
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 9

Alexander Asp Bock
IT University of Copenhagen

Friday 2016-11-04

IT University of Copenhagen 2

Plan for today
•  What’s wrong with lock-based atomicity
•  Transactional memory STM, Multiverse library
•  A transactional bank account
•  Transactional blocking queue
•  Composing atomic operations

–  transfer from one queue to another
–  choose first available item from two queues

•  Philosophical transactions
•  Other languages with transactional memory
•  Hardware support for transactional memory
•  NB: Course evaluation starts on 7/11

IT University of Copenhagen

Transactional memory
•  Based on transactions, as in databases
•  Transactions are composable

– unlike lock-based concurrency control
•  Easy to implement blocking

– no wait and notifyAll or semaphore trickery
•  Easy to implement blocking choice

– eg. get first item from any of two blocking queues
•  Typically optimistic

– automatically very scalable read-parallelism
– unlike pessimistic locks

•  No deadlocks and usually no livelocks

3

IT University of Copenhagen

Transactions
•  Known from databases since 1981 (Jim Gray)
•  Proposed for programming languages 1986

–  (In a functional programming conference)
•  Became popular again around 2004

– due to Harris, Marlow, Peyton-Jones, Herlihy
– Haskell, Clojure, Scala, ... and Java Multiverse

•  A transaction must be
– Atomic: if one part fails, the entire transaction fails
– Consistent: maps a valid state to a valid state
– Isolated: A transaction does not see the effect of

any other transaction while running
–  (But not Durable, as in databases)

4

IT University of Copenhagen

Difficulties with lock-based atomicity
•  Transfer money from account ac1 to ac2

– No help that each account operation is atomic
– Can lock both, but then there is deadlock risk

•  Transfer an item from queue bq1 to bq2
– No help that each queue operation is atomic
– Locking both, nobody can put and take; deadlock

•  Get an item from either queue bq1 or bq2
–  (when both queues are blocking)
– Should block if both empty
– But just calling b1.take() may block forever even

if there is an available item in bq2!

5

A
 la

 H
er

lih
y

&
 S

ha
vi

t
§1

8.
2

atomic {
 return bq1.take();
} orElse {
 return bq2.take();
}

Transactions make this trivial
•  Transfer amount from account ac1 to ac2:

•  Transfer one item from queue bq1 to bq2:

•  Take item from queue bq1 if any, else bq2:

6

atomic {
 ac1.deposit(-amount);
 ac2.deposit(+amount);
}

atomic {
 T item = bq1.take();
 bq2.put(item);
}

A
 la

 H
er

lih
y

&
 S

ha
vi

t
§1

8.
2

Pseudo-code

class Account {
 private long balance = 0;
 public void deposit(final long amount) {
 atomic {
 balance += amount;
 }
 }
 public long get() {
 atomic {
 return balance;
 }
 }
 public void transfer(Account that, final long amount) {
 final Account thisAccount = this, thatAccount = that;
 atomic {
 thisAccount.deposit(-amount);
 thatAccount.deposit(+amount);
 }
} }

Transactional account

7

Acc

Composite transaction
without deadlock risk!

Pseudo-code

Transactional memory in Java
•  Multiverse Java library 0.7 from April 2012

– Seems comprehensive and well-implemented
– Little documentation apart from API docs
–  ... and those API docs are quite cryptic

•  A transaction must be wrapped in
–  new Runnable() { ... } if returning nothing
–  new Callable<T>() { ... } if returning a T value
– or just a lambda () -> { ... } in either case

•  Runs on unmodified JVM
– Thus is often slower than locks/volatile/CAS/...

•  To compile and run:

8

$ javac -cp ~/lib/multiverse-core-0.7.0.jar TestAccounts.java
$ java -cp ~/lib/multiverse-core-0.7.0.jar:. TestAccounts

Transactional account, Multiverse

9

Acc

class Account {
 private final TxnLong balance = newTxnLong(0);
 public void deposit(final long amount) {
 atomic(() -> balance.set(balance.get() + amount));
 }

 public long get() {
 return atomic(() -> balance.get());
 }

 public void transfer(Account that, final long amount) {
 final Account thisAccount = this, thatAccount = that;
 atomic(() -> {

 thisAccount.deposit(-amount);
 thatAccount.deposit(+amount);

 });
 }
}

Composite transaction
without deadlock risk!

st
m

/T
es

tA
cc

ou
nt

s.
ja

va

IT University of Copenhagen

Consistent reads
•  Auditor computes balance sum during transfer

•  Must read both balances in same transaction

– Does not work to use a transaction for each reading
•  Should print the sum only outside transaction

– After the transaction committed
– Otherwise risk of printing twice, or inconsistently

•  Multiverse: Does not work if deposit(amount)
uses balance.increment(amount) ???? !

10

long sum = atomic(() -> account1.get() + account2.get());
System.out.println(sum);

st
m

/T
es

tA
cc

ou
nt

s.
ja

va

Acc

IT University of Copenhagen

How do transactions work?
•  A transaction txn typically keeps

– Read Set: all variables read by the transaction
– Write Set: local copy of variables it has updated

•  When trying to commit, check that
– no variable in Read Set or Write Set has been

updated by another transaction
–  if OK, write Write Set to global memory, commit
– otherwise, discard Write Set and restart txn again

•  So the Runnable may be called many times!
•  How long to wait before trying again?

– Exponential backoff: wait rnd.nextInt(2),
rnd.nextInt(4), rnd.nextInt(8), ...

– Should prevent transactions from colliding forever
11

IT University of Copenhagen

Nested transactions
•  By default, an atomic within an atomic

reuses the outer transaction: So if the inner
fails, the outer one fails too

•  Several other possibilities, see
org.multiverse.api.PropagationLevel
– Default is PropagationLevel.Requires: if there is a

transaction already, use that; else create one

12

IT University of Copenhagen

 Multiverse transactional references
•  Only transactional variables are tracked

– TxnRef<T>, a transactional reference to a T value
– TxnInteger, a transactional int!
– TxnLong, a transactional long!
– TxnBoolean, a transactional boolean!
– TxnDouble, a transactional double!

•  Methods, used in a transaction, inside atomic!
–  get(), to read the reference
–  set(value), to write the reference

•  Several other methods, eg
–  getAndLock(lockMode), for more pessimism
–  await(v), block until value is v

13

IT University of Copenhagen 14

Plan for today
•  What’s wrong with lock-based atomicity
•  Transactional memory STM, Multiverse library
•  A transactional bank account
•  Transactional blocking queue
•  Composing atomic operations

–  transfer from one queue to another
–  choose first available item from two queues

•  Philosophical transactions
•  Other languages with transactional memory
•  Hardware support for transactional memory

Lock-based bounded queue (wk 8)

15

class SemaphoreBoundedQueue <T> implements BoundedQueue<T> {
 private final Semaphore availableItems, availableSpaces;
 private final T[] items;
 private int tail = 0, head = 0;

 public void put(T item) throws InterruptedException {
 availableSpaces.acquire();
 doInsert(item);
 availableItems.release();
 }

 private synchronized void doInsert(T item) {
 items[tail] = item;
 tail = (tail + 1) % items.length;
 }

 public T take() throws InterruptedException { ... }
 ...
}

Te
st

B
ou

nd
ed

Q
ue

ue
Te

st
.j

av
a

BQ

Use semaphore to block
until room for new item!

Use lock for
atomicity!

IT University of Copenhagen

class StmBoundedQueue<T> implements BoundedQueue<T> {
 private int availableItems, availableSpaces;
 private final T[] items;
 private int head = 0, tail = 0;

 public void put(T item) { // at tail
 atomic {
 if (availableSpaces == 0)
 retry();
 else {
 availableSpaces--;
 items[tail] = item;
 tail = (tail + 1) % items.length;
 availableItems++;
 }
 }
 }
 public T take() {
 ... availableSpaces++; ...
 }
}

Transactional blocking queue

16

A
 la

 H
er

lih
y

&
 S

ha
vi

t
§1

8.
2

BQ

Atomic
action!

Use retry()
to block!

Pseudo-code

IT University of Copenhagen

class StmBoundedQueue<T> implements BoundedQueue<T> {
 private final TxnInteger availableItems, availableSpaces;
 private final TxnRef<T>[] items;
 private final TxnInteger head, tail;

 public void put(T item) { // at tail
 atomic(() -> {
 if (availableSpaces.get() == 0)
 retry();
 else {
 availableSpaces.decrement();
 items[tail.get()].set(item);
 tail.set((tail.get() + 1) % items.length);
 availableItems.increment();
 }
 });
 }
 public T take() {
 ... availableSpaces.increment(); ...
 }
}

Real code, using Multiverse library

17

st
m

/T
es

tS
tm

Q
ue

ue
s.

ja
va

BQ

Atomic
action!

Use retry()
to block!

IT University of Copenhagen

How does blocking work?
•  When a transaction executes retry() ...

– The Read Set says what variables have been read
– No point in restarting the transaction until one of

these variables have been updated by other thread
•  Hence NOT a busy-wait loop

– but automatic version of wait and notifyAll!
– or automatic version of acquire on Semaphore

•  Often works out of the box, idiot-proof
•  Must distinguish:

–  restart of transaction because could not commit
•  exponential backoff, random sleep before restart

– an explicit retry() request for blocking
• waits passively in a queue for Read Set to change

18

BQ

IT University of Copenhagen

Atomic transfer between queues

•  A direct translation from the pseudo-code
•  Can hardly be wrong

19

static <T> void transferFromTo(BoundedQueue<T> from,
 BoundedQueue<T> to)
{
 atomic(() -> {
 T item = from.take();
 to.put(item);
 });
}

st
m

/T
es

tS
tm

Q
ue

ue
s.

ja
va

IT University of Copenhagen

Blocking until some item available

•  If bq1.take() fails, try instead bq2.take()!
•  Implemented using general myOrElse method

–  taking as arguments two Callables!

20

static <T> T takeOne(BoundedQueue<T> bq1,
 BoundedQueue<T> bq2) throws Exception
{
 return myOrElse(() -> bq1.take(),
 () -> bq2.take());
}

Do this!

or else
that! st

m
/T

es
tS

tm
Q

ue
ue

s.
ja

va

IT University of Copenhagen

Implementing method myOrElse

•  Exposes Multiverse’s internal machinery
–  retry() is implemented by throwing an exception

•  Hand-made implementation
– Because Multiverse’s OrElseBlock seems faulty...

21

static <T> T myOrElse(Callable<T> either, Callable<T> orelse)
 throws Exception
{
 return atomic(() -> {
 try {
 return either.call();
 } catch (org.multiverse.api.exceptions.RetryError retry) {
 return orelse.call();
 }
 });
}

st
m

/T
es

tS
tm

Q
ue

ue
s.

ja
va

IT University of Copenhagen 22

Plan for today
•  What’s wrong with lock-based atomicity
•  Transactional memory STM, Multiverse library
•  A transactional bank account
•  Transactional blocking queue
•  Composing atomic operations

–  transfer from one queue to another
–  choose first available item from two queues

•  Philosophical transactions
•  Other languages with transactional memory
•  Hardware support for transactional memory

IT University of Copenhagen

Philosophical Transactions

•  Lock-based philosopher (wk 8)
– Likely to deadlock in this version

23

P Old

class Philosopher implements Runnable {
 private final Fork[] forks;
 private final int place;
 public void run() {
 while (true) {
 int left = place, right = (place+1) % forks.length;
 synchronized (forks[left]) {
 synchronized (forks[right]) {
 System.out.print(place + " "); // Eat
 }
 }
 try { Thread.sleep(10); } // Think
 catch (InterruptedException exn) { }
 }
 }
}

Te
st

Ph
ilo

so
ph

er
s.

ja
va

Exclusive
use of forks!

IT University of Copenhagen

class Philosopher implements Runnable {
 private final TxnBoolean[] forks;
 private final int place;
 public void run() {
 while (true) {
 final int left = place, right = (place+1) % forks.length;
 atomic(() -> {
 if (!forks[left].get() && !forks[right].get()) {
 forks[left].set(true);
 forks[right].set(true);
 } else
 retry();
 });
 System.out.printf("%d ", place); // Eat
 atomic(() -> {
 forks[left].set(false);
 forks[right].set(false);
 });
 try { Thread.sleep(10); } // Think
 catch (InterruptedException exn) { }
 }
 }}

TxnBooleans as Forks A

24

P A

st
m

/T
es

tS
tm

Ph
ilo

so
ph

er
sA

.j
av

a

Exclusive
use of forks!

Release
forks!

class Philosopher implements Runnable {
 private final TxnBoolean[] forks;
 private final int place;
 public void run() {
 while (true) {
 final int left = place, right = (place+1) % forks.length;
 atomic(() -> {
 forks[left].await(false);
 forks[left].set(true);
 forks[right].await(false);
 forks[right].set(true);
 });
 System.out.printf("%d ", place); // Eat
 atomic(() -> {
 forks[left].set(false);
 forks[right].set(false);
 });
 try { Thread.sleep(10); } // Think
 catch (InterruptedException exn) { }
 }
 }
}

TxnBooleans as Forks B

25

P B

st
m

/T
es

tS
tm

Ph
ilo

so
ph

er
sB

.j
av

a

Exclusive
use of forks!

Release
forks!

IT University of Copenhagen

Transaction subtleties
•  What is wrong with this Philosopher?

– Variant of B that “eats” inside the transaction

26

 public void run() {
 while (true) {
 final int left = place, right = (place+1) % forks.length;
 atomic(() -> {
 forks[left].await(false);
 forks[left].set(true);
 forks[right].await(false);
 forks[right].set(true);
 System.out.printf("%d ", place);// Eat
 forks[left].set(false);
 forks[right].set(false);
 });
 try { Thread.sleep(10); } // Think
 catch (InterruptedException exn) { }
 }
 }

P C

Transaction has its
own view of the

world until commit!

Other transactions
may have taken all

the forks!!

BAD

IT University of Copenhagen

Optimism and multiple universes
•  A transaction has its own copy of data (forks)
•  At commit, it checks that data it used is valid

–  if so, writes the updated data to common memory
– otherwise throws away the data, and restarts

•  Each transaction works in its own “universe”
– until it succesfully commits

•  This allows higher concurrency
– especially when write conflicts are rare
– but means that a Philosopher cannot know it has

exclusive use of a fork until transaction commit
•  Transactions + optimism = multiple universes
•  No I/O or other side effects in transactions!

27

IT University of Copenhagen

Hints and warnings
•  Transactions should be short

– When a long transaction finally tries to commit,
it is likely to have been undermined by a short one

–  ... and must abort, and a lot of work is wasted
–  ... and it restarts, so this happens again and again

•  For example, concurrent hash map
–  short: put, putIfAbsent, remove!
–  long: reallocateBuckets – not clear it will ever

succeed when others put at the same time
•  Some STM implementations avoid aborting

the transaction that has done most work
– Many design tradeoffs

28

IT University of Copenhagen

Some languages with transactions
•  Haskell – in GHC implementation

– TVar T, similar to TxnRef<T>, TxnInteger, ...
•  Scala – ScalaSTM, on Java platform

– Ref[T], similar to TxnRef<T>, TxnInteger, ...
•  Clojure – on Java platform

–  (ref x), similar to TxnRef<T>, TxnInteger, ...
•  C, C++ – future standards proposals
•  Java – via Multiverse library

– Creator Peter Ventjeer is on ScalaSTM team too
•  Java – DeuceSTM, other research prototypes
•  And probably many more ...

29

IT University of Copenhagen

Transactional memory in perspective
•  Works best in a mostly immutable context

– eg functional programming: Haskell, Clojure, Scala
•  Mixes badly with side effects, input-output
•  Requires transactional (immutable) collection

classes and so on
•  Some loss of performance in software-only TM
•  Still unclear how to best implement it
•  Some think it will remain a toy, Cascaval 2008

–  ... but they use C/C++, too much mutable data
•  Multicore hardware support would help

–  can be added to cache coherence (MESI) protocols

30

IT University of Copenhagen

Hardware support for transactions
•  Eg Intel TSX for Haswell CPUs, since 2013

– New XBEGIN, XEND, XABORT instructions
–  https://software.intel.com/sites/default/files/m/9/2/3/41604

•  Could be used by future JVMs, .NET/CLI, ...
•  Uses core’s cache for transaction’s updates
•  Extend cache coherence protocol (MESI, wk 7)

– Messages say when another core writes data
– On commit, write cached updates back to RAM
– On abort, invalidate cache, do not write to RAM

•  Limitations:
– Limited cache size, ...

31

IT University of Copenhagen

This week
•  Reading

– Herlihy and Shavit sections 18.1-18.2
– Harris et al: Composable memory transactions
– Cascaval et al: STM, Why is it only a research toy

•  Exercises
– Show you can use transactional memory to

implement histogram and concurrent hashmap

•  Read before next week
– Goetz et al chapter 15
– Herlihy & Shavit chapter 11
 32

