
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 12

Peter Sestoft
IT University of Copenhagen

Friday 2014-11-21*

IT University of Copenhagen 2

Plan for today
•  Michael and Scott unbounded queue
•  Perspective: Work-stealing dequeues
•  Progress concepts

– Wait-free, lock-free, obstruction-free
•  Java Memory Model
•  C#/.NET memory model
•  Union-find data structure

•  Possible parallel programming projects

IT University of Copenhagen

Lock-based queue with sentinel

3

private static class Node<T> {
 final T item;
 Node<T> next;
}

class LockingQueue<T> implements UnboundedQueue<T> {
 private Node<T> head, tail;

 public LockingQueue() {
 head = tail = new Node<T>(null, null);
 }
 ...
}

Make
sentinel node Te

st
M

S
qu

eu
e.

ja
va

Q 1

Invariants:
tail.next=null
If empty, head=tail
If non-empty: head≠tail,

 head.next is first item,
 tail points to last item

sentinel

head

tail

7 9 13

IT University of Copenhagen

Lock-based queue operations

•  Important property:

– Enqueue (put) updates tail but not head!
– Dequeue (take) updates head but not tail!

4

public synchronized void enqueue(T item) {
 Node<T> node = new Node<T>(item, null);
 tail.next = node;
 tail = node;
}

public synchronized T dequeue() {
 if (head.next == null)
 return null;
 Node<T> first = head;
 head = first.next;
 return head.item;
}

Enqueue
at tail

Dequeue from
second node,
becomes new

sentinel

Te
st

M
S
qu

eu
e.

ja
va

Q 1

IT University of Copenhagen

Michael-Scott lock-free queue, CAS

•  If non-empty:

–  head.next is first item, tail points to
last item ("quiescent state") or the
second-last item ("intermediate state")

5

private static class Node<T> {
 final T item;
 final AtomicReference<Node<T>> next;
}

class MSQueue<T> implements UnboundedQueue<T> {
 private final AtomicReference<Node<T>> head, tail;

 public MSQueue() {
 Node<T> dummy = new Node<T>(null, null);
 head = new AtomicReference<Node<T>>(dummy);
 tail = new AtomicReference<Node<T>>(dummy);
 }
}

Q 2

Te
st

M
S
qu

eu
e.

ja
va

Michael and Scott: Simple, Fast,
and Practical Non-Blocking and
Blocking Concurrent Queue
Algorithms, 1996

IT University of Copenhagen

Intermediate state and "help"

6

Q 2

G
oe

tz
 p

.
33

3

Michael & Scott queue operations

7

sentinel

head

tail

7 9 13

After Herlihy & Shavit p. 232

Two-step
dequeue

read value

CAS head

1

42 2

Two-step
enqueue

CAS next 1

CAS tail 2

Q 2

Michael-Scott dequeue (take)

8

public T dequeue() {
 while (true) {
 Node<T> first = head.get(),
 last = tail.get(),
 next = first.next.get();
 if (first == head.get()) {
 if (first == last) {
 if (next == null)
 return null;
 else
 tail.compareAndSet(last, next);
 } else {
 T result = next.item;
 if (head.compareAndSet(first, next)) {
 return result;
 }
 }
 }
 }
}

Try move
head

Intermediate,
try move tail (*)

1

2

In Java or C#,
but not C/C++,

(1) can go after (2)

Q 2

Needed?

Te
st

M
S
qu

eu
e.

ja
va

IT University of Copenhagen

Michael-Scott enqueue (put)

9

public void enqueue(T item) { // at tail
 Node<T> node = new Node<T>(item, null);
 while (true) {
 Node<T> last = tail.get(),
 next = last.next.get();
 if (last == tail.get()) {
 if (next == null) {
 if (last.next.compareAndSet(next, node)) {
 tail.compareAndSet(last, node);
 return;
 }
 } else {
 tail.compareAndSet(last, next);
 }
 }
 }
}

Quiescent, try add

Success, try
move tail

Intermediate,
try move tail

1

2

"help another
enqueuer"

Needed?

Q 2

Te
st

M
S
qu

eu
e.

ja
va

(*) Why must dequeue
mess with the tail?

10

while (true) {
 ...
 if (first == last) {
 if (next == null)
 return null;
 else
 tail.compareAndSet(last, next);
 } else ...
}

Q 2

Te
st

M
S
qu

eu
e.

ja
va

sentinel

head

tail

7

A: enqueue(7)
A: update a.next
B: dequeue()
B: update head

A
ft

er
 H

er
lih

y
&

 S
ha

vi
t

p.
 2

33

Queue is empty,
head==tail

Now tail lags behind
head, not good
So next dequeue
should move tail
before moving head

Intermediate,
try move tail

Understanding Michael-Scott queue
•  Linearizable, with linearization points:

– enqueue: successful CAS at E9
– dequeue returning null: D3
– dequeue returning item: successful CAS at D13

•  Lineariz’n point = where method takes effect

11

public void enqueue(T item) { // at tail
 Node<T> node = new Node<T>(item, null);
 while (true) {
 Node<T> last = tail.get(),
 next = last.next.get();
 if (last == tail.get()) { // E7
 if (next == null) {
 if (last.next.compareAndSet(next, node)) {
 tail.compareAndSet(last, node);
 return;
 }
 } else
 tail.compareAndSet(last, next);
 }
 }
}

Groves: Verifying Michael and Scott’s Lock-Free
Queue Algorithm using Trace Reduction, 2008

public T dequeue() { // from head
 while (true) {
 Node<T> first = head.get(),
 last = tail.get(),
 next = first.next.get();
 if (first == head.get()) { // D5
 if (first == last) {
 if (next == null)
 return null;
 else
 tail.compareAndSet(last, next);
 } else {
 T result = next.item;
 if (head.compareAndSet(first, next))
 return result;
 }
 }
 }
}

D13

D3

E9

private final AtomicReferenceFieldUpdater<Node<T>, Node<T>> nextUpdater
 = AtomicReferenceFieldUpdater.newUpdater((Class<Node<T>>)(Class<?>)(Node.class),
 (Class<Node<T>>)(Class<?>)(Node.class),
 "next");

Nice, but ... needs a lot of
AtomicReference objects

12

private static class Node<T> {
 final T item;
 final AtomicReference<Node<T>> next;

 public Node(T item, Node<T> next) {
 this.item = item;
 this.next = new AtomicReference<Node<T>>(next);
 }
}

private static class Node<T> {
 final T item;
 volatile Node<T> next;
 ...
}

Must be
CAS'able

One AR
per Node

Better, no
AtomicReference
object needed

Instead, make
an "updater"

Q 3

Q 3

Q 2

A
 la

 G
oe

tz
 p

.
33

5

IT University of Copenhagen

Michael-Scott enqueue,
using the "updater" for last.next!

13

public void enqueue(T item) { // at tail
 Node<T> node = new Node<T>(item, null);
 while (true) {
 Node<T> last = tail.get(), next = last.next;
 if (last == tail.get()) {
 if (next == null) {
 if (nextUpdater.compareAndSet(last, next, node)) {
 tail.compareAndSet(last, node);
 return;
 }
 } else {
 tail.compareAndSet(last, next);
 }
 }
 }
}

Q 3

If “next” field of
last equals

next, set to node!

IT University of Copenhagen

Queue benchmarks
•  Queue implementations

–  Lock-based
–  Lock-based, sentinel node
–  Lock-free, sentinel node, AtomicReference
–  Lock-free, sentinel node, AtomicReferenceFieldUpdater

•  Platforms
–  Hotspot 64 bit Java 1.7.0_b147, Windows 7, Xeon W3505,

2.53GHz, 2 cores, 2009Q1
–  Hotspot 64 bit Java 1.6.0_37, MacOS, Core 2 Duo,

2.66GHz, 2 cores, 2008Q1
–  Icedtea Java 1.7.0_b21, Linux, Xeon E5320, 1.86GHz, 4/8

cores, 2006Q4
–  Hotspot 64 bit Java 1.7.0_25-b15, Linux, AMD Opteron

6386 SE, 32 cores, 2012Q4
•  Measurements probably flawed: the client threads

do no useful work, only en/dequeue
•  Nevertheless, big differences between machines

14

Java 1.7, Xeon W3505, 2 cores

15

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20

LockQueue

MSNonblockingQueue

MSNonblockingQueueRefl

SentinelLockQueue

Time as
function of
number of
concurrent
threads

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20

LockQueue

MSNonblockingQueue

MSNonblockingQueueRefl

SentinelLockQueue

Java 1.6, Core 2 Duo, 2 cores

16

Java 1.7, Xeon E5320, 4/8 cores

17

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20

LockQueue

MSNonblockingQueue

MSNonblockingQueueRefl

SentinelLockQueue

Java 1.7, AMD Opteron, 32 cores

18

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

LockQueue

MSNonblockingQueue

MSNonblockingQueueRefl

SentinelLockQueue

IT University of Copenhagen 19

Plan for today
•  Michael and Scott unbounded queue
•  Perspective: Work-stealing dequeues
•  Progress concepts

– Wait-free, lock-free, obstruction-free
•  Java Memory Model
•  C#/.NET memory model
•  Union-find data structure

•  Possible parallel programming projects

IT University of Copenhagen

Perspective: Work-stealing dequeues
•  Double-ended concurrent queues
•  Used to implement

–  Java 7’s Fork-Join framework, and Akka (wk 13-14)
–  Java 8’s newWorkStealingPool executor
–  .NET 4.0 Task Parallel Library

•  Chase and Lev: Dynamic circular
work-stealing queue, SPAA 2005

•  Michael, Vechev, Saraswat: Idem-
potent work stealing, PPoPP 2009

•  Leijen, Schulte, Burckhardt: The design
of a task parallel library, OOPSLA 2009

20

Java 8
source

.NET
TPL

A worker/task framework

•  Worker threads pop and push tasks on queue
•  Not scalable because single queue is used

by many threads
21

Worker
threads Common task queue

Better worker/task framework

•  Fewer memory write conflicts:
– Most queue accesses are from local thread only
– Pop from bottom, steal from top, conflicts are rare

•  Much better scalability 22

Worker
threads

Thread-local work-
stealing dequeues

pop task
push task

steal interface WSDeque<T> {
 void push(T item);
 T pop();
 T steal();
}

IT University of Copenhagen 23

Plan for today
•  Michael and Scott unbounded queue
•  Perspective: Work-stealing dequeues
•  Progress concepts

– Wait-free, lock-free, obstruction-free
•  Java Memory Model
•  C#/.NET memory model
•  Union-find data structure

•  Possible parallel programming projects

Progress concepts
•  Non-blocking: A call by thread A cannot

prevent a call from thread B from completing
– Not true for lock-based queue: A holds lock to
put(), gets descheduled or crashes, while B
wants to take() but cannot get lock!

•  Wait-free: Every call finishes in finite time
– True for SimpleTryLock’s tryLock!
– Not true for AtomicInteger’s getAndAdd!

•  Bounded wait-free: Every ... in bounded time!
•  Lock-free: Some call finishes in finite time

– True for AtomicInteger’s getAndAdd!
– Any wait-free method is also lock-free
– Lock-free is good enough in practice!

24

G
oe

tz
 §

15
.4

 a
nd

 H
er

lih
y

&
 S

ha
vi

t
§3

.7

Shavit et al, CACM November 2014, p. 13-15

IT University of Copenhagen

Obstruction freedom
•  Obstruction-free: If a method call executes

alone, it finishes in finite time
– Lock-based data structures are not obstruction-free
– A lock-free method is also obstruction-free
– Obstruction-free sounds rather weak, but in

combination with back-off it ensures progress
– Some people even think it too strong:

25

Ennals 2006: STM should not be obstruction-free

... we argue that obstruction-freedom is not an
important property for software transactional memory,
and demonstrate that, if we are prepared to drop the
goal of obstruction-freedom, software transactional
memory can be made significantly faster

IT University of Copenhagen 26

Plan for today
•  Michael and Scott unbounded queue
•  Perspective: Work-stealing dequeues
•  Progress concepts

– Wait-free, lock-free, obstruction-free
•  Java Memory Model
•  C#/.NET memory model
•  Union-find data structure

•  Possible parallel programming projects

IT University of Copenhagen

Why do I need a memory model?
•  Threads in Java and C# and C etc

communicate via mutable shared memory
•  We need compiler optimizations for speed

– Compiler optimizations that are harmless in thread
A may seem strange from thread B

– Disallowing strangeness leads to slow software
•  We need CPU caches for speed

– With caches, write-to-RAM order may seem strange
•  So we have to live with some strangeness
•  A memory model tells how much strangeness
•  The Java Memory Model is quite well-defined

–  JLS §17.4, Goetz §16, Herlihy & Shavit §3.8
27

The happens-before relation in Java
•  A program order of a thread t is some total order of the thread’s actions

that is consistent with the intra-thread semantics of t

•  Action x synchronizes-with action y is defined as follows:
–  An unlock action on monitor m synchronizes-with all subsequent lock actions on m
–  A write to a volatile variable v synchronizes-with all subsequent reads of v by any

thread
–  An action that starts a thread synchronizes-with the first action in the thread it starts
–  The write of the default value (zero, false, or null) to each variable synchronizes-with

the first action in every thread
–  The final action in a thread T1 synchronizes-with any action in another thread T2

that detects that T1 has terminated
–  If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-with any point

where any other thread (including T2) determines that T2 has been interrupted

•  Action x happens-before action y, written hb(x,y), is defined:
–  If x and y are actions of the same thread and x comes before y in program order,

then hb(x, y)
–  There is a happens-before edge from the end of a constructor of an object to the

start of a finalizer for that object
–  If an action x synchronizes-with a following action y, then we also have hb(x,y)
–  If hb(x, y) and hb(y, z), then hb(x, z) – that is, hb is transitive

28 Goetz §16.3.1 Java Language Specification §17.4

Strange but legal behavior in Java
•  Java Language Specification, sect 17.4:

– Run these code fragments in two threads
– Shared fields A, B initially 0; local variables r1, r2

•  What are the possible results?
– Strangely, r1==1 and r2==2 is possible
– An ordering consistent with happens-before relation

29

r2=A;
B=1;

r1=B;
A=2;

Thread 1 Thread 2

JL
S
 8

 T
ab

le
s

17
.1

,
17

.5

B=1;
A=2;
r2=A;
r1=B;

Why permit such strange behaviors?
•  More comprehensible example from JLS 17.4

– Assume p, q shared, p==q and p.x==0

– Compiler optimization, common subexpr. elimin.:

(p.x seems to switch from r2=0 to r4=3 and back to r5=0

•  Using volatile x prevents this strangeness
30

r1 = p; !
r2 = r1.x; !
r3 = q; !
r4 = r3.x; !
r5 = r1.x;!

r6 = p; !
r6.x = 3;!

r1 = p; !
r2 = r1.x; !
r3 = q; !
r4 = r3.x; !
r5 = r2;!

r6 = p; !
r6.x = 3;!

Thread 1 Thread 2

NB!

IT University of Copenhagen

Cost of volatile (week 4 flashback)

•  In Java, volatile read is 5 x slower in this case
•  C#/.NET 4.5, volatile read only 1.2 x slower

– But still 3.7 x slower than Java non-volatile ...
•  Mono .NET performs no optim., so no slower

31

class IntArrayVolatile {
 private volatile int[] array;
 public IntArray(int length) { array = new int[length]; ... }
 public boolean isSorted() {
 for (int i=1; i<array.length; i++)
 if (array[i-1] > array[i])
 return false;
 return true;
 }
}

IntArray 3.4 us 0.01 131072
IntArrayVolatile 17.2 us 0.14 16384

Te
st

Vo
la

til
eC

os
t.

ja
va

Vo

la
til

eA
rr

ay
.c

s

0xcb9: mov 0xc(%rdi,%r11,4),%r8d ; LOAD %rd8d = array[i-1]
0xcbe: mov 0x10(%rdi,%r11,4),%r10d ; LOAD %rd10d = array[i]
0xcc3: cmp %r10d,%r8d ; IF array[i] > array[i-1]
0xcc6: jg 0xd85 ; RETURN FALSE

Volatile prevents JIT optimizations
•  For-loop body of isSorted, JITted x86 code:

•  Non-volatile: read arr once, unroll loop, ...:

32

0xdfff0: mov 0xc(%rsi),%r8d ; LOAD %r8d = array field
0xdfff4: mov %r10d,%r9d ; i NOW IN %r9d
0xdfff7: dec %r9d ; i-1 IN %r9d
0xdfffa: mov 0xc(%r12,%r8,8),%ecx ; LOAD %ecx = array.length
0xdffff: cmp %ecx,%r9d ; INDEX CHECK array.length <= i-1
0xe0002: jae 0xe004b ; IF SO, THROW
0xe0004: mov 0xc(%rsi),%ecx ; LOAD %ecx = array field
0xe0007: lea (%r12,%r8,8),%r11 ; LOAD %r11 = array base address
0xe000b: mov 0xc(%r11,%r10,4),%r11d ; LOAD %r11d = arr[i-1]
0xe0010: mov 0xc(%r12,%rcx,8),%r8d ; LOAD %r8d = array.length
0xe0015: cmp %r8d,%r10d ; INDEX CHECK array.length <= i
0xe0018: jae 0xe006d ; IF SO, THROW
0xe001a: lea (%r12,%rcx,8),%r8 ; LOAD %r8 = array base address
0xe001e: mov 0x10(%r8,%r10,4),%r9d ; LOAD %r9d = array[i]
0xe0023: cmp %r9d,%r11d ; IF arr[i] < array[i-1]
0xe0026: jg 0xe008d ; RETURN FALSE
0xe0028: mov 0xc(%rsi),%r8d ; LOAD %r8d = array field
0xe002c: inc %r10d ; i++ Vo

la
til

eA
rr

ay
.j

av
a

array
volatile

array not
volatile

3 reads of
array field

2 index
checks

IT University of Copenhagen

C#/.NET memory model?
•  Quite similar to Java

– C# Language Specification, Ecma-334 standard
•  But weaknesses and unclarities

– C# readonly has no visibility effect unlike final!
– C# volatile is weaker than in Java
– Allowed to lift variable read out of loop?
–  “Read introduction” seems downright horrible!

•  If you write concurrent C# programs, read:
– Ostrovsky: The C# Memory Model in Theory and

Practice, MSDN Magazine, December 2012
– Even though optional in this course

33

•  Visibility effect of C#/.NET readonly fields not mentioned in C#
Language Specification or Ecma-335 CLI Specification (initonly)

•  In fact, no visibility guarantee is intended...

34

C#/.NET volatile weaker than Java’s

•  C#: possible to get A_won = B_won = true !!
– Not JIT compiler, but CPU store buffer delay on A
– To fix in C#, add MemoryBarrier call (no Java equ.)

35

class StoreBufferExample {
 volatile bool A = false;
 volatile bool B = false;
 volatile bool A_Won = false;
 volatile bool B_Won = false;
 public void ThreadA() {
 A = true;
 if (!B)
 A_Won = true;
 }
 public void ThreadB() {
 B = true;
 if (!A)
 B_Won = true;
 }
}

O
st

ro
vs

ky
 2

01
3

public void ThreadA() {
 A = true;
 Thread.MemoryBarrier();
 if (!B)
 aWon = 1;
}

public void ThreadB() {
 B = true;
 Thread.MemoryBarrier();
 if (!A)
 B_Won = true;
}

Te
st

Vo
la

til
e.

cs

C# volatile vs Java volatile

•  A C# volatile read may move earlier, a

volatile write may move later, hence trouble
•  Not in Java:

36

•  A read of a volatile field is called a volatile read. A volatile
read has “acquire semantics”; that is, it is guaranteed to
occur prior to any references to memory that occur after it in
the instruction sequence.

•  A write of a volatile field is called a volatile write. A volatile
write has “release semantics”; that is, it is guaranteed to
happen after any memory references prior to the write
instruction in the instruction sequence.

C
#

 L
an

gu
ag

e
S
pe

c
20

06
,

§1
7.

4.
3

If a programmer protects all accesses to shared data via locks
or declares the fields as volatile, she can forget about the Java
Memory Model and assume interleaving semantics, that is,
Sequential Consistency.

Lochbichler: Making the Java memory model safe, ACM TOPLAS, December 2013

IT University of Copenhagen

MemoryBarrier() in C#/.NET

•  But seems sometimes to be needed anyway
– also on x86

•  Java does not have such a method, because
Java volatile gives better guarantees

37

Synchronizes memory access as follows: The processor executing
the current thread cannot reorder instructions in such a way that
memory accesses prior to the call to MemoryBarrier execute after
memory accesses that follow the call to MemoryBarrier.

MemoryBarrier is required only on multiprocessor systems with
weak memory ordering (for example, a system employing
multiple Intel Itanium processors).

System.Threading.Thread.MemoryBarrier API docs 4.5

IT University of Copenhagen 38

Plan for today
•  Michael and Scott unbounded queue
•  Perspective: Work-stealing dequeues
•  Progress concepts

– Wait-free, lock-free, obstruction-free
•  Java Memory Model
•  C#/.NET memory model
•  Union-find data structure

•  Possible parallel programming projects

The union-find data structure
•  Efficient way to maintain equivalence classes
•  Used in

–  type inference in compilers: F#, Scala, C# ...
–  image segmentation
– network analysis: chips, WWW, Facebook friends ...

•  Example: family relations, who are related?

39

Tarjan: Data structures and
network algorithms, 1983

Alice Sue

Mary
John

Pat

Bob

Sue is Pat’s sister
Alice is Bob’s sister
Mary is John’s mother
Mary is Bob’s mother

Are Sue and Mary
related?

root

root

class CoarseUnionFind implements UnionFind {!
 private final Node[] nodes;!
!
 public CoarseUnionFind(int count) {!
 this.nodes = new Node[count];!
 for (int x=0; x<count; x++)!
 nodes[x] = new Node(x);!
 }!

Three union-find implementations
•  A: Coarse-locking = Synchronized methods
•  B: Fine-locking = Lock on each set partition
•  C: Wait-free = Optimistic, CAS-based

40

interface UnionFind {!
 int find(int x);!
 void union(int x, int y);!
 boolean sameSet(int x, int y);!
}!

class Node {!
 volatile int !
 next, rank;!
}!

Te
st

U
ni

on
Fi

nd
.j

av
a

Coarse-locking union-find

41

UF A

class CoarseUnionFind implements UnionFind {!
 private final Node[] nodes;!
 public synchronized int find(int x) {!
 while (nodes[x].next != x) {!
 final int t = nodes[x].next, u = nodes[t].next;!
 nodes[x].next = u;!
 x = u;!
 }!
 return x;!
 }!
 public synchronized void union(int x, int y) {!
 int rx = find(x), ry = find(y);!
 if (rx == ry)!
 return;!
 if (nodes[rx].rank > nodes[ry].rank) {!
 int tmp = rx; rx = ry; ry = tmp;!
 }!
 nodes[rx].next = ry;!
 if (nodes[rx].rank == nodes[ry].rank)!
 nodes[ry].rank++;!
 }!
}!

Te
st

U
ni

on
Fi

nd
.j

av
a

Path
halving

x t u

Union
by rank

x y

rx! ry!

Find
roots

IT University of Copenhagen

Fine-locking union-find
•  No locking in find

– Do path compression separately
– Ensure visibility by volatile next, rank in Node

42

UF B

class FineUnionFind implements UnionFind {!
 public int find(int x) {!
 while (nodes[x].next != x) !
 x = nodes[x].next;!
 return x;!
 }!
 !
 // Assumes lock is held on nodes[root]!
 private void compress(int x, final int root) {!
 while (nodes[x].next != x) {!
 int next = nodes[x].next;!
 nodes[x].next = root;!
 x = next;!
 }!
 }!
}!

Te
st

U
ni

on
Fi

nd
.j

av
a

No path
halving

Path
compression

Fine-locking union-find

43

UF B

public void union(final int x, final int y) {!
 while (true) {!
 int rx = find(x), ry = find(y);!
 if (rx == ry)!
 return;!
 else if (rx > ry) { !
 int tmp = rx; rx = ry; ry = tmp; !
 }!
 synchronized (nodes[rx]) { !
 synchronized (nodes[ry]) {!
 if (nodes[rx].next != rx || nodes[ry].next != ry)!
 continue;!
 if (nodes[rx].rank > nodes[ry].rank) {!
 int tmp = rx; rx = ry; ry = tmp;!
 }!
 nodes[rx].next = ry;!
 if (nodes[rx].rank == nodes[ry].rank)!
 nodes[ry].rank++;!
 compress(x, ry);!
 compress(y, ry);!
 } } !
} }!

Te
st

U
ni

on
Fi

nd
.j

av
a

Consistent
lock order

Restart if
updated

Union by rank
and path

compression

Wait-free union-find with CAS

44

UF C

class Node {!
 private final AtomicInteger next;!
 private final int rank;!
}!

Te
st

U
ni

on
Fi

nd
.j

av
a

public int find(int x) {!
 while (nodes.get(x).next.get() != x) {!
 final int t = nodes.get(x).next.get(), !
 u = nodes.get(t).next.get();!
 nodes.get(x).next.compareAndSet(t, u);!
 x = u;!
 }!
 return x;!
}!

Path
halving

with CAS

boolean updateRoot(int x, int oldRank, int y, int newRank) {!
 final Node oldNode = nodes.get(x);!
 if (oldNode.next.get() != x || oldNode.rank != oldRank)!
 return false;!
 Node newNode = new Node(y, newRank);!
 return nodes.compareAndSet(x, oldNode, newNode);!
}!

Atomic update of root
nodes[x] to point to

fresh Node(y,newRank)

Anderson and Woll: Wait-free
parallel algorithms for the
union-find problem, 1991

IT University of Copenhagen

Wait-free union-find: union

45

UF C

Te
st

U
ni

on
Fi

nd
.j

av
a

public void union(int x, int y) {!
 int xr, yr;!
 do {!
 x = find(x); !
 y = find(y);!
 if (x == y)!
 return;!
 xr = nodes.get(x).rank;!
 yr = nodes.get(y).rank;!
 if (xr > yr || xr == yr && x > y) {!
 { int tmp = x; x = y; y = tmp; }!
 { int tmp = xr; xr = yr; yr = tmp; }!
 }!
 } while (!updateRoot(x, xr, y, xr));!
 if (xr == yr) !
 updateRoot(y, yr, y, yr+1);!
 setRoot(x); !
}!

Union-by-rank,
deterministic

Restart if
updated

IT University of Copenhagen

Some PCPP-related thesis projects
•  Design, implement and test concurrent

versions of C5 collection classes for .NET
– http://www.itu.dk/research/c5/

•  The Popular Parallel Programming (P3) project
– Static dataflow partitioning algorithms
– Dynamic scheduling algorithms on .NET
– Vector (SSE, AVX) .NET intrinsics for spreadsheets
– Supercomputing with Excel and .NET
– http://www.itu.dk/people/sestoft/p3/

•  Investigate Java Pathfinder for test and
coverage analysis of concurrent software
– http://babelfish.arc.nasa.gov/trac/jpf

46

IT University of Copenhagen

This week
•  Reading

– Michael & Scott 1996: Simple, fast, and practical
non-blocking and blocking concurrent queue ...

– Goetz chapter 15 and 16
– Herlihy & Shavit section 3.8
– Optional: JLS 8 §17.4

•  Exercises
– Test and experiment with the lock-free Michael &

Scott queue
•  Read before next week – Claus lectures!

– Armstrong, Virding, Williams: Concurrent
programming in Erlang, chapters 1, 2, 5, 11.1

47

