atomic read-mod-write read inv inv ack* -

M f Other wants to read - read read resp

E g Other wants to read - read read resp

S h Will soon write inv inv ack* -

E i Other wants atomic rw - read inv read resp, inv ack
I j Want to write read inv read resp, inv ack* -

I k Want to read read read resp -

S | Other wants to write - inv invack 37

One more performance problem:
\\ = 1 4 4 -
false sharing” because of cache lines

e A cache line typically is 32 bytes
— gives better memory bus utilization
— prefetches data (in array) that may be needed next
e Thus invalidating one (8 byte) long may
invalidate the neighboring 3 longs!

e Frequently written memory locations should
not be on the same cache line

o Attempts to fix this by “padding”
— may look very silly (next slide)
— are not guaranteed to help
— yet are used in the Java class library code

IT University of Copenhagen 38

Scattering the stripes of a long

class NewlLongAdderPadded {
private final static int NSTRIPES = 32;
private final AtomicLong[] counters;

TestLongAdders.java

public NewLongAdderPadded () {
this.counters = new AtomicLong[NSTRIPES] ;
for (int stripe=0; stripe<NSTRIPES; stripe++) {
// Believe it or not, this sometimes speeds up the code,
// presumably because avoids false sharing of cache lines:
new Object(); new Object(); new Object(); new Object();
counters|[stripe] = new AtomicLlong() ;

e Allocate many AtomicLongs —
- instead of AtomicLongArray

e Scatter the AtomicLongs
— by allocating some Objects in between

IT University of Copenhagen 39

e Reading this week
— Goetz et al chapter 9
— Optional: McKenney: Memory barriers

e Exercises week 8 = mandatory hand-in 4

- The week 7 exercises: Write well-performing and
scalable software using lock striping, immutability,
Java atomics, and visibility rules

— You can write responsive and correct user
interfaces

e Read before next week’s lecture
— Goetz chapter 12

IT University of Copenhagen

