
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 8

Peter Sestoft
IT University of Copenhagen

Friday 2016-10-28

IT University of Copenhagen 2

Plan for today
•  More synchronization primitives

– Semaphore – resource control, bounded buffer
– CyclicBarrier – thread coordination

•  Testing concurrent programs
– BoundedQueue (FIFO) example

•  Testing the test: Mutation
•  Coverage and interleavings

– Example: Deadlock, dining philosophers
– Exploring interleavings with Java Pathfinder

•  Concurrent correctness concepts

IT University of Copenhagen

java.util.concurrent.Semaphore
•  A semaphore holds zero or more permits
•  void acquire()!

– Blocks till a permit is available, then decrements the
permit count and returns

•  void release()!
–  Increments the permit count and returns; may cause

another blocked thread to proceed
– NB: a thread may call release() before acquire(),

so a semaphore is different from a lock!
•  A semaphore is used for resource control

– Locking may be needed for data consistency
•  Writes before release are visible after acquire!

3

class SemaphoreBoundedQueue <T> implements BoundedQueue<T> {
 private final Semaphore availableItems, availableSpaces;
 private final T[] items;
 private int tail = 0, head = 0;
 public SemaphoreBoundedQueue(int capacity) {
 this.availableItems = new Semaphore(0);
 this.availableSpaces = new Semaphore(capacity);
 this.items = makeArray(capacity);
 }
 public void put(T item) throws InterruptedException { // tail
 availableSpaces.acquire();
 doInsert(item);
 availableItems.release();
 }
 public T take() throws InterruptedException { // head
 availableItems.acquire();
 T item = doExtract();
 availableSpaces.release();
 return item;
 }
}

A bounded queue using semaphores

4

Te
st

B
ou

nd
ed

Q
ue

ue
Te

st
.j

av
a

Wait for space

Signal new item

Wait for item

Signal new space

The doInsert and doExtract methods

•  Semaphores to block waiting for “resources”
•  Locks (synchronized) for atomic state mutation

5

class SemaphoreBoundedQueue <T> implements BoundedQueue<T> {
 private final Semaphore availableItems, availableSpaces;
 private final T[] items;
 private int tail = 0, head = 0;
 public void put(T item) throws InterruptedException { ... }
 public T take() throws InterruptedException { ... }
 private synchronized void doInsert(T item) {
 items[tail] = item;
 tail = (tail + 1) % items.length;
 }
 private synchronized T doExtract() {
 T item = items[head];
 items[head] = null;
 head = (head + 1) % items.length;
 return item;
 }
}

Te
st

B
ou

nd
ed

Q
ue

ue
Te

st
.j

av
a

Bounded queue with capacity 2
Thread A Thread B bounded queue(2)

put(7)!

take()!

availableItems.acquire()
availableSpaces.acquire()!

doInsert(7)!
availableItems.release()!

7 = doExtract()!
availableSpaces.release()

availableSpaces.acquire()!
doInsert(9)!

availableItems.release()!

put(9)!

put(13)!
availableSpaces.acquire()!

doInsert(13)!
availableItems.release()!

put(17)!
availableSpaces.acquire()!

B
lo

ck
ed

B
lo

ck
ed

7!

IT University of Copenhagen 7

Plan for today
•  More synchronization primitives

– Semaphore – resource control, bounded buffer
– CyclicBarrier – thread coordination

•  Testing concurrent programs
– BoundedQueue (FIFO) example

•  Testing the test: Mutation
•  Coverage and interleavings

– Example: Deadlock, dining philosophers
– Exploring interleavings with Java Pathfinder

•  Concurrent correctness concepts

IT University of Copenhagen

Testing BoundedQueue
•  Divide into

– Sequential 1-thread test with precise results
– Concurrent n-thread test with aggregate results
–  ... that make it plausible that invariants hold

•  Sequential test for queue bq with capacity 3:

8

assertTrue(bq.isEmpty());
assertTrue(!bq.isFull());
bq.put(7); bq.put(9); bq.put(13);
assertTrue(!bq.isEmpty());
assertTrue(bq.isFull());
assertEquals(bq.take(), 7);
assertEquals(bq.take(), 9);
assertEquals(bq.take(), 13);
assertTrue(bq.isEmpty());
assertTrue(!bq.isFull());

Te
st

B
ou

nd
ed

Q
ue

ue
Te

st
.j

av
a

IT University of Copenhagen

java.util.concurrent.CyclicBarrier
•  A CyclicBarrier(N) allows N threads

–  to wait for each other, and
– proceed at the same time when all are ready

•  int await()
– blocks until all N threads have called await
– may throw InterruptedException

•  Useful to start n test threads + 1 main thread
at the same time, N = n + 1

•  Writes before await is called are visible after

it returns, in all threads passing the barrier
!

9

IT University of Copenhagen

Cyclic barrier with count 2
Thread A Thread B CyclicBarrier(2)

await()!

await()!

B
lo

ck
ed

await()!

await()!

B
lo

ck
ed

10

IT University of Copenhagen

Concurrent test of BoundedQueue
•  Run 10 producer and 10 consumer threads

– Each producer inserts 100,000 random numbers
• Using a thread-local random number generator

– Each consumer extracts 100,000 numbers
•  Afterwards, check that

– All consumers terminate, do not block on empty
– The bounded queue is again empty
– The sum of consumed numbers equals the sum of

produced numbers
•  Producers and consumers must sum numbers

– Using a thread-local sum variable, and afterwards
adding to a common AtomicInteger

11

Concurrent test of BoundedQueue

12

BoundedQueue

Producer 0

Producer 1

Producer 9

.

.

.

Consumer 0

Consumer 1

Consumer 9

.

.

.

10 threads 10 threads
1 shared
object

IT University of Copenhagen

The PutTakeTest class

13

class PutTakeTest extends Tests {
 protected CyclicBarrier barrier;
 protected final BoundedQueue<Integer> bq;
 protected final int nTrials, nPairs;
 protected final AtomicInteger putSum = new AtomicInteger(0);
 protected final AtomicInteger takeSum = new AtomicInteger(0);

 void test(ExecutorService pool) {
 try {
 for (int i = 0; i < nPairs; i++) {
 pool.execute(new Producer());
 pool.execute(new Consumer());
 }
 barrier.await(); // wait for all threads to be ready
 barrier.await(); // wait for all threads to finish
 assertTrue(bq.isEmpty());
 assertEquals(putSum.get(), takeSum.get());
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 } Te

st
B
ou

nd
ed

Q
ue

ue
Te

st
.j

av
a

G
oe

tz
 p

.
25

5

Initialize to 2*nPairs+1

Make nPairs Producers
and nPairs Consumers

Check that total
effect is plausible

Main: start,
finish threads

Being tested!

IT University of Copenhagen

A Producer test thread

14

class Producer implements Runnable {
 public void run() {
 try {
 Random random = new Random();
 int sum = 0;
 barrier.await();
 for (int i = nTrials; i > 0; --i) {
 int item = random.nextInt();
 bq.put(item);
 sum += item;
 }
 putSum.getAndAdd(sum);
 barrier.await();
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }
} Te

st
B
ou

nd
ed

Q
ue

ue
Te

st
.j

av
a

A
 la

 G
oe

tz
 p

.
25

6

Thread-local Random

Wait till all are ready

Signal I’m finished

Put 100,000 numbers

Add to global putSum

IT University of Copenhagen

A Consumer test thread

15

class Consumer implements Runnable {
 public void run() {
 try {
 barrier.await();
 int sum = 0;
 for (int i = nTrials; i > 0; --i) {
 sum += bq.take();
 }
 takeSum.getAndAdd(sum);
 barrier.await();
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }
} Te

st
B
ou

nd
ed

Q
ue

ue
Te

st
.j

av
a

G
oe

tz
 p

.
25

6

Wait till all are ready

Signal I’m finished

Take 100,000 numbers

Add to global takeSum

IT University of Copenhagen

Reflection on the concurrent test
•  Checks that item count and item sum are OK
•  The sums say nothing about item order

– Concurrent test would be satisfied by a stack also
– But the sequential test would not

•  Could we check better for item order?
– Could use 1 producer, put’ting in increasing order;

and 1 consumer take’ing and checking the order
•  But a queue correct for 1 producer and 1 consumer may

be incorrect for multiple producers or multiple consumers
– Could make test synchronize between producers

and consumers, but
•  Reduces test thread interleaving and thus test efficacy
•  Risk of artificial deadlock because queue synchronizes also

16

IT University of Copenhagen

Techniques and hints
•  Create a local random number generator for

each thread, or use ThreadLocalRandom
– Else may limit concurrency, reduce test efficacy

•  Do no synchronization between threads
– May limit concurrency, reduce test efficacy

•  Use CyclicBarrier(n+1) to start n threads
– More likely to run at the same time, better testing

•  Use it also to wait for the threads to finish
– So main thread can check the results

•  Test on a multicore machine, 4-16 cores
•  Use more test threads than cores

– So some threads occasionally get de-scheduled
17

IT University of Copenhagen 18

Plan for today
•  More synchronization primitives

– Semaphore – resource control, bounded buffer
– CyclicBarrier – thread coordination

•  Testing concurrent programs
– BoundedQueue (FIFO) example

•  Testing the test: Mutation
•  Coverage and interleavings

– Example: Deadlock, dining philosophers
– Exploring interleavings with Java Pathfinder

•  Concurrent correctness concepts

IT University of Copenhagen

How good is that test?
Mutation testing and fault injection

•  If some code passes a test,
–  is that because the code is correct?
– or because the test is too weak: bad coverage?

•  To find out, mutate the program, inject faults
– eg. remove synchronization
– eg. lock on the wrong object
– do anything that should make the code not work

•  If it still passes the test, the test is too weak
–  Improve the test so it finds the code fault

19

IT University of Copenhagen

Mutation testing quotes

•  dd

20

Budd, Lipton, Sayward, DeMillo: The design of a prototype
mutation system for software testing, 1978

IT University of Copenhagen

Some mutations to BoundedQueue

21

public void put(T item) throws InterruptedException { // tail
 availableSpaces.acquire();
 doInsert(item);
 availableItems.release();
}

private synchronized void doInsert(T item) {
 items[tail] = item;
 tail = (tail + 1) % items.length;
}

private synchronized T doExtract() {
 T item = items[head];
 items[head] = null;
 head = (head + 1) % items.length;
 return item;
 }

Delete

Delete

Delete

Delete

Delete

availableSpaces.release()

Insert

IT University of Copenhagen 22

Plan for today
•  More synchronization primitives

– Semaphore – resource control, bounded buffer
– CyclicBarrier – thread coordination

•  Testing concurrent programs
– BoundedQueue (FIFO) example

•  Testing the test: Mutation
•  Coverage and interleavings

– Example: Deadlock, dining philosophers
– Exploring interleavings with Java Pathfinder

•  Concurrent correctness concepts

IT University of Copenhagen

Test coverage
•  Sequential

– Method coverage: has each method been called?
– Statement coverage: has each statement been

executed?
– Branch coverage: have all branches of if, for,
while, do-while, switch, try-catch been
executed?

– Path coverage: have all paths through the code been
executed? (very unlikely)

•  Concurrent
–  Interleaving coverage: have all interleavings of

different methods’ execution paths been tried?
(extremely unlikely)

23

Thread interleavings
Two threads both doing count = count + 1:
 Thread A: read count; add 1; write count
 Thread B: read count; add 1; write count

Plus 10 symmetric cases, swapping red and blue

24

read count
add 1
write count
read count
add 1
write count

read count
add 1
read count
write count
add 1
write count

read count
add 1
read count
add 1
write count
write count

read count
add 1
read count
add 1
write count
write count

read count
read count
add 1
write count
add 1
write count

read count
read count
add 1
add 1
write count
write count

read count
read count
add 1
write count
add 1
write count

read count
read count
add 1
add 1
write count
write count

read count
read count
add 1
add 1
write count
write count

read count
read count
add 1
add 1
write count
write count

IT University of Copenhagen

Thread interleaving for testing
•  To find concurrency bugs, we want to exercise

all interesting thread interleavings
•  How many: N threads each with M instructions

have (NM)!/(M!)N possible interleavings
– Zillions of test runs needed to cover interleavings

•  PutTakeTest explores at most 1m of them
– And JVM may be too deterministic and explore less

•  One can increase interleavings using
Thread.yield() or Thread.sleep(1)!
– But this requires modification of the tested code
– Or special tools: Java Pathfinder, Microsoft CHESS

25

interleaving(1, 15) is 1

interleaving(5, 1) is 120

interleaving(5, 2) is 113400

interleaving(2, 3) is 20

interleaving(5, 3) is 168168000

interleaving(5, 100) is
17234165594777008534148379284721996814952838615864289522194894697
40322151844673449823990180491172965116996270064140072158794074346
10748311946292872488592584004590960693662608800777663118272422394
64037292765889197732837222228396712117780290598829533989646231081
59928513983125529409127445230866953601595307305816729293520921681
34826943434743360000$

How large is (NM)!/(M!)N in reality?

26

def fac(n: Int): BigInt = if (n==0) 1 else n*fac(n-1)
def power(M: BigInt, P: Int): BigInt = if (P == 0) 1 else M*power(M, P-1)
def interleaving(N : Int, M : Int) = fac(N*M) / power(fac(M), N)

Scala

Number of ways to
interleave N threads each

having M instructions

IT University of Copenhagen

The Java Pathfinder tool
•  NASA project at

http://babelfish.arc.nasa.gov/trac/jpf
•  A Java Virtual Machine that

–  can explore all computation paths
–  supervise the execution with “listeners”
– generate test cases

•  Properties of Java Pathfinder
– a multifaceted research project
–  slow execution of code
– much better test coverage, eg deadlock detection
– only works for Java 7, not 8, so far

27

Deadlock
•  A deadlock occurs when threads are forever

blocked waiting to take a lock
•  Example: Dining philosophers (Dijkstra 1965)

– A philosopher Pi eats or thinks
– To eat (spaghetti), he needs left and right forks

•  Deadlock risk scenario
– Each Pi takes left fork
– Forever waits for right fork

•  Depends on interleaving
of threads’ activities

28 Ben-Ari 1982

Fork[] forks = { new Fork(), new Fork(), new Fork(), new Fork(), new Fork() };
for (int place=0; place<forks.length; place++) {
 Thread phil = new Thread(new Philosopher(forks, place));
 phil.start();
}

Deadlock-prone dining philosophers

29

P Lock

class Philosopher implements Runnable {
 private final Fork[] forks;
 private final int place;
 public void run() {
 while (true) {
 int left = place, right = (place+1) % forks.length;
 synchronized (forks[left]) {
 synchronized (forks[right]) {
 System.out.print(place + " "); // Eat
 }
 }
 try { Thread.sleep(10); } // Think
 catch (InterruptedException exn) { }
 }
 }
}

Te
st

Ph
ilo

so
ph

er
s.

ja
va

Exclusive
use of forks!

5 forks shared by
5 philosopher threads

Bad

IT University of Copenhagen

Java Pathfinder example
•  TestPhilosophers on 1 core never deadlocks

– at least not within the bounds of my patience ...
•  But Java Pathfinder discovers a deadlock

– because it explores many thread interleavings

30

sestoft@pi $ ~/lib/jpf/jpf-core/bin/jpf +classpath=. TestPhilosophers
JavaPathfinder v6.0 (rev 1038) - (C) RIACS/NASA Ames Research Center

== system under test
application: TestPhilosophers.java

== search started: 10/23/14 2:45 PM
0 0 0 0 1 0 0 0 0 ... 1 0 0 0 0 1 1 0 0 0 0 1 2 3
== error #1
gov.nasa.jpf.jvm.NotDeadlockedProperty
deadlock encountered:
thread java.lang.Thread:{id:1,name:Thread-1,status:BLOCKED,priority:5,lockCount:0,suspendCount:0}
thread java.lang.Thread:{id:2,name:Thread-2,status:BLOCKED,priority:5,lockCount:0,suspendCount:0}
thread java.lang.Thread:{id:3,name:Thread-3,status:BLOCKED,priority:5,lockCount:0,suspendCount:0}
thread java.lang.Thread:{id:4,name:Thread-4,status:BLOCKED,priority:5,lockCount:0,suspendCount:0}
thread java.lang.Thread:{id:5,name:Thread-5,status:BLOCKED,priority:5,lockCount:0,suspendCount:0}

Aside: How to avoid deadlock
•  In theory, easy to avoid deadlock

– Define a total ordering for the locks
– Make all threads take the locks in that order

•  For example, dining philosophers
– Number the forks 0...4
– A philosopher takes two forks in numeric order
– So P0 takes F0 F1; P1 takes F1 F2; ...; P4 takes F0 F4

•  In practice, difficult to avoid deadlock
– Lock order must involve all locks in the program
– So not compositional: even if two subprograms are

deadlock-free, together they may not be
– Transactional memory (next week) is a solution 31

IT University of Copenhagen 32

Plan for today
•  More synchronization primitives

– Semaphore – resource control, bounded buffer
– CyclicBarrier – thread coordination

•  Testing concurrent programs
– BoundedQueue (FIFO) example

•  Testing the test: Mutation
•  Coverage and interleavings

– Example: Deadlock, dining philosophers
– Exploring interleavings with Java Pathfinder

•  Concurrent correctness concepts

IT University of Copenhagen

Correctness concepts
•  Quiescent consistency

– Method calls separated by a period of quiescence
should appear to take effect in their real-time order

– Says nothing about overlapping method calls
•  Sequential consistency

– Method calls should appear to take effect in
program order – seen from each thread

•  Linearizability
– A method call should appear to take effect at some

point between its invocation and return
– This is called its linearization point

33

When is StripedMap.size() correct?
Thread A Thread B stripedMap

size()!

34

(21422,”Sue”)

result = 0
lock stripe 0
result += 1
unlock stripe 0

put(10406,”Joe”)!

lock stripe 0
add (10406,”Joe”) on stripe 0
unlock stripe 0

2!

lock stripe 1
result += 1
unlock stripe 1

return result

put(57001,”Mick”)!

lock stripe 1
add (57001,”Mick”) on stripe 1
unlock stripe 1

(21422,”Sue”)
(10496,”Joe”)

(21422,”Sue”)
(10496,”Joe”)
(57001,”Mick”)

Result seems wrong
both at beginning

and end of call

size 1

size 3

Quiescent consistency
•  Principle 3.3.2: Method calls separated by a

period of quiescence should appear to take
effect in their real-time order
– This says nothing about overlapping method calls
– This assumes we can observe inter-thread actions

•  Java’s ConcurrentHashMap:

35
Class java.util.concurrent.ConcurrentHashMap documentation

“Bear in mind that the results of aggregate status methods
including size, isEmpty, and containsValue are typically
useful only when a map is not undergoing concurrent
updates in other threads.

Otherwise the results of these methods reflect transient
states that may be adequate for monitoring or estimation
purposes, but not for program control.”

•  Principle 3.3.1: A method call should appear
to take effect instantaneously
– Method calls take effect one at a time, even when

they overlap

Method call effect
must seem instantaneous

Thread A Thread B variable r

r.write(7) !

36

r.write(-3)!

r.read()!

-7!

H
er

lih
y

&
 S

ha
vi

t
p.

 5
0

Not acceptable: The
methods’ effects are

not instantanous

Non-blocking queue example code

•  With locking, state changes cannot overlap
–  Method call “takes effect” when releasing the lock, at return

37

class LockBasedQueue<T> {
 private final T[] items;
 private int tail = 0, head = 0;
 public synchronized boolean enq(T item) {
 if (tail - head == items.length)
 return false;
 else {
 items[tail % items.length] = item;
 tail++;
 return true;
 } }
 public synchronized T deq() {
 if (tail == head)
 return null;
 else {
 T item = items[head % items.length];
 head++;
 return item;
} } }

A
 la

 H
er

lih
y

&
 S

ha
vi

t
p.

 4
6,

 4
8

Te
st

H
S
Q

ue
ue

s.
ja

va

Cannot
overlap
Cannot
overlap

Restricted-use queue without locks

•  No locking, so state updates may overlap!
–  One thread calling enq, another calling deq!
–  Now what would it mean for WaitFreeQueue to be “correct”?

38

class WaitFreeQueue<T> {
 private final T[] items;
 private volatile int tail = 0, head = 0;
 public boolean enq(T item) {
 if (tail - head == items.length)
 return false;
 else {
 items[tail % items.length] = item;
 tail++;
 return true;
 } }
 public T deq() {
 if (tail == head)
 return null;
 else {
 T item = items[head % items.length];
 head++;
 return item;
 } } }

A
 la

 H
er

lih
y

&
 S

ha
vi

t
p.

 4
6,

 4
8

Te
st

H
S
Q

ue
ue

s.
ja

va

•  Correct if there is
only one enqueuer
and one dequeuer!

•  Only enq writes tail!
•  Only deq writes head!
•  enq and deq never

write same items[i]!
•  Visibility ensured by

volatile!
•  Subtle ...!

•  Principle 3.4.1: Method calls should appear
to take effect in program order
– Program order is the order within a single thread

•  The full execution is an interleaving of each
thread’s executions – seems natural!!

Sequential consistency

Thread A variable r

39

r.write(7) !

Not acceptable: Calls
do not take effect in
program order (seen

from thread A)

H
er

lih
y

&
 S

ha
vi

t
p.

 5
2

r.write(-3) !

r.read() !

7!

Sequentially consistent scenarios for
LockingQueue

Thread A Thread B LockingQueue q
q.enq(3)!

40

q.enq(7)!

q.deq()!

3!

H
er

lih
y

&
 S

ha
vi

t
p.

 5
2

q.deq()!

7!

A q.enq(3)
B q.enq(7)
B q.deq(3)
A q.deq(7)

B q.enq(7)
A q.enq(3)
A q.deq(7)
B q.deq(3)

Two “global” scenarios showing seq cons:

Separately not jointly seq. cons.
Thread A Thread B Queue p

41

p.enq(3)!

H
er

lih
y

&
 S

ha
vi

t
p.

 5
4

Queue q

q.enq(7)!

q.enq(3)!

p.enq(7)!

p.deq()!

7!
q.deq()!

3!

•  Sequentially consistent for each queue p, q:
A q.enq(3)
B q.enq(7)
B q.deq(3)

B p.enq(7)
A p.enq(3)
A p.deq(7)

AND
BUT assume different

orders of p.enq(7)
and p.enq(3)

Cannot be jointly seq. consistent
Thread A Thread B Queue p

42

p.enq(3)!

H
er

lih
y

&
 S

ha
vi

t
p.

 5
4

Queue q

q.enq(7)!

q.enq(3)!

p.enq(7)!

p.deq()!

7!
q.deq()!

3!

– p.enq(7) must precede p.enq(3) because dequeues 7
• which precedes q.enq(3) in thread A program order

– q.enq(3) must precede q.enq(7) because dequeues 3
• which precedes p.enq(7) in thread B program order

– So p.enq(7) must precede p.enq(7), impossible

IT University of Copenhagen

Reflection on sequential consistency
•  Seems a natural expectation
•  It is what synchronization tries to achieve
•  If all (unsynchronized) code were to satisfy

it, that would preclude optimizations:

•  The lack of compositionality makes

sequential consistency a poor reasoning tool
– Using a bunch of sequentially consistent data

structures together does not give seq. consistency

43

Java (and C#) does not guarantee sequential
consistency of accesses to non-synchronized
non-volatile fields (eg. JLS §17.4.3)

Linearizability
•  Principle 3.5.1: Each method call should

appear to take effect instantaneously at some
moment between its invocation and response.

•  Usually shown by identifying a linearization
point for each method.

•  In Java monitor pattern methods, the
linearization point is usually at lock release

•  In non-locking WaitFreeQueue<T>
–  linearization point of enq() is at tail++ update
–  linearization point of deq() is at head++ update

•  Less clear in lock-free methods, week 10-11
44

Te
st

H
S
Q

ue
ue

s.
ja

va

Restricted-use queue without locks

45

class WaitFreeQueue<T> {
 private final T[] items;
 private volatile int tail = 0, head = 0;
 public boolean enq(T item) {
 if (tail - head == items.length)
 return false;
 else {
 items[tail % items.length] = item;
 tail++;
 return true;
 } }
 public T deq() {
 if (tail == head)
 return null;
 else {
 T item = items[head % items.length];
 head++;
 return item;
 } } }

A
 la

 H
er

lih
y

&
 S

ha
vi

t
p.

 4
6,

 4
8

Te
st

H
S
Q

ue
ue

s.
ja

va

Linearization
point

Linearization
point

•  NB: Only one
enqueuer and one
dequeuer thread!!

A Histogram h1.addAll(h2) scenario

46

Thread A Thread B

h1.addAll(h2)!

h1 h2

lock h2!
copy h2 counts!
unlock h2!

inc(7)!

h2.inc(7)!

h2.inc(7)!

inc(7)!

lock h1!

add h2 counts copy to h1!
unlock h1!

0 0

1

1

2

2

3

3

h2.inc(7)!

The result does not reflect the joint state of h1 and h2 at any point in time.
(Because h1 may be updated while h2 is locked, and vice versa).

A StripedMap.forEach scenario
Thread A Thread B StripedMap

map.put(0,”X”)!

map.forEach(println)!

map.put(1,”Y”)!

map.put(0,”W”)!

map.put(2,”Z”)!

lock locks[0]!
print “(0,X)”!
unlock locks[0]!

lock locks[1]!
print “(1,Y)”!
unlock locks[1]!

lock locks[2]!
print “(2,Z)”!
unlock locks[2]!

“(0,X)”!

“(1,Y)”!

“(2,Z)”!

47

Seen from Thread A it is strange that (2,Z) is in the map but not (0,W).
(Stripe 0 is enumerated before stripe 2, and stripe 1 updated in between).

IT University of Copenhagen

Concurrent bulk operations
•  These typically have rather vague semantics:

•  The three bullets hold for StripedMap.forEach
•  Precise test only in quiescent conditions

– But (a) it does not skip entries that existed at call
time, and (b) it does not process any entry twice

48

“Iterators and Spliterators provide weakly consistent [...] traversal:
•  they may proceed concurrently with other operations
•  ...
•  they are guaranteed to traverse elements as they existed upon

construction exactly once, and may (but are not guaranteed to)
reflect any modifications subsequent to construction”

Package java.util.concurrent documentation

IT University of Copenhagen

This week
•  Reading

– Goetz et al chapter 12
– Herlihy & Shavit chapter 3 (PDF on LearnIT)

•  Exercises
– Show you can test concurrent software with subtle

synchronization mechanisms

•  Read before next week’s lecture
– Herlihy and Shavit sections 18.1-18.2 (LearnIT)
– Harris et al: Composable memory transactions
– Cascaval et al: STM, Why is it only a research toy

49

