
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 10

Peter Sestoft
IT University of Copenhagen

Friday 2016-11-11*

IT University of Copenhagen 2

Plan for today
•  Compare and swap (CAS) low-level atomicity
•  Examples: AtomicInteger and NumberRange
•  How to implement a lock using CAS
•  Scalability: pessimistic locks vs optimistic CAS
•  Treiber lock-free stack
•  The ABA problem

•  Course evaluation this week!

IT University of Copenhagen

Compare-and-swap (CAS)
•  Atomic check-then-set, IBM 1970, Intel 80486 ...
•  Java AtomicReference<T>

–  var.compareAndSet(T oldVal, T newVal)
If var holds oldVal, set it to newVal and return true

•  .NET/CLI System.Threading.Interlocked
–  CompareExchange<T>(ref T var, T newVal, T oldVal)  

If var holds oldVal, set it to newVal and return old value

•  Used in optimistic concurrency
–  Try to update; if it fails, maybe restart

•  Similar to transactional memory (STM, week 9)
–  but only one variable at a time
–  and under programmer control, not automatic
–  hardware machine primitive, where STM is high-level

3

IT University of Copenhagen

CAS versus mutual exclusion (locks)
•  Optimistic versus pessimistic concurrency
•  Pro CAS

– Almost all modern hardware implements CAS
– Modern CAS is quite fast
– CAS is used to implement locks
– A failed CAS, unlike failed lock acquisition, requires

no context switch, see Java Precisely p. 81
– Therefore fast when contention is low

•  Con CAS
– Restart may fail arbitrarily many times
– Therefore slow when contention is high
– CAS slow on some manycore machines (32 c AMD)

4

IT University of Copenhagen

Pseudo-implementation of CAS

•  Only to illustrate CAS semantics
–  In reality synchronized is implemented by CAS
– Not the other way around

5

class MyAtomicInteger {"
 private int value; "// Visibility ensured by locking"
 synchronized boolean compareAndSet(int oldValue, int newValue){"
 if (this.value == oldValue) {"
 this.value = newValue;"
 return true;"
 } else"
 return false;"
 }"
"
 public synchronized int get() { "
 return this.value;"
 }"
 ..."
}" Te

st
C
as

At
om

ic
In

te
ge

r.j
av

a

AtomicInteger operations via CAS

•  Optimistic concurrency approach
–  read oldValue from variable without locking
– do computation, giving newValue"
– update variable if oldValue still valid

6

public int addAndGet(int delta) {"
 int oldValue, newValue;"
 do {"
 oldValue = get();"
 newValue = oldValue + delta;"
 } while (!compareAndSet(oldValue, newValue));"
 return newValue;"
}"
public int getAndSet(int newValue) {"
 int oldValue;"
 do { "
 oldValue = get();"
 } while (!compareAndSet(oldValue, newValue));"
 return oldValue;"
}"

Te
st

C
as

At
om

ic
In

te
ge

r.j
av

a

IT University of Copenhagen

CAS and multivariable invariants:
Unsafe number range [lower,upper]

7

public class NumberRange {"
 // INVARIANT: lower <= upper"
 private final AtomicInteger lower = new AtomicInteger(0);"
 private final AtomicInteger upper = new AtomicInteger(0);"
"
 public void setLower(int i) {"
 if (i > upper.get())"
 throw new IllegalArgumentException("can't set lower");"
 lower.set(i);"
 }"
"
 public void setUpper(int i) {"
 if (i < lower.get())"
 throw new IllegalArgumentException("can't set upper");"
 upper.set(i);"
 }"
}"

Non-atomic test-
then-set, may
break invariant

G
oe

tz
 p

.
67

Non-atomic test-
then-set, may
break invariant

Bad

IT University of Copenhagen

Immutable integer pairs
•  Use same technique as for factor cache (wk 2)

– Make immutable pair of fields
– Atomic assignment of reference to immutable pair

•  Here, immutable pair of lower & upper bound:

8

private class IntPair {"
 // INVARIANT: lower <= upper"
 final int lower, upper;"
"
 public IntPair(int lower, int upper) {"
 this.lower = lower;"
 this.upper = upper;"
 }"
}"

Immutable, and
safely publishable

G
oe

tz
 p

.
32

6

Using CAS to set the pair reference

•  Atomic replacement of one pair by another
– But may create many pairs before success ...
–  (And loop should be written using do-while) 9

public class CasNumberRange {"
 private final AtomicReference<IntPair> values "
 = new AtomicReference<IntPair>(new IntPair(0, 0));"
"
 public int getLower() { return values.get().lower; }"
"
 public void setLower(int i) {"
 while (true) {"
 IntPair oldv = values.get();"
 if (i > oldv.upper)"
 throw new IllegalArgumentException("Can't set lower");"
 IntPair newv = new IntPair(i, oldv.upper);"
 if (values.compareAndSet(oldv, newv))"
 return;"
 }"
 }"

Set if nobody
else changed it

G
oe

tz
 p

.
32

6

IT University of Copenhagen

CAS has visibility effects
•  Java's AtomicReference.compareAndSet etc

have the same visibility effects as volatile:
"The memory effects for accesses and
updates of atomics generally follow the rules
for volatiles" (java.util.concurrent.atomic
package documentation)

•  Also in C#/.NET/CLI, Ecma-335, §I.12.6.5:
"... atomic operations in the
System.Threading.Interlocked class ...
perform implicit acquire/release operations"

10

IT University of Copenhagen

CAS in Java versus .NET
•  .NET has static CAS methods in Interlocked

– One can CAS to any variable or array element, good
– But can easily forget to use CAS for update, bad

•  Java's AtomicReference<T> seems safer
– Because must access the field through that class

•  But, for efficiency, Java allows standard field
access through AtomicReferenceFieldUpdater
– Uses reflection, see next week
– This is at least as bad as the .NET design
– And gives poor tool support: IDE, refactoring, ...

11

IT University of Copenhagen

Why compare-and-swap (CAS)?
•  Consensus number CN of a read-modify-write

operation: the maximum number of parallel
processes for which it can solve consensus, ie.
make them agree on the value of a variable

•  Atomically read a variable: CN = 1
•  Atomically write a variable: CN = 1
•  Test-and-set: atomically write a variable and

return its old value: CN = 2
•  Compare-and-swap: atomically check that

variable has value oldVal and if so set it to
newVal, returning true; else false: CN = ∞

12

H
er

lih
y:

 W
ai

t-
fr

ee
 s

yn
ch

ro
ni

za
tio

n,
 1

99
1

IT University of Copenhagen 13

Plan for today
•  Compare and swap (CAS) low-level atomicity
•  Examples: AtomicInteger and NumberRange
•  How to implement a lock using CAS
•  Scalability: pessimistic locks vs optimistic CAS
•  Treiber lock-free stack
•  The ABA problem

IT University of Copenhagen

How to implement a lock using CAS
•  Let’s make a lock class in four steps:
•  A: Simple TryLock

– non-blocking tryLock and unlock, once per thread
•  B: Reentrant TryLock

– non-blocking tryLock and unlock, multiple times
•  C: Simple Lock

– blocking lock and unlock, once per thread
•  D: Reentrant Lock = j.u.c.locks.ReentrantLock

– blocking lock and unlock, multiple times per thread

14

IT University of Copenhagen

Simple TryLock, no blocking

•  If lock is free, holder is null"
– Thread can take lock only if holder is null"

•  If lock is held, holder is the holding thread
– Only the holding thread can unlock

15

Lock A

class SimpleTryLock {"
 private final AtomicReference<Thread> holder "
 = new AtomicReference<Thread>();"
 public boolean tryLock() {"
 final Thread current = Thread.currentThread();"
 return holder.compareAndSet(null, current);"
 }"
 public void unlock() {"
 final Thread current = Thread.currentThread();"
 if (!holder.compareAndSet(current, null))"
 throw new RuntimeException("Not lock holder");"
 }"
}"

Te
st

C
as

Lo
ck

s.
ja

va

Try to take
unheld lock

Release, if
holder

IT University of Copenhagen

A philosopher using SimpleTryLock

•  Never deadlocks, may livelock
•  Must unlock inside finally, else an exception

may cause the thread to never release lock

16

while (true) {"
 int left = place, right = (place+1) % forks.length;"
 if (forks[left].tryLock()) {"
 try { "
 if (forks[right].tryLock()) {"
 try { "
 System.out.print(place + " "); // Eat"
 } finally { forks[right].unlock(); }"
 }"
 } finally { forks[left].unlock(); }"
 }"
 try { Thread.sleep(10); } // Think"
 catch (InterruptedException exn) { }"
}"

Te
st

C
as

Lo
ck

s.
ja

va

A fork is a
SimpleTryLock

class ReentrantTryLock {"
 private final AtomicReference<Thread> holder = new Atomic...;"
 private volatile int holdCount = 0; // valid if holder!=null"
 public boolean tryLock() {"
 final Thread current = Thread.currentThread();"
 if (holder.get() == current) { "
 holdCount++;"
 return true;"
 } else if (holder.compareAndSet(null, current)) { "
 holdCount = 1;"
 return true;"
 } "
 return false;"
 }"
 public void unlock() {"
 final Thread current = Thread.currentThread();"
 if (holder.get() == current) {"
 holdCount--;"
 if (holdCount == 0) "
 holder.compareAndSet(current, null))"
 return;"
 } "
 throw new RuntimeException("Not lock holder");"
 }"
}"

Reentrant TryLock, no blocking

17

Lock B

Te
st

C
as

Lo
ck

s.
ja

va

Already held by
current thread

Unheld and
we got it

Held by other

We hold it,
reduce count

If count is
0, release

class SimpleLock {"
 private final AtomicReference<Thread> holder = new Atomic...;"
 final Queue<Thread> waiters = new ConcurrentLinkedQueue<Thread>(); "
"
 public void lock() {"
 final Thread current = Thread.currentThread();"
 waiters.add(current);"
 while (waiters.peek() != current "
 || !holder.compareAndSet(null, current)) "
 {"
 LockSupport.park(this);"
 }"
 waiters.remove();"
 } "
"
 public void unlock() {"
 final Thread current = Thread.currentThread();"
 if (holder.compareAndSet(current, null)) "
 LockSupport.unpark(waiters.peek()); "
 else"
 throw new RuntimeException("Not lock holder");"
 }"
}"

Simple Lock, with blocking

18

Lock C

Te
st

C
as

Lo
ck

s.
ja

va
 Unpark first

parked thread

Enter queue
waiting for lock

If first, & lock
free, take itelse park

Got lock,
leave queue

Based on example in java.util.concurrent.LockSupport documentation

IT University of Copenhagen

Parking a thread
•  Static methods in j.u.c.locks.LockSupport:

–  park(), deschedule current thread until permit
becomes available; do nothing if already available

–  unpark(thread), makes permit available for
thread, allowing it to be scheduled again

•  A thread can call park to wait for a resource
without consuming any CPU time

•  Another thread can unpark it when the
resource appears to be available again

•  Similar to wait/notifyAll, but those work
only for intrinsic locks

19

class SimpleLock {!
 ...!
 public void lock() {!
 final Thread current = Thread.currentThread();!
 boolean wasInterrupted = false;"
 waiters.add(current);!
 while (waiters.peek() != current !
 || !holder.compareAndSet(null, current)) {!
 LockSupport.park(this);!
 if (Thread.interrupted())"
 wasInterrupted = true;"
 }!
 waiters.remove();!
 if (wasInterrupted) "
 current.interrupt();"
 } !
}!

Taking care of thread interrupts

20

Lock C

Te
st

C
as

Lo
ck

s.
ja

va

If interrupted
while parked ...

... note that &
clear interrupt

... & set interrupt
when unparked

•  Parking will block the thread
– may be interrupted by t.interrupt() while parked
–  should preserve interrupted status till unparked

Based on example in java.util.concurrent.LockSupport documentation

class MyReentrantLock {"
 private final AtomicReference<Thread> holder = new AtomicRef...;"
 final Queue<Thread> waiters = new ConcurrentLinkedQueue<Thread>();"
 private volatile int holdCount = 0; // Valid if holder!=null"
 public void lock() {"
 final Thread current = Thread.currentThread();"
 if (holder.get() == current) "
 holdCount++;"
 else { "
 waiters.add(current);"
 while (waiters.peek() != current "
 || !holder.compareAndSet(null, current)) {"
 LockSupport.park(this);"
 }"
 holdCount = 1;"
 waiters.remove();"
 }"
 } "
 public void unlock() { ... }"
}"

Reentrant Lock, with blocking

21

Lock D

Te
st

C
as

Lo
ck

s.
ja

va

Enter queue
waiting for lock

If first, & lock
free, take itelse park

Got lock,
leave queue

Already held by
current thread

•  A cross between ReentrantTryLock and
SimpleLock: both holdCount and waiters"

IT University of Copenhagen 22

Plan for today
•  Compare and swap (CAS) low-level atomicity
•  Examples: AtomicInteger and NumberRange
•  How to implement a lock using CAS
•  Scalability: locks vs optimistic CAS
•  Treiber lock-free stack
•  The ABA problem

A CAS is machine instruction
•  Java
•  Bytecode

•  x86 code

•  Intel x86 Instruction Reference CMPXCHG:

$ 23

ai.compareAndSet(65, y)"

bipush 65"
invokevirtual AtomicInteger.compareAndSet"

mov $0x41,%eax"
lock cmpxchg %esi,(%rbx)"

Compares the value in the EAX register with the first operand. If
the two values are equal, the second operand is loaded into the
first operand.
This instruction can be used with a LOCK prefix to allow the
instruction to be executed atomically. [...] the first operand
receives a write cycle without regard to the result of the
comparison. The first operand is written back if the comparison
fails; otherwise, the second operand is written into the first one.
Intel® 64 and IA-32 Architectures Software Developer’s Manual, vol 2A p. 3-153

Te
st

C
as

.j
av

a first second

IT University of Copenhagen

So CAS must be very fast?
•  YES, it is fast

– A successful CAS is faster than taking a lock
– An unsuccessful CAS does not cause thread

descheduling
•  NO, it is slow

–  If many CPU cores try to CAS the same variable,
then memory overhead may be very large

•  Performancewise, like transactional memory
–  if mostly reads, then high concurrency
–  if many conflicting writes, then many restarts

24

IT University of Copenhagen

Cause I send I receive My response
M a (Send update to RAM) writeback - -
E b Write - - -
M c Other wants to write - read inv read resp, inv ack
I d Atomic read-mod-write read inv read resp, inv ack* -
S e Atomic read-mod-write read inv inv ack* -
M f Other wants to read - read read resp
E g Other wants to read - read read resp
S h Will soon write inv inv ack* -
E i Other wants atomic rw - read inv read resp, inv ack
I j Want to write read inv read resp, inv ack* -
I k Want to read read read resp -
S l Other wants to write - inv inv ack

Week 8 flashback: MESI
cache coherence protocol

25

A write in a non-exclusive state requires
acknowledge ack* from all other cores

CAS: many messages
when other cores

write same variable

class CasRandom implements MyRandom {"
 private final AtomicLong seed;"
 public int nextInt() {"
 long oldSeed, newSeed;"
 do {"
 oldSeed = seed.get();"
 newSeed = (oldSeed * 0x5DEECE66DL + 0xBL) & ((1L << 48)-1);"
 } while (!seed.compareAndSet(oldSeed, newSeed));"
 return (int)(newSeed >>> 16);"
 }"
}"

Scalability of locks and CAS:
Pseudorandom number generation

•  (Q: Could one use volatile instead?)
26

class LockingRandom implements MyRandom {"
 private long seed; "
 public synchronized int nextInt() {"
 seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);"
 return (int)(seed >>> 16);"
 }"
}"

TestPseudoRandom.java A la Goetz p. 327

Lock-based

CAS-based

Thread-locality is (more) important
for scalability

•  A LockingRandom instance for each thread
•  A thread’s first call to .get() causes a call to
initialValue() to create the instance

•  Never any access conflicts between threads
27

class TLLockingRandom implements MyRandom {"
 private final ThreadLocal<MyRandom> myRandomGenerator;"
 public TLLockingRandom(final long seed) {"
 this.myRandomGenerator = "
 new ThreadLocal<MyRandom>() { "
 public MyRandom initialValue() { "
 return new LockingRandom(seed);"
 }};"
 }"
 public int nextInt() {"
 return myRandomGenerator.get().nextInt();"
 }"
}"

Te
st

Ps
eu

do
Ra

nd
om

.j
av

a
G

oe
tz

 §
3.

3.
3

Get this
thread’s

generator

Create this
thread’s

generator

Random number generator scalability
(unrealistically heavy contention)

28
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35

CasRandom

LockingRandom

TLCasRandom

TLLockingRandom

WrappedTLRandom

Threads

Th
ro

ug
hp

ut
,

no
rm

al
iz

ed

Te
st

Ps
eu

do
Ra

nd
om

.j
av

a

Ratio 32.8 Ratio 32.8

IT University of Copenhagen 29

Plan for today
•  Compare and swap (CAS) low-level atomicity
•  Examples: AtomicInteger and NumberRange
•  How to implement a lock using CAS
•  Scalability: pessimistic locks vs optimistic CAS
•  Treiber lock-free stack
•  The ABA problem

IT University of Copenhagen

Treiber's lock-free stack (1986)

30

class ConcurrentStack <E> {"
 private static class Node <E> {"
 public final E item;"
 public Node<E> next;"
 "
 public Node(E item) {"
 this.item = item;"
 }"
 }"
"
 AtomicReference<Node<E>> top = new AtomicReference<Node<E>>();"
 ... "
}"

top

... 3 2 1

G
oe

tz
 L

is
tin

g
15

.6

IT University of Copenhagen

Treiber's stack operations

31

public void push(E item) {"
 Node<E> newHead = new Node<E>(item);"
 Node<E> oldHead;"
 do {"
 oldHead = top.get();"
 newHead.next = oldHead;"
 } while (!top.compareAndSet(oldHead, newHead));"
}"

public E pop() {"
 Node<E> oldHead, newHead;"
 do {"
 oldHead = top.get();"
 if (oldHead == null)"
 return null;"
 newHead = oldHead.next;"
 } while (!top.compareAndSet(oldHead, newHead));"
 return oldHead.item;"
}"

Set top to new if
not changed

Set top to next
if not changed

Treiber stack push(42)

32

top 2

42

oldHead

newHead

1

Success on first try

top 2

42

oldHead

newHead

1

Success on second try

53

IT University of Copenhagen 33

Plan for today
•  Compare and swap (CAS) low-level atomicity
•  Examples: AtomicInteger and NumberRange
•  How to implement a lock using CAS
•  Scalability: pessimistic locks vs optimistic CAS
•  Treiber lock-free stack
•  The ABA problem

IT University of Copenhagen

The ABA problem
•  CAS variable has value A, then B, then A

– Hence variable changed, but CAS does not see it
•  Eg AtomicInteger was A, then add +b, add –b

– Not a problem in MyAtomicInteger
•  Typically a problem with pointers in C, C++

– Reference p points at a struct; then free(p); then
malloc() returns p, but now a different struct ...

•  Standard solution: make pair (p,i) of pointer
and integer counter; probabilistically correct

•  Rarely an ABA-problem in Java, C#
– Automatic memory management, garbage collector
– So objects are not reused while referred to

34

IT University of Copenhagen

ABA in Treiber stack à la C

35

top 3

4

Thread 1 Thread 2

pop

pop

push(4)

push(5)

oldHead

newHead

top

2

top

top

top
Boom

5

Item 4
is lost

A

B

This week
•  Reading

– Goetz et al section 3.3.3 and chapter 15
•  Exercises = Mandatory hand-in 5

– Show that you can implement a concurrent
Histogram and a ReadWriteLock using CAS

•  Read before next week

– Michael & Scott 1996: Simple, fast, and practical
non-blocking and blocking concurrent queue ...

– Chase & Lev 2005: Dynamic circular work-
stealing deque, sections 1, 2, 5

36

