
PCPP IT University, E2016

Exercises week 3
Friday 16 September 2016*

Last update 2016-09-16

Goal of the exercises
The goal of this week’s exercises is to make sure that you can use Java 8 functional programming (including
immutable data, functional interfaces, lambda expressions, and method reference expressions), and in particular
Java 8 (parallel) streams and parallel array operations through mostly-functional programming.

Do this first
Get and unpack this week’s example code in zip file pcpp-week03.zip on the course homepage.

Exercise 3.1 In this exercise you will extend class FunList<T> of immutable singly-linked lists from Java Pre-
cisely Example 154 (source code in file Example154.java). In the solutions, feel free to use recursion instead of
explicit loops when convenient; do not worry about stack overflow. In the descriptions below, the given list is
assumed to have elements x1, x2, . . . , xn.

1. Add a method FunList<T> remove(T x) that creates a new list in which all occurrences of x have
been removed.

2. Add a method int count(Predicate<T> p) that returns the number of elements that satisfy predi-
cate p. Remember to import the Predicate type.

3. Add a method FunList<T> filter(Predicate<T> p) that creates a new list that contains exactly
those elements that satisfy predicate p.

4. Show how to implement an alternative version of remove, called removeFun, by a call to filter and
using a lambda expression, and no explicit recursion or iteration.

5. Add a static method FunList<T> flatten(FunList<FunList<T>> xss) that creates a single
list containing all the elements of the individual lists in xss, in order of appearance.

6. Show how to implement an alternative version of flatten, called flattenFun, using reduce, a
lambda expression, and append, and no explicit recursion or iteration.

7. Add a method <U> FunList<U> flatMap(Function<T,FunList<U>> f) that computes the
lists f.apply(x1), f.apply(x2), . . . , f.apply(xn) and then returns the concatenation or flatten-
ing of these lists. Write both an explicit implementation, using recursion or iteration, and an implementation
called flatMapFun using map and flatten, and no explicit recursion or iteration.

8. Add a method FunList<T> scan(BinaryOperator<T> f) that returns a list y1, y2, . . . , yn of the
same length as the given list x1, x2, . . . , xn. Here y1 equals x1, and for i > 1 it should hold that yi equals
f.apply(yi−1, xi).

Exercise 3.2 In this exercise we will use parallel array operations to experimentally investigate the assertion that
the count π(n) of prime numbers less than or equal to n is proportional to n/ ln(n), where ln(n) is the natural
logarithm of n. More precisely, the ratio π(n)/(n/ ln(n)) converges to 1 for large n. This is known as the prime
number theorem.

1. Create an int array a of size N , for instance for N = 10,000,001. Use method parallelSetAll from
utility class Arrays to initialize position a[i] to 1 if i is a prime number and to 0 otherwise. You may use
method isPrime from the other prime number related examples.

2. Use method parallelPrefix from utility class Arrays to compute the prefix sums of array a. After that
operation, the new value of a[i] should be the sum of the old values a[0..i]. Therefore, the new value
of a[i] is the count of prime numbers smaller than or equal to i, that is, π(i). For instance, the value of
a[10_000_000] should be 664,579.

1



PCPP IT University, E2016

3. Use a for-loop to print the ratio between a[i] and i/ ln(i) for 10 values of i equally spaced between N/10
and N .

Exercise 3.3 This exercise is about processing a large body of English words, using streams of strings. There
is a list of some 235,000 English words and names in file /usr/share/dict/words on most Unix systems, including
MacOS. If you use Windows or do not have the file for some other reason, get it from the course homepage at
http://www.itu.dk/people/sestoft/itu/PCPP/E2016/words.zip

The exercises below should be solved without any explicit loops (or recursion) as far as possible.

1. Starting from the TestWordStream.java file, complete the readWords method and check that you can read
the file as a stream and count the number of English words in it. For the words file on the course homepage
the result should be 235,886.

2. Write a stream pipeline to print the first 100 words from the file.

3. Write a stream pipeline to find and print all words that have at least 22 letters.

4. Write a stream pipeline to find and print some word that has at least 22 letters.

5. Write a method boolean isPalindrome(String s) that tests whether a word s is a palindrome:
a word that is the same spelled forward and backward. Write a stream pipeline to find all palindromes and
print them.

6. Make a parallel version of the palindrome-printing stream pipeline. It is possible to observe whether it is
faster or slower than the sequential one?

7. Write a stream pipeline that turns the stream of words into a stream of their lengths, then finds and prints
the minimal, maximal and average word lengths.

8. Write a stream pipeline, using method collect and a groupingBy collector from class Collectors,
to group the words by length. That is, put all 1-letter words in one group, all 2-letter words in another
group, and so on, and print the groups. Optional challenge, easily answered by Java Precisely: Use another
overload of groupingBy to compute (and then print) the number of 1-letter words, the number of 2-letter
words, and so on.

9. Write a method Map<Character,Integer> letters(String s) that returns a tree map indicat-
ing how many times each letter is used in the word s. Convert all letters to lower case. For instance, if s is
the word “Persistent” then the tree map will be {e=2, i=1, n=1, p=1, r=1, s=2, t=2}.

Now write a stream pipeline that transforms all the English words into the corresponding tree map of letter
counts, and print this for the first 100 words.

10. Use the tree map stream and the reduce method to count the total number of times the letter e is used in
the English words. For the words file on the course homepage the result should be 235,331.

11. Words s1 and s2 that have the same tree map of letter counts (by letters(s1).equals(letters(s2))
are anagrams: they use the same letters the same number of times. For instance, “persistent” and “pretti-
ness” are anagrams; both have letter counts {e=2, i=1, n=1, p=1, r=1, s=2, t=2}. Use the
collect method on the word stream, groupingBy collector and the letters method to find and print
all sets of anagrams in the file of English words. This may take 15–30 seconds to compute.

For the words file on the course homepage the result should be 15,287 sets of anagrams, including {a=1,
c=1, e=1, r=1}=[Acer, acre, care, crea, race].

12. Try to make a parallel version of the anagram-printing stream pipeline. Is it faster or slower than the
sequential one? (If your computer and Java version behaves like mine, this example shows that just slapping
on .parallel() does not necessarily lead to more efficient execution).

2



PCPP IT University, E2016

Exercise 3.4 This exercise concerns various ways to create streams of doubles and of computing the sum

1

1
+

1

2
+

1

3
+ · · ·+ 1

N

for a large number N . For N = 999,999,999, the exact result should be near 21.3004815013479440166851.

1. Create a finite DoubleStream 1.0/1, 1.0/2, 1.0/3, . . . , 1.0/N where N = 999_999_999, maybe
using IntStream.range and mapToDouble. Compute the sum of such a list and print the result with
a suitably large number of digits, for instance using

System.out.printf("Sum = %20.16f%n", sum)

2. Now compute the sum also in parallel by inserting .parallel() in a suitable place in your stream
pipeline. Print the computed result. Measure the time to compute the sum sequentially and in parallel.

3. Write a classic sequential for-loop to compute the sum, and print the result. Measure the wall-clock time
used.

Mysteriously, the result produced by your for-loop may be less accurate than that produced by the sum
method on streams. This has little to do with streams, and more to do with how computers represent and
compute with floating-point numbers of type float and double. Unlike real mathematical addition,
computer floating-point addition is not associative, so we may have (x + y) + z != x + (y + z).
What the result really shows is that sum performs the summation in a more clever way than your for-loop!
Presumably, method sum uses Kahan summation. This cleverness is necessary for parallelism; without it,
sum’s result on a parallel stream of floating-point numbers might vary considerably from run to run due to
the different orders in which the floating-point numbers are added: because computer floating-point addition
is not associative, the order of summation matters.

4. Create the same finite DoubleStream as above, now imperatively using methods generate and limit
on class DoubleStream. Compute the sum of the stream sequentially and print the result. Measure the time
consumption.

5. Now try to add parallel() between limit() and sum() in an attempt to compute the sum in parallel.
What happens with the result? What happens if you run the program multiple times? What does this say
about the wisdom of using mutable state (in generate) in connection with parallel streams?

3


