Practical Concurrent and
Parallel Programming 12

Peter Sestoft
IT University of Copenhagen

Friday 2014-11-21%

IT University of Copenhagen

e Michael and Scott unbounded queue
e Perspective: Work-stealing dequeues

e Progress concepts
- Wait-free, lock-free, obstruction-free

e Java Memory Model
o C#/.NET memory model
e Union-find data structure

e Possible parallel programming projects

IT University of Copenhagen

Lock-based queue with sentinel =

class LockingQueue<T> implements UnboundedQueue<T> {
private Node<T> head, tail;

public LockingQueue () {
head = tail = new Node<T>(null, null);

}

}

TestMSqueue.java

Invariants:

tail.next=null

If empty, head=tail

If non-empty: head#tail,
head.next is first item,
tail points to last item

private static class Node<T> {
final T item;
Node<T> next;

}

tail

head
z» sentinel ———> /] O —> 13

IT University of Copenhagen 3

Lock-based queue operations

public synchronized void enqueue (T item) ({
Node<T> node = new Node<T>(item, null);
tail.next = node;
tail = node;

TestMSqueue.java

public synchronized T dequeue () {
if (head.next == null)
return null;
Node<T> first = head;
head = first.next;
return head.item;

}

e Important property:
— Enqueue (put) updates tail but not head
- Dequeue (take) updates head but not tail

IT University of Copenhagen 4

Q2
Michael-Scott lock-free queue, CAA:

private static class Node<T> { Michael and Scott: Simple, Fast,
final T item; and Practical Non-Blocking and

final AtomicReference<Node<T>> next; Blocking Concurrent Queue
Algorithms, 1996

}

class MSQueue<T> implements UnboundedQueue<T> {
private final AtomicReference<Node<T>> head, tail;

public MSQueue () {
Node<T> dummy = new Node<T>(null, null);

TestMSqueue.java

head = new AtomicReference<Node<T>> (dummy) ;
tail = new AtomicReference<Node<T>> (dummy) ;

}
e If non-empty:
— head.next is first item, tail points to

last item ("quiescent state") or the
second-last item ("intermediate state")

IT University of Copenhagen 5

Intermediate state and "help”

tail
head
dummy| &7 9§ l ¢ N 2 o N 3 ®
FIGURE 15.4. Queue in intermediate state during insertion.
tail —
head

dummy(‘\\.] ¢ N 2 ¢ N 3 ®

Goetz p. 333

FIGURE 15.5. Queue again in quiescent state after insertion is complete.

IT University of Copenhagen 6

Michael & Scott queue operations

tail

head

sentinel

> 7/ >

Q2

@ read value

After Herlihy & Shavit p. 232

13

Michael-Scott dequeue (take)

public T dequeue () {
while (true) {
Node<T> first = head.get(),
last = tail.get(),
! next = first.next.get();
if (first == head.get()) {
if (first == last) {
if (next == null)
return null;
else
tail.compareAndSet (last, next);

} else {
T result = next.item;

' TestMSqueue.java

QO
N

if (head.compareAndSet(first, next)) ({
return result; <::>

}
}
}

Michael-Scott enqueue (put)

public void enqueue (T item) { // at tail
Node<T> node = new Node<T>(item, null);
while (true) {
Node<T> last = tail.get(),
next = last.next.get()

e Dt U Quiescent, try add.
if (next == null) {

TestMSqueue.java

if (last.next.compareAndSet (next, node)) {

tail.compareAndSet(last, node) ;
return; @
}

} else {

tail.compareAndSet(last, next);
} 2
}

IT University of Copenhagen 9

(*) Why must dequeue Q2
mess with the tail?
while (true) {

if.(first == last) { E
if (next == null) >
Queue is empty, _ otusn nuldi — g
head==tail tail .compareAndSet (last, next); g

A: enqueue(7/) } else ...

A: update a.next

B: dequeue() @
B: update head tail s
Now tail lags behind g
head, not good head 5
So next dequeue z, =
should move tail sentinel ——> 7 i
before moving head =

10

Understanding Michael-Scott queue

e Linearizable, with linearization points:
— enqueue: successful CAS at E9

— dequeue returning null: D3

— dequeue returning item: successful CAS at D13
e Lineariz’'n point = where method takes effect

public void enqueue (T item) { // at tail
Node<T> node = new Node<T>(item, null);

while (true) {
Node<T> last = tail.get(),
next = last.next.get();

if (last == tail.get()) { // E7
if (next == null) {

if (last.next.compareAndSet (next, node)) ({
tail.compareAndSet (last, node) ;

return;
}
} else
tail.compareAndSet(last, next);

Groves: Verifying Michael and Scott’s Lock-Free
Queue Algorithm using Trace Reduction, 2008

public T dequeue() { // from head
while (true) {

Node<T> first = head.get(), ‘

last = tail.get(),
next = first.next.get();
if (first == head.get()) { // D5
if (first == last) {
if (next == null)
return null;
else
tail.compareAndSet(last, next);
} else {
T result = next.item;
if (head.compareAndSet(first, next))

return result;
} ‘
}

11

Nice, but ... needs a lot of Q3
AtomicReference objects

private static class Node<T> {
final T item;
final AtomicReference<Node<T>> next;

public Node (T item, Node<T> next) {
this.item = item;
this.next = new AtomicReference<Node<T>> (next) ;

} Q2

private static class Node<T> {
final T item;
volatile Node<T> next;

A la Goetz p. 335

}... o3

private final AtomicReferenceFieldUpdater<Node<T>, Node<T>> nextUpdater
= AtomicReferenceFieldUpdater.newUpdater ((Class<Node<T>>) (Class<?>) (Node.class),
(Class<Node<T>>) (Class<?>) (Node.class),
"next") ; 12

Michael-Scott enqueue, Q3
using the "updater” for last.next

public void enqueue (T item) { // at tail
Node<T> node = new Node<T> (item, null):;
while (true) {
Node<T> last = tail.get (), next = last.next;
if (last == tail.get()) {
1if (next == null) {
1f (nextUpdater.compareAndSet (last, next, node)) {
tail.compareAndSet (last, node);
return;
}
} else {
tail.compareAndSet (last, next);

}

IT University of Copenhagen 13

Queue benchmarks

e Queue implementations

Lock-based

Lock-based, sentinel node

Lock-free, sentinel node, AtomicReference

Lock-free, sentinel node, AtomicReferenceFieldUpdater

e Platforms

Hotspot 64 bit Java 1.7.0_b147, Windows 7, Xeon W3505,
2.53GHz, 2 cores, 2009Q1

Hotspot 64 bit Java 1.6.0_37, MacOS, Core 2 Duo,
2.66GHz, 2 cores, 2008Q1

Icedtea Java 1.7.0_b21, Linux, Xeon E5320, 1.86GHz, 4/8
cores, 2006Q4

Hotspot 64 bit Java 1.7.0_25-b15, Linux, AMD Opteron
6386 SE, 32 cores, 2012Q4

e Measurements probably flawed: the client threads
do no useful work, only en/dequeue

e Nevertheless, big differences between machines

IT University of Copenhagen 14

Java 1.7, Xeon W3505, 2 cores

Time as
function of
number of

concurrent

//\ /; threads

=o=LockQueue

AN =#—=MSNonblockingQueue

=/+=MSNonblockingQueueRefl
=>=SentinelLockQueue

15

Java 1.6, Core 2 Duo, 2 cores

=o=LockQueue

=E—MSNonblockingQueue
=/+=MSNonblockingQueueRefl
=>=SentinelLockQueue

2 4 6 8 10 12 14 16 18 20

16

40

35

30

25

20

15

10

A
V

Java 1.7, Xeon E5320, 4/8 cores

=o=LockQueue
=E—MSNonblockingQueue
=/+=MSNonblockingQueueRefl
=>=SentinelLockQueue

17

60

50

40

30

20

10

Java 1.7, AMD Opteron, 32 cores

=o=LockQueue

=#—=MSNonblockingQueue
=#=MSNonblockingQueueRefl
=>¢=SentinelLockQueue

20

18

e Michael and Scott unbounded queue
e Perspective: Work-stealing dequeues

e Progress concepts
- Wait-free, lock-free, obstruction-free

e Java Memory Model
o C#/.NET memory model
e Union-find data structure

e Possible parallel programming projects

IT University of Copenhagen

Perspective: Work-stealing dequeues

e Double-ended concurrent queues

e Used to implement
- Java 7’'s Fork-Join framework, and Akka (wk 13-14)
— Java 8’'s newWorkStealingPool executor
- .NET 4.0 Task Parallel Library

e Chase and Lev: Dynamic circular
work-stealing queue, SPAA 2005

e Michael, Vechev, Saraswat: Idem- -
potent work stealing, PPoPP 2009 _

e Leijen, Schulte, Burckhardt: The design
of a task parallel library, OOPSLA 2009

IT University of Copenhagen 20

A worker/task framework

Worker
threads

e

Common task queue

Po
D t

as
008/7 l‘as/r/(

—>

/

e Worker threads pop and push tasks on queue

e Not scalable because single queue is used
by many threads

21

Better worker/task framework

Worker Thread-local work-
threads stealing dequeues
pop task

<€

< bush task

. Te-___

‘\\\ ~~~~~~ Steg) interface WSDeque<T> ({
S~ ~ == void push (T item) ;
<€ = ,\\) T pop () :
< T steal();
Yoy :
<€ >

e Fewer memory write conflicts:
— Most queue accesses are from local thread only
- Pop from bottom, steal from top, conflicts are rare

e Much better scalability 22

e Michael and Scott unbounded queue
e Perspective: Work-stealing dequeues

e Progress concepts
- Wait-free, lock-free, obstruction-free

e Java Memory Model
o C#/.NET memory model
e Union-find data structure

e Possible parallel programming projects

IT University of Copenhagen

e Non-blocking: A call by thread A cannot
prevent a call from thread B from completing

— Not true for lock-based queue: A holds lock to
put (), gets descheduled or crashes, while B
wants to take () but cannot get lock

o Wait-free: Every call finishes in finite time
— True for SimpleTryLock’s tryLock
— Not true for Atomiclnteger’'s getAndadd

e Bounded wait-free: Every ... in bounded time

o [ock-free: Some call finishes in finite time
— True for Atomiclnteger’s getAndAadd
- Any wait-free method is also lock-free

— Lock-free is good enough in practice!
Shavit et al, CACM November 2014, p. 13-15

Goetz §15.4 and Herlihy & Shavit §3.7

Obstruction freedom

e Obstruction-free: If a method call executes
alone, it finishes in finite time
- Lock-based data structures are not obstruction-free
— A lock-free method is also obstruction-free

— Obstruction-free sounds rather weak, but in
combination with back-off it ensures progress

— Some people even think it too strong:

... We argue that obstruction-freedom is not an
important property for software transactional memory,
and demonstrate that, if we are prepared to drop the
goal of obstruction-freedom, software transactional

memory can be made significantly faster
Ennals 2006: STM should not be obstruction-free

IT University of Copenhagen 25

e Michael and Scott unbounded queue
e Perspective: Work-stealing dequeues

e Progress concepts
- Wait-free, lock-free, obstruction-free

e Java Memory Model
e C#/.NET memory model
e Union-find data structure

e Possible parallel programming projects

IT University of Copenhagen

e Threads in Java and C# and C etc
communicate via mutable shared memory

e We need compiler optimizations for speed

— Compiler optimizations that are harmless in thread
A may seem strange from thread B

— Disallowing strangeness leads to slow software

e We need CPU caches for speed
- With caches, write-to-RAM order may seem strange

e S0 we have to live with some strangeness
e A memory model tells how much strangeness

e The Java Memory Model is quite well-defined
- JLS §17.4, Goetz §16, Herlihy & Shavit §3.8

IT University of Copenhagen

The happens-before relation in Java

e A program order of a thread t is some total order of the thread’s actions
that is consistent with the intra-thread semantics of t

e Action x synchronizes-with action y is defined as follows:

An unlock action on monitor m synchronizes-with all subsequent lock actions on m

Al‘_lwritde to a volatile variable v synchronizes-with all subsequent reads of v by any
threa

An action that starts a thread synchronizes-with the first action in the thread it starts

The write of the default value (zero, false, or null) to each variable synchronizes-with
the first action in every thread

The final action in a thread T1 synchronizes-with any action in another thread T2
that detects that T1 has terminated

If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-with any point
where any other thread (including T2) determines that T2 has been interrupted

e Action x happens-before action y, written hb(x,y), is defined:

If x and y are actions of the same thread and x comes before y in program order,
then hb(x, y)

There is a happens-before edge from the end of a constructor of an object to the
start of a finalizer for that object

If an action x synchronizes-with a following action y, then we also have hb(x,y)
If hb(x, y) and hb(y, z), then hb(x, z) - that is, hb is transitive

Java Language Specification §17.4 Goetz §16.3.1 28

Strange but legal behavior in Java

e Java Language Specification, sect 17.4:
- Run these code fragments in two threads

— Shared fields A, B initially O; local variables r1, r2

r2=A;
B=1;

e What are the possible results?
— Strangely, rl==1 and r2==2 is possible

rl=B;
A=2;

| ILS 8 Tables 17.1, 17.5 |

- An ordering consistent with happens-before relation

B=1;
A=2;

rl=

r2=A;

4

°
4

29

Why permit such strange behaviors?

e More comprehensible example from JLS 17.4
- Assume p, g shared, p==q and p.x==

B Thread1 6 = Pi Thread 2.
r2 = rl.x; r6.x = 3;
r3 = q;
r4é = r3.x;
r5 = rl.x;
— Compiler optimization, common subexpr. elimin.:
rl = p; ré6 = p;
r2 = rl.x; r6.x = 3;
r3 = q;
r4é = r3.x;
r5 = r2; «4'...

(p.x seems to switch from r2=0 to r4=3 and back to r5=0
e Using volatile x prevents this strangeness
30

Cost of volatile (week 4 flashback)

class IntArrayVolatile {
private volatile int[] array;
public IntArray(int length) { array = new int[length];, ... }
public boolean isSorted() {

for (int i=1; i<array.length; i++)
if (array[i-1] > array[i])
return false;
return true;

}

}

IntArray 3.4 us 0.01 131072
IntArrayVolatile 17.2 us 0.14 16384

TestVolatileCost.java

e In Java, volatile read is 5 x slower in this case

e C#/.NET 4.5, volatile read only 1.2 x slower
— But still 3.7 x slower than Java non-volatile ...

e Mono .NET performs no optim., so no slower

IT University of Copenhagen 31

| VolatileArray.cs |

Volatile prevents JIT optimizations

e For-loop body of isSorted, JITted x86 code:

Oxdf£ffO0:
Oxdfff4:
Oxdfff7:
Oxdfffa:
Oxdffff:
0xe0002:
0xe0004:
0xe0007:
0xe000b:
0xe0010:
0xe0015:
0xe0018:
0xe0O0la:
O0xe0O0le:
0xe0023:
0xe0026:
0xe0028:
0xe002c:

mov
mov
dec
mov
cmp
jae
mov
lea
mov
mov
cmp
jae
lea
mov
cmp
19

mov
inc

Oxc (%rsi) , %r8d

$rl0d, %ro9d

$r9d
Oxc(%rl2,%r8,8) ,%ecx
%$ecx, %r9d

0xe004b

Oxc (%rsi) ,%ecx
(%rl2,%r8,8) ,%rll
Oxc(%rll,%rl1l0,4) ,%rlld
Oxc (%rl2,%rcx,8) ,%r8d
%$r8d, %rl0d

0xe006d
(%rl2,%rcx,8) ,%r8
0x10(%r8,%rl1l0,4) ,%r9d
%$r9d, %rlld

0xe008d

Oxc (%rsi) , %r8d

$rl0d

; LOAD %r8d = array field
; 1 NOW IN %r9d

; i-1 IN %r9d

; LOAD %ecx = array.length

; i-1
: IF SO, THROW
; LOAD %ecx = array field
; LOAD %rll = array base addr
i-

; LOAD %r8 = array base address
; LOAD %r9d = array[i]

; RETURN FALSE
; LOAD %r8d = array field
; i+

INDEX CHECK array.length <=

; LOAD %rlld = arr[i-1]
; LOAD %r8d = array.length

INDEX CHECK array.length <=
IF SO, THROW

IF arr[i] < array[i-1]

VolatileArray.java

e Non-volatile: read arr once, unroll loop, ...:

0xcb9:
Oxcbe:
Oxcc3:
Oxcc6:

mov
mov
cmp

g

Oxc (%rdi,%rll,4) ,%r8d
0x10(%rdi,%rll,4),%rl0d
$rl0d, $r8d

0xd85

; LOAD %rd8d = array[i-1]
; LOAD %rdl0d = array|[i]

; RETURN FALSE

IF array[i] > array[i-1]

32

C#/.NET memory model?

e Quite similar to Java
- C# Language Specification, Ecmma-334 standard

e But weaknesses and unclarities
— C# readonly has no visibility effect unlike £inal
— C# volatile is weaker than in Java
— Allowed to lift variable read out of loop?
— “Read introduction” seems downright horrible!

e If you write concurrent C# programs, read:

— Ostrovsky: The C# Memory Model in Theory and
Practice, MSDN Magazine, December 2012

— Even though optional in this course

IT University of Copenhagen

33

e Visibility effect of C#/.NET readonly fields not mentioned in C#
Language Specification or Ecma-335 CLI Specification (initonly)

e In fact, no visibility guarantee is intended...

Right. The CLI doesn't give any special status to initonly fields, from a memory ordering/visibility
perspective. As with ordinary fields, if they are shared between threads then some sort of fence is needed to
ensure consistency. This could be in the form of a volatile write, as Carol suggests, or any of the common
synchronization primitives such as releasing a lock, setting an event, etc.

Eric

----- Original Message-----

From: Carol Eidt

Sent: Tuesday, December 4, 2812 18:14 AM

To: Peter Sestoft; Mads Torgersen; Eric Eilebrecht

Cc: Carol Eidt

Subject: RE: Visibility (from other threads) of readonly fields in C#/.NET?

Hi Peter,

I apologize for not responding more quickly to your email. I am adding Eric Eilebrecht to this thread, since he
is the CLR's memory ordering expert.

I believe that section I.12.6.4 Optimization addresses this, but one has to read between the lines:

"Conforming implementations of the CLI are free to execute programs using any technology that guarantees, within
a single thread of execution, that side-effects and exceptions generated by a thread are visible in the order
specified by the CIL. For this purpose only volatile operations (including volatile reads) constitute visible
side-effects. (Note that while only volatile operations constitute visible side-effects, volatile operations also
affect the visibility of non-volatile references.)"

Where it says " volatile operations also affect the visibility of non-volatile references", this implies (though
vaguely) that volatile reads & writes behave as some form of memory fence, though whether it is bi-directional or
acquire-release is left unstated. I also believe that the above implies that, in order to achieve the desired
visibility of initonly fields, one would have to declare a volatile field that would be written last, effectively
“publishing" the other fields.

I certainly wouldn't say that the Java memory model make too much fuss over this - it's just fundamentally
tricky!

Carol 34

C#/.NET volatile weaker than Java’s

class StoreBufferExample ({
volatile bool A = false;

public void ThreadA() {

TestVolatile.cs

volatile bool B = false; A = tryue:
volat%le bool A Won = false; Thread.MemoryBarrier () ;
volatile bool B Won = false; if (1B)
public void ThreadA () { STem — Lc L
A = true;) ™
if (!'B) N
A Won = true; <
} public void ThreadB () { %
public void ThreadB() { B = true; %
B = true: Thread.MemoryBarrier () ; ©
if ('A) if (!'A)
B Won = true; B Won = true;
} }
}
e C#: possible to getA won = B won = true !

— Not JIT compiler, but CPU store buffer delay on A
— To fix in C#, add MemoryBarrier call (no Java equ.)

35

« A read of a volatile field is called a volatile read. A volatile
read has “acquire semantics”; that is, it is guaranteed to
occur prior to any references to memory that occur after it in
the instruction sequence.

« A write of a volatile field is called a volatile write. A volatile
write has “release semantics”; that is, it is guaranteed to
happen after any memory references prior to the write
instruction in the instruction sequence.

e A C# volatile read may move earlier, a
volatile write may move later, hence trouble

e Not in Java:

If a programmer protects all accesses to shared data via locks
or declares the fields as volatile, she can forget about the Java
Memory Model and assume interleaving semantics, that is,
Sequential Consistency.

Lochbichler: Making the Java memory model safe, ACM TOPLAS, December 2013

C# Language Spec 2006, §17.4.3

MemoryBarrier() in C#/.NET

Synchronizes memory access as follows: The processor executing
the current thread cannot reorder instructions in such a way that
memory accesses prior to the call to MemoryBarrier execute after
memory accesses that follow the call to MemoryBarrier.

MemoryBarrier is required only on multiprocessor systems with
weak memory ordering (for example, a system employing
multiple Intel Itanium processors).

System.Threading.Thread.MemoryBarrier API docs 4.5

e But seems sometimes to be needed anyway
— also on x86

e Java does not have such a method, because
Java volatile gives better guarantees

IT University of Copenhagen 37

e Michael and Scott unbounded queue
e Perspective: Work-stealing dequeues

e Progress concepts
- Wait-free, lock-free, obstruction-free

e Java Memory Model
o C#/.NET memory model
e Union-find data structure

e Possible parallel programming projects

IT University of Copenhagen

The union-find data structure

e Efficient way to maintain equivalence classes

: Tarjan: Data structures and
¢ Used N network algorithms, 1983

- type inference in compilers: F#, Scala, C# ...
- Image segmentation
- network analysis: chips, WWW, Facebook friends ...

e Example: family relations, who are related?

l Sue is Pat’s sister

Al Alice is Bob’s sister
ice Bob Sue Mary is John’s mother
Mary is Bob’s mother

Pat Are Sue and Mary
Mary P h related?
o

39

Three union-find implementations

e A: Coarse-locking = Synchronized methods

e B: Fine-locking = Lock on each set partition

e C: Wait-free = Optimistic, CAS-based
interface UnionFind {

int find(int x); Ji)

void union(int x, int y);

boolean sameSet(int x, int y); T
}
class Node { class CoarseUnionFind implements UnionFind {
volatile int private final Node[] nodes;
next, rank;
} public CoarseUnionFind(int count) {

this.nodes = new Node[count];
for (int x=0; x<count; x++)
nodes[x] = new Node(x);

TestUnionFind.java

Coarse-locking union-find

class CoarseUnionFind implements UnionFind {

private final Node[] nodes;
public synchronized int find(int x) { -
while (nodes[x].next != x) {

final int t = nodes[x].next, u = nodes[t].next;
nodes[x] .next = u;

UF A

} —>I x t—{u

l’ TestUnionFind.java

return x;

}

public synchronized void union(int x, int y) {

int rx = find(x), ry = £find(y);
if (tx == 1Y) i
return;

if (nodes[rx].rank > nodes[ry].rank) {
int tmp = rx; rx = ry; ry = tmp;

}
nodes[rx] .next = ry;
if (nodes[rx].rank == nodes[ry].rank)

nodes[ry] .rank++;

UF B

Fine-locking union-find

e No locking in find
— Do path compression separately
— Ensure visibility by volatile next, rank in Node

class FineUnionFind implements UnionFind {
public int find(int x) {

while (nodes[x].next != Xx)
X = nodes[x].next;

return x;

}

// Assumes lock is held on nodes[root]
private void compress(int x, final int root) {
while (nodes[x].next != x) {

TestUnionFind.java

int next = nodes[x].next; -
nodes[x] .next = root;

X = next;

}

}
}

IT University of Copenhagen 42

UF B

Fine-locking union-find

public void union(final int x, final int y) {
while (true) {
int rx = find(x), ry = find(y);
if (rx == ry)
return;

else if (rx > ry) {

}

synchronized (nodes[rx]) {

S

} o}
}}

rnchronized (nodes[ry]) {

continue;

if (nodes[rx].next != rx || nodes[ry].next != ry)

if (nodes[rx].rank > nodes[ry].rank) {
int tmp = rx; rx = ry; ry = tmp;

}
nodes[rx] .next = ry;
if (nodes[rx].rank == nodes[ry].rank)

nodes[ry] .rank++;
compress (X, ry);

compress(y, ry);

TestUnionFind.java

43

Wait-free union-find with CAS L[UF¢c

class Node { Anderson and Woll: Wait-free
. . . . parallel algorithms for the
prfvate f%nal %tomchnteger next; union-find problem, 1991
private final int rank;

}

public int find(int x) {
while (nodes.get(x).next.get() != x) {
final int t = nodes.get(x).next.get(),
u = nodes.get(t).next.get();
nodes.get (x) .next.compareAndSet(t, u);

TestUnionFind.java

X = u;

}

return Xx;

}

boolean updateRoot (int x, int oldRank, int y, int newRank) {
final Node oldNode = nodes.get(x);

if (oldNode.next.get() != x || oldNode.rank != oldRank)
return false;

Node newNode = new Node(y, newRank);
return nodes.compareAndSet (x, oldNode, newNode);

} 44

UF C
Wait-free union-find: union T

public void union(int x, int y) {
int xr, yr;
do {
x = find(x);

Xr = nodes.get(X) .rank;
yr = nodes.get(y).rank;
if (xr > yr || xr == yr && x > y) {
{ int tmp = x; x = y; y = tmp; }
{ int tmp = xr; xr = yr; yr = tmp; }

}
} (while (!updateRoot(x, xr, y, Xxr));

if (xr == yr)
updateRoot(y, yr, y, yr+l);
setRoot (x);

y = find(y); s
if (x == y) E
return; S

=

i

IT University of Copenhagen 45

Some PCPP-related thesis projects

e Design, implement and test concurrent
versions of C5 collection classes for .NET

- http://www.itu.dk/research/c5/

e The Popular Parallel Programming (P3) project
— Static dataflow partitioning algorithms
— Dynamic scheduling algorithms on .NET
— Vector (SSE, AVX) .NET intrinsics for spreadsheets
— Supercomputing with Excel and .NET
- http://www.itu.dk/people/sestoft/p3/

e Investigate Java Pathfinder for test and
coverage analysis of concurrent software
- http://babelfish.arc.nasa.qgov/trac/ipf

IT University of Copenhagen 46

e Reading

— Michael & Scott 1996: Simple, fast, and practical
non-blocking and blocking concurrent gueue ...

— Goetz chapter 15 and 16
- Herlihy & Shavit section 3.8
— Optional: JLS 8 §17.4

e EXercises

— Test and experiment with the lock-free Michael &
Scott queue

e Read before next week — Claus lectures!

- Armstrong, Virding, Williams: Concurrent
programming in Erlang, chapters 1, 2, 5, 11.1

IT University of Copenhagen

