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Plan for today 
•  Michael and Scott unbounded queue 
•  Perspective: Work-stealing dequeues 
•  Progress concepts 

– Wait-free, lock-free, obstruction-free 
•  Java Memory Model 
•  C#/.NET memory model 
•  Union-find data structure 

•  Possible parallel programming projects 



IT University of Copenhagen 

Lock-based queue with sentinel 
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private static class Node<T> { 
  final T item; 
  Node<T> next; 
} 

class LockingQueue<T> implements UnboundedQueue<T> {   
  private Node<T> head, tail; 
 
  public LockingQueue() { 
    head = tail = new Node<T>(null, null); 
  } 
  ... 
} 
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Invariants: 
tail.next=null 
If empty, head=tail 
If non-empty: head≠tail,  

 head.next is first item,  
 tail points to last item 

sentinel 

head 

tail 

7 9 13 
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Lock-based queue operations 

 
•  Important property:   

– Enqueue (put) updates tail but not head!
– Dequeue (take) updates head but not tail!
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public synchronized void enqueue(T item) { 
  Node<T> node = new Node<T>(item, null); 
  tail.next = node; 
  tail = node; 
} 

public synchronized T dequeue() { 
  if (head.next == null)  
    return null; 
  Node<T> first = head; 
  head = first.next; 
  return head.item; 
} 

Enqueue 
at tail 

Dequeue from 
second node, 
becomes new 
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Michael-Scott lock-free queue, CAS 

 
•  If non-empty:  

–  head.next is first item, tail points to  
last item ("quiescent state") or the  
second-last item ("intermediate state") 

5 

private static class Node<T> { 
  final T item; 
  final AtomicReference<Node<T>> next; 
} 

class MSQueue<T> implements UnboundedQueue<T> { 
  private final AtomicReference<Node<T>> head, tail; 
 
  public MSQueue() { 
    Node<T> dummy = new Node<T>(null, null); 
    head = new AtomicReference<Node<T>>(dummy); 
    tail = new AtomicReference<Node<T>>(dummy); 
  } 
} 
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Michael and Scott: Simple, Fast, 
and Practical Non-Blocking and 
Blocking Concurrent Queue 
Algorithms, 1996 
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Intermediate state and "help" 
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Michael & Scott queue operations 
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sentinel 

head 

tail 

7 9 13 

After Herlihy & Shavit p. 232  

Two-step 
dequeue 

read value 

CAS head 

1

42 2

Two-step 
enqueue 

CAS next 1

CAS tail 2

Q 2 



Michael-Scott dequeue (take) 
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public T dequeue() { 
  while (true) { 
    Node<T> first = head.get(),  
            last = tail.get(),  
            next = first.next.get(); 
    if (first == head.get()) { 
      if (first == last) { 
        if (next == null) 
          return null; 
        else 
          tail.compareAndSet(last, next); 
      } else { 
        T result = next.item; 
        if (head.compareAndSet(first, next)) { 
          return result; 
        } 
      } 
    } 
  } 
} 

Try move 
head 

Intermediate, 
try move tail (*) 

1

2

In Java or C#,  
but not C/C++,  

(1) can go after (2) 

Q 2 

Needed? 
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Michael-Scott enqueue (put) 

9 

public void enqueue(T item) { // at tail 
  Node<T> node = new Node<T>(item, null); 
  while (true) { 
    Node<T> last = tail.get(),  
            next = last.next.get(); 
    if (last == tail.get()) { 
      if (next == null)  { 
        if (last.next.compareAndSet(next, node)) { 
          tail.compareAndSet(last, node); 
          return; 
        } 
      } else { 
        tail.compareAndSet(last, next); 
      } 
    } 
  } 
} 

Quiescent, try add 

Success, try 
move tail 

Intermediate, 
try move tail 

1

2

"help another 
enqueuer" 

Needed? 
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(*) Why must dequeue 
mess with the tail? 
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while (true) { 
  ... 
  if (first == last) { 
    if (next == null) 
      return null; 
    else 
      tail.compareAndSet(last, next); 
  } else ... 
} 

Q 2 
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sentinel 

head 

tail 
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A: enqueue(7) 
A: update a.next  
B: dequeue() 
B: update head 
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Queue is empty, 
head==tail 

Now tail lags behind  
head, not good  
So next dequeue  
should move tail  
before moving head 

Intermediate, 
try move tail 



Understanding Michael-Scott queue 
•  Linearizable, with linearization points: 

– enqueue: successful CAS at E9 
– dequeue returning null: D3 
– dequeue returning item: successful CAS at D13 

•  Lineariz’n point = where method takes effect 
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public void enqueue(T item) { // at tail 
  Node<T> node = new Node<T>(item, null); 
  while (true) { 
    Node<T> last = tail.get(),  
            next = last.next.get(); 
    if (last == tail.get()) { // E7 
      if (next == null)  { 
        if (last.next.compareAndSet(next, node)) { 
          tail.compareAndSet(last, node); 
          return; 
        } 
      } else  
        tail.compareAndSet(last, next); 
    } 
  } 
} 
 

Groves: Verifying Michael and Scott’s Lock-Free 
Queue Algorithm using Trace Reduction, 2008 

public T dequeue() { // from head 
  while (true) { 
    Node<T> first = head.get(),  
            last = tail.get(), 
            next = first.next.get(); 
    if (first == head.get()) { // D5 
      if (first == last) { 
        if (next == null) 
          return null; 
        else 
          tail.compareAndSet(last, next); 
      } else { 
        T result = next.item; 
        if (head.compareAndSet(first, next)) 
          return result; 
      } 
    } 
  } 
} 

D13 

D3 

E9 



private final AtomicReferenceFieldUpdater<Node<T>, Node<T>> nextUpdater  
  = AtomicReferenceFieldUpdater.newUpdater((Class<Node<T>>)(Class<?>)(Node.class),  
                                           (Class<Node<T>>)(Class<?>)(Node.class),  
                                           "next");  

Nice, but ... needs a lot of 
AtomicReference objects 

12 

private static class Node<T> { 
  final T item; 
  final AtomicReference<Node<T>> next; 
 
  public Node(T item, Node<T> next) { 
    this.item = item; 
    this.next = new AtomicReference<Node<T>>(next); 
  } 
} 

private static class Node<T> { 
  final T item; 
  volatile Node<T> next; 
  ... 
} 

Must be 
CAS'able 

One AR 
per Node 

Better, no 
AtomicReference 
object needed 

Instead, make  
an "updater" 

Q 3 

Q 3 

Q 2 

A
 la

 G
oe

tz
 p

. 
33

5 
 



IT University of Copenhagen 

Michael-Scott enqueue,  
using the "updater" for last.next!

13 

public void enqueue(T item) { // at tail 
  Node<T> node = new Node<T>(item, null); 
  while (true) { 
    Node<T> last = tail.get(), next = last.next; 
    if (last == tail.get()) { 
      if (next == null)  { 
        if (nextUpdater.compareAndSet(last, next, node)) { 
          tail.compareAndSet(last, node); 
          return; 
        } 
      } else { 
        tail.compareAndSet(last, next); 
      } 
    } 
  } 
} 

Q 3 

If “next” field of 
last equals 

next, set to node!
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Queue benchmarks 
•  Queue implementations 

–  Lock-based 
–  Lock-based, sentinel node 
–  Lock-free, sentinel node, AtomicReference 
–  Lock-free, sentinel node, AtomicReferenceFieldUpdater 

•  Platforms 
–  Hotspot 64 bit Java 1.7.0_b147, Windows 7, Xeon W3505, 

2.53GHz, 2 cores, 2009Q1 
–  Hotspot 64 bit Java 1.6.0_37, MacOS, Core 2 Duo, 

2.66GHz, 2 cores, 2008Q1 
–  Icedtea Java 1.7.0_b21, Linux, Xeon E5320, 1.86GHz, 4/8 

cores, 2006Q4 
–  Hotspot 64 bit Java 1.7.0_25-b15, Linux, AMD Opteron 

6386 SE, 32 cores, 2012Q4 
•  Measurements probably flawed: the client threads 

do no useful work, only en/dequeue 
•  Nevertheless, big differences between machines 

14 



Java 1.7, Xeon W3505, 2 cores 

15 

0 

1 

2 

3 

4 

5 

6 

0 2 4 6 8 10 12 14 16 18 20 

LockQueue            

MSNonblockingQueue   

MSNonblockingQueueRefl 

SentinelLockQueue    

Time as 
function of 
number of 
concurrent 
threads 



0 

1 

2 

3 

4 

5 

6 

0 2 4 6 8 10 12 14 16 18 20 

LockQueue            

MSNonblockingQueue   

MSNonblockingQueueRefl 

SentinelLockQueue    

Java 1.6, Core 2 Duo, 2 cores 

16 



Java 1.7, Xeon E5320, 4/8 cores 
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Java 1.7, AMD Opteron, 32 cores 
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Plan for today 
•  Michael and Scott unbounded queue 
•  Perspective: Work-stealing dequeues 
•  Progress concepts 

– Wait-free, lock-free, obstruction-free 
•  Java Memory Model 
•  C#/.NET memory model 
•  Union-find data structure 

•  Possible parallel programming projects 
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Perspective: Work-stealing dequeues 
•  Double-ended concurrent queues 
•  Used to implement 

–  Java 7’s Fork-Join framework, and Akka (wk 13-14) 
–  Java 8’s newWorkStealingPool executor 
–  .NET 4.0 Task Parallel Library 

•  Chase and Lev: Dynamic circular 
work-stealing queue, SPAA 2005 

•  Michael, Vechev, Saraswat: Idem- 
potent work stealing, PPoPP 2009 

•  Leijen, Schulte, Burckhardt: The design  
of a task parallel library, OOPSLA 2009 

20 

Java 8 
source 

.NET 
TPL 



A worker/task framework 

•  Worker threads pop and push tasks on queue 
•  Not scalable because single queue is used 

by many threads 
21 

Worker 
threads Common task queue 



Better worker/task framework 

•  Fewer memory write conflicts: 
– Most queue accesses are from local thread only 
– Pop from bottom, steal from top, conflicts are rare 

•  Much better scalability 22 

Worker 
threads 

Thread-local work- 
stealing dequeues 

pop task 
push task 

steal interface WSDeque<T> { 
  void push(T item); 
  T pop(); 
  T steal(); 
} 
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Plan for today 
•  Michael and Scott unbounded queue 
•  Perspective: Work-stealing dequeues 
•  Progress concepts 

– Wait-free, lock-free, obstruction-free 
•  Java Memory Model 
•  C#/.NET memory model 
•  Union-find data structure 

•  Possible parallel programming projects 



Progress concepts 
•  Non-blocking: A call by thread A cannot  

prevent a call from thread B from completing 
– Not true for lock-based queue: A holds lock to 
put(), gets descheduled or crashes, while B 
wants to take() but cannot get lock!

•  Wait-free: Every call finishes in finite time 
– True for SimpleTryLock’s tryLock!
– Not true for AtomicInteger’s getAndAdd!

•  Bounded wait-free: Every ... in bounded time!
•  Lock-free: Some call finishes in finite time 

– True for AtomicInteger’s getAndAdd!
– Any wait-free method is also lock-free 
– Lock-free is good enough in practice! 

24 
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Shavit et al, CACM November 2014, p. 13-15 
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Obstruction freedom 
•  Obstruction-free: If a method call executes 

alone, it finishes in finite time 
– Lock-based data structures are not obstruction-free 
– A lock-free method is also obstruction-free 
– Obstruction-free sounds rather weak, but in 

combination with back-off it ensures progress 
– Some people even think it too strong: 

25 

Ennals 2006: STM should not be obstruction-free 

... we argue that obstruction-freedom is not an 
important property for software transactional memory, 
and demonstrate that, if we are prepared to drop the 
goal of obstruction-freedom, software transactional 
memory can be made significantly faster 
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Plan for today 
•  Michael and Scott unbounded queue 
•  Perspective: Work-stealing dequeues 
•  Progress concepts 

– Wait-free, lock-free, obstruction-free 
•  Java Memory Model 
•  C#/.NET memory model 
•  Union-find data structure 

•  Possible parallel programming projects 
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Why do I need a memory model? 
•  Threads in Java and C# and C etc 

communicate via mutable shared memory 
•  We need compiler optimizations for speed 

– Compiler optimizations that are harmless in thread 
A may seem strange from thread B 

– Disallowing strangeness leads to slow software 
•  We need CPU caches for speed 

– With caches, write-to-RAM order may seem strange 
•  So we have to live with some strangeness 
•  A memory model tells how much strangeness 
•  The Java Memory Model is quite well-defined 

–  JLS §17.4, Goetz §16, Herlihy & Shavit §3.8 
27 



The happens-before relation in Java 
•  A program order of a thread t is some total order of the thread’s actions 

that is consistent with the intra-thread semantics of t 

•  Action x synchronizes-with action y is defined as follows: 
–  An unlock action on monitor m synchronizes-with all subsequent lock actions on m 
–  A write to a volatile variable v synchronizes-with all subsequent reads of v by any 

thread 
–  An action that starts a thread synchronizes-with the first action in the thread it starts 
–  The write of the default value (zero, false, or null) to each variable synchronizes-with 

the first action in every thread 
–  The final action in a thread T1 synchronizes-with any action in another thread T2 

that detects that T1 has terminated 
–  If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-with any point 

where any other thread (including T2) determines that T2 has been interrupted 

•  Action x happens-before action y, written hb(x,y), is defined: 
–  If x and y are actions of the same thread and x comes before y in program order, 

then hb(x, y) 
–  There is a happens-before edge from the end of a constructor of an object to the 

start of a finalizer for that object 
–  If an action x synchronizes-with a following action y, then we also have hb(x,y) 
–  If hb(x, y) and hb(y, z), then hb(x, z) – that is, hb is transitive 

28 Goetz §16.3.1  Java Language Specification §17.4  



Strange but legal behavior in Java 
•  Java Language Specification, sect 17.4: 

– Run these code fragments in two threads 
– Shared fields A, B initially 0; local variables r1, r2 

•  What are the possible results? 
– Strangely, r1==1 and r2==2 is possible 
– An ordering consistent with happens-before relation 

29 

r2=A;  
B=1; 

r1=B;  
A=2; 

Thread 1 Thread 2 
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B=1; 
A=2; 
r2=A; 
r1=B;   



Why permit such strange behaviors? 
•  More comprehensible example from JLS 17.4 

– Assume p, q shared, p==q and p.x==0 

– Compiler optimization, common subexpr. elimin.: 

(p.x seems to switch from r2=0 to r4=3 and back to r5=0 

•  Using volatile x prevents this strangeness 
30 

r1 = p; !
r2 = r1.x; !
r3 = q; !
r4 = r3.x; !
r5 = r1.x;!

r6 = p; !
r6.x = 3;!

r1 = p; !
r2 = r1.x; !
r3 = q; !
r4 = r3.x; !
r5 = r2;!

r6 = p; !
r6.x = 3;!

Thread 1 Thread 2 

NB! 
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Cost of volatile (week 4 flashback) 

•  In Java, volatile read is 5 x slower in this case 
•  C#/.NET 4.5, volatile read only 1.2 x slower 

– But still 3.7 x slower than Java non-volatile ... 
•  Mono .NET performs no optim., so no slower 

31 

class IntArrayVolatile { 
  private volatile int[] array;  
  public IntArray(int length) { array = new int[length]; ... } 
  public boolean isSorted() { 
    for (int i=1; i<array.length; i++) 
      if (array[i-1] > array[i]) 
        return false; 
    return true; 
  } 
} 

IntArray              3.4 us       0.01     131072 
IntArrayVolatile     17.2 us       0.14      16384 

Te
st

Vo
la

til
eC

os
t.

ja
va

 
Vo

la
til

eA
rr

ay
.c

s 



0xcb9: mov    0xc(%rdi,%r11,4),%r8d     ; LOAD %rd8d = array[i-1] 
0xcbe: mov    0x10(%rdi,%r11,4),%r10d   ; LOAD %rd10d = array[i] 
0xcc3: cmp    %r10d,%r8d                ; IF array[i] > array[i-1] 
0xcc6: jg     0xd85                     ; RETURN FALSE 

Volatile prevents JIT optimizations 
•  For-loop body of isSorted, JITted x86 code: 

•  Non-volatile: read arr once, unroll loop, ...: 

32 

0xdfff0: mov    0xc(%rsi),%r8d          ; LOAD %r8d = array field 
0xdfff4: mov    %r10d,%r9d              ; i NOW IN %r9d 
0xdfff7: dec    %r9d                    ; i-1 IN %r9d 
0xdfffa: mov    0xc(%r12,%r8,8),%ecx    ; LOAD %ecx = array.length 
0xdffff: cmp    %ecx,%r9d               ; INDEX CHECK array.length <= i-1 
0xe0002: jae    0xe004b                 ; IF SO, THROW 
0xe0004: mov    0xc(%rsi),%ecx          ; LOAD %ecx = array field 
0xe0007: lea    (%r12,%r8,8),%r11       ; LOAD %r11 = array base address 
0xe000b: mov    0xc(%r11,%r10,4),%r11d  ; LOAD %r11d = arr[i-1] 
0xe0010: mov    0xc(%r12,%rcx,8),%r8d   ; LOAD %r8d = array.length 
0xe0015: cmp    %r8d,%r10d              ; INDEX CHECK array.length <= i 
0xe0018: jae    0xe006d                 ; IF SO, THROW 
0xe001a: lea    (%r12,%rcx,8),%r8       ; LOAD %r8 = array base address 
0xe001e: mov    0x10(%r8,%r10,4),%r9d   ; LOAD %r9d = array[i] 
0xe0023: cmp    %r9d,%r11d              ; IF arr[i] < array[i-1] 
0xe0026: jg     0xe008d                 ; RETURN FALSE 
0xe0028: mov    0xc(%rsi),%r8d          ; LOAD %r8d = array field 
0xe002c: inc    %r10d                   ; i++ Vo
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3 reads of 
array field 

2 index 
checks 
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C#/.NET memory model? 
•  Quite similar to Java 

– C# Language Specification, Ecma-334 standard 
•  But weaknesses and unclarities 

– C# readonly has no visibility effect unlike final!
– C# volatile is weaker than in Java 
– Allowed to lift variable read out of loop? 
–  “Read introduction” seems downright horrible! 

•  If you write concurrent C# programs, read: 
– Ostrovsky: The C# Memory Model in Theory and 

Practice, MSDN Magazine, December 2012 
– Even though optional in this course 

33 



•  Visibility effect of C#/.NET readonly fields not mentioned in C# 
Language Specification or Ecma-335 CLI Specification (initonly) 

•  In fact, no visibility guarantee is intended... 

34 



C#/.NET volatile weaker than Java’s 

•  C#: possible to get A_won = B_won = true !!
– Not JIT compiler, but CPU store buffer delay on A 
– To fix in C#, add MemoryBarrier call (no Java equ.) 

35 

class StoreBufferExample { 
  volatile bool A = false; 
  volatile bool B = false; 
  volatile bool A_Won = false; 
  volatile bool B_Won = false; 
  public void ThreadA() { 
    A = true; 
    if (!B)  
      A_Won = true; 
  } 
  public void ThreadB() { 
    B = true; 
    if (!A) 
      B_Won = true; 
  } 
} 
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public void ThreadA() { 
  A = true; 
  Thread.MemoryBarrier(); 
  if (!B)  
    aWon = 1; 
} 

public void ThreadB() { 
  B = true; 
  Thread.MemoryBarrier(); 
  if (!A) 
    B_Won = true; 
} 
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C# volatile vs Java volatile 
 

 
•  A C# volatile read may move earlier, a 

volatile write may move later, hence trouble 
•  Not in Java: 

36 

•  A read of a volatile field is called a volatile read. A volatile 
read has “acquire semantics”; that is, it is guaranteed to 
occur prior to any references to memory that occur after it in 
the instruction sequence. 

•  A write of a volatile field is called a volatile write. A volatile 
write has “release semantics”; that is, it is guaranteed to 
happen after any memory references prior to the write 
instruction in the instruction sequence. 
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If a programmer protects all accesses to shared data via locks 
or declares the fields as volatile, she can forget about the Java 
Memory Model and assume interleaving semantics, that is, 
Sequential Consistency. 

Lochbichler: Making the Java memory model safe, ACM TOPLAS, December 2013 
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MemoryBarrier() in C#/.NET 

 

•  But seems sometimes to be needed anyway 
– also on x86 

•  Java does not have such a method, because 
Java volatile gives better guarantees 

 
 

37 

Synchronizes memory access as follows: The processor executing 
the current thread cannot reorder instructions in such a way that 
memory accesses prior to the call to MemoryBarrier execute after 
memory accesses that follow the call to MemoryBarrier. 

MemoryBarrier is required only on multiprocessor systems with 
weak memory ordering (for example, a system employing 
multiple Intel Itanium processors). 

System.Threading.Thread.MemoryBarrier API docs 4.5  
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Plan for today 
•  Michael and Scott unbounded queue 
•  Perspective: Work-stealing dequeues 
•  Progress concepts 

– Wait-free, lock-free, obstruction-free 
•  Java Memory Model 
•  C#/.NET memory model 
•  Union-find data structure 

•  Possible parallel programming projects 



The union-find data structure 
•  Efficient way to maintain equivalence classes 
•  Used in  

–  type inference in compilers: F#, Scala, C# ... 
–  image segmentation 
– network analysis: chips, WWW, Facebook friends ... 

•  Example: family relations, who are related? 

39 

Tarjan: Data structures and 
network algorithms, 1983 

Alice Sue 

Mary 
John 

Pat 

Bob 

Sue is Pat’s sister 
Alice is Bob’s sister 
Mary is John’s mother 
Mary is Bob’s mother 
 
Are Sue and Mary 
related? 

root 

root 



class CoarseUnionFind implements UnionFind {!
  private final Node[] nodes;!
!
  public CoarseUnionFind(int count) {!
    this.nodes = new Node[count];!
    for (int x=0; x<count; x++)!
      nodes[x] = new Node(x);!
  }!

Three union-find implementations 
•  A: Coarse-locking = Synchronized methods 
•  B: Fine-locking = Lock on each set partition 
•  C: Wait-free = Optimistic, CAS-based 

40 

interface UnionFind {!
  int find(int x);!
  void union(int x, int y);!
  boolean sameSet(int x, int y);!
}!

class Node {!
  volatile int !
    next, rank;!
}!
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Coarse-locking union-find 

41 

UF A 

class CoarseUnionFind implements UnionFind {!
  private final Node[] nodes;!
  public synchronized int find(int x) {!
    while (nodes[x].next != x) {!
      final int t = nodes[x].next, u = nodes[t].next;!
      nodes[x].next = u;!
      x = u;!
    }!
    return x;!
  }!
  public synchronized void union(int x, int y) {!
    int rx = find(x), ry = find(y);!
    if (rx == ry)!
      return;!
    if (nodes[rx].rank > nodes[ry].rank) {!
      int tmp = rx; rx = ry; ry = tmp;!
    }!
    nodes[rx].next = ry;!
    if (nodes[rx].rank == nodes[ry].rank)!
      nodes[ry].rank++;!
  }!
}!
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Fine-locking union-find 
•  No locking in find 

– Do path compression separately 
– Ensure visibility by volatile next, rank in Node 

42 

UF B 

class FineUnionFind implements UnionFind {!
  public int find(int x) {!
    while (nodes[x].next != x) !
      x = nodes[x].next;!
    return x;!
  }!
  !
  // Assumes lock is held on nodes[root]!
  private void compress(int x, final int root) {!
    while (nodes[x].next != x) {!
      int next = nodes[x].next;!
      nodes[x].next = root;!
      x = next;!
    }!
  }!
}!
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st
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Fi
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.j
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a 

No path 
halving 

Path 
compression 



Fine-locking union-find 
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public void union(final int x, final int y) {!
  while (true) {!
    int rx = find(x), ry = find(y);!
    if (rx == ry)!
      return;!
    else if (rx > ry) { !
      int tmp = rx; rx = ry; ry = tmp; !
    }!
    synchronized (nodes[rx]) { !
      synchronized (nodes[ry]) {!
        if (nodes[rx].next != rx || nodes[ry].next != ry)!
          continue;!
        if (nodes[rx].rank > nodes[ry].rank) {!
          int tmp = rx; rx = ry; ry = tmp;!
        }!
        nodes[rx].next = ry;!
        if (nodes[rx].rank == nodes[ry].rank)!
          nodes[ry].rank++;!
        compress(x, ry);!
        compress(y, ry);!
    } }  !
} }!
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Consistent 
lock order 

Restart if 
updated 

Union by rank 
and path 

compression 



Wait-free union-find with CAS 
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class Node {!
  private final AtomicInteger next;!
  private final int rank;!
}!

Te
st

U
ni

on
Fi

nd
.j

av
a 

public int find(int x) {!
  while (nodes.get(x).next.get() != x) {!
    final int t = nodes.get(x).next.get(), !
              u = nodes.get(t).next.get();!
    nodes.get(x).next.compareAndSet(t, u);!
    x = u;!
  }!
  return x;!
}!

Path 
halving 

with CAS 

boolean updateRoot(int x, int oldRank, int y, int newRank) {!
  final Node oldNode = nodes.get(x);!
  if (oldNode.next.get() != x || oldNode.rank != oldRank)!
    return false;!
  Node newNode = new Node(y, newRank);!
  return nodes.compareAndSet(x, oldNode, newNode);!
}!

Atomic update of root 
nodes[x] to point to 

fresh Node(y,newRank) 

Anderson and Woll: Wait-free 
parallel algorithms for the 
union-find problem, 1991 
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Wait-free union-find: union 
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public void union(int x, int y) {!
  int xr, yr;!
  do {!
    x = find(x); !
    y = find(y);!
    if (x == y)!
      return;!
    xr = nodes.get(x).rank;!
    yr = nodes.get(y).rank;!
    if (xr > yr || xr == yr && x > y) {!
      { int tmp = x; x = y; y = tmp; }!
      { int tmp = xr; xr = yr; yr = tmp; }!
    }!
  } while (!updateRoot(x, xr, y, xr));!
  if (xr == yr) !
    updateRoot(y, yr, y, yr+1);!
  setRoot(x);    !
}!

Union-by-rank, 
deterministic  

Restart if 
updated 
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Some PCPP-related thesis projects 
•  Design, implement and test concurrent 

versions of C5 collection classes for .NET 
– http://www.itu.dk/research/c5/ 

•  The Popular Parallel Programming (P3) project 
– Static dataflow partitioning algorithms 
– Dynamic scheduling algorithms on .NET 
– Vector (SSE, AVX) .NET intrinsics for spreadsheets 
– Supercomputing with Excel and .NET 
– http://www.itu.dk/people/sestoft/p3/ 

•  Investigate Java Pathfinder for test and 
coverage analysis of concurrent software 
– http://babelfish.arc.nasa.gov/trac/jpf 
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This week 
•  Reading 

– Michael & Scott 1996: Simple, fast, and practical 
non-blocking and blocking concurrent queue ... 

– Goetz chapter 15 and 16 
– Herlihy & Shavit section 3.8 
– Optional: JLS 8 §17.4 

•  Exercises 
– Test and experiment with the lock-free Michael & 

Scott queue 
•  Read before next week – Claus lectures! 

– Armstrong, Virding, Williams: Concurrent 
programming in Erlang, chapters 1, 2, 5, 11.1 
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