Practical Concurrent and
Parallel Programming 11

Peter Sestoft
IT University of Copenhagen

Friday 2016-11-18

IT University of Copenhagen

e Michael and Scott unbounded queue 1996

e Progress concepts
- Wait-free, lock-free, obstruction-free

e Work-stealing dequeues
— Chase-Lev dequeue 2005

e Union-find data structure

e Possible parallel programming projects

IT University of Copenhagen

Bonus: More on volatile and CAS speed

e Int field increment: data.x = data.x + 1:
- Single thread; and non-volatile or volatile

TestTimeCas.java

° . \\: I/
Atomiclnteger “incr”. int old = data.get();
— Slng e thread data.compareAndSet (old, old+l) ;

- Single thread, one other interfering thread
— Single thread, one other non-interfering thread

e Results

Activity

Non-volatile field 0.9
Volatile field 8.8
CAS alone 11.4
CAS with interfering thread 74.5

CAS with non-interfering thread 11.7

Lock-based queue with sentinel ==

class LockingQueue<T> implements UnboundedQueue<T> {
private Node<T> head, tail;

public LockingQueue () {
head = tail = new Node<T>(null, null);

TestMSqueue.java

}

} Invariants:
head+#null
private static class Node<T> { tail.next=null
final T item; If empty, head=tail
Node<T> next; If non-empty: head#tail,
} head.next is first item,
tail points to last item

tail

head
z» sentinel ———> /] O —> 13

- :

Lock-based queue operations

public synchronized void enqueue (T item) {
Node<T> node = new Node<T>(item, null);

tail.next = node;

TestMSqueue.java

tail = node;
public synchronized T dequeue () {
if (head.next == null) |
return null;
Node<T> first = head;
head = first.next;

return head.item;
} - Atomic.

e Important property:
— Enqueue (put) updates tail but not head
- Dequeue (take) updates head but not tail

IT University of Copenhagen 5

Q2
Michael-Scott lock-free queue, CA.%:

private static class Node<T> { Michael and Scott: Simple, Fast,
final T item; and Practical Non-Blocking and

final AtomicReference<Node<T>> next; Blocking Concurrent Queue
} Algorithms, 1996

class MSQueue<T> implements UnboundedQueue<T> {
private final AtomicReference<Node<T>> head, tail;

public MSQueue () {

Node<T> dummy = new Node<T>(null, null); -

TestMSQueue.java

head = new AtomicReference<Node<T>> (dummy) ;
tail = new AtomicReference<Node<T>> (dummy) ;

}
}

e If non-empty:
— As before, head.next is first item

— But tail points to last item ("quiescent state")
or second-last item ("intermediate state")

IT University of Copenhagen

Intermediate state and "help”

tail
head
dummy| &7 9§ l ¢ N 2 o N 3 ®
FIGURE 15.4. Queue in intermediate state during insertion.
tail —
head

dummy(‘\\.] ¢ N 2 ¢ N 3 ®

Goetz p. 333

FIGURE 15.5. Queue again in quiescent state after insertion is complete.

IT University of Copenhagen 7

Michael & Scott queue operations

tail

head

sentinel

> 7/ >

Q2

@ read value

After Herlihy & Shavit p. 232

13

QO
N

Michael-Scott dequeue (take)

public T dequeue() {
while (true) {
Node<T> first = head.get(),

last = tail.get(),
* next = first.next.get();
if (first == head.get()) {
if (first == last) {-
if (next == null)

return null;
else
tail .compareAndSet (last, next);

} else {
T result = next.item;<::>

if (head.compareAndSet(first, next)) {

return result;
}

TestMSqueue.java

Michael-Scott enqueue (put)

public void enqueue (T item) { // at tail
Node<T> node = new Node<T>(item, null);
while (true) {
Node<T> last = tail.get(),
next = last.next.get()
if (last == tail.get()) {
if (next == null) {

TestMSqueue.java

if (last.next.compareAndSet (next, node)) {

tail.compareAndSet(last, node) ;
return; <::>
}

} else {

tail.compareAndSet(last, next);
}
}

IT University of Copenhagen 10

Why must dequeue Q2

mess with the tail?

public T dequeue () {

_ _ _ if (first == last) {
Scenario without it: if (next == null)

If queue empty, feturn nulls —
head==tail “ea

tail.compareAndSet (last, next);
A: enqueue(7) } else ...

A: update a.next
B: dequeue()

B: update head tail

Now tail lags behind
head, not good head zV

So B: dequeue()
must move tail
before moving head

sentinel ———> /

11

TestMSqueue.java

After Herlihy & Shavit p. 233

Understanding Michael-Scott queue

e Linearization point: where method takes effect

e Linearizable, with linearization points:
— enqueue: successful CAS at E9
— dequeue returning null: D3

- dequeue returning item: successful CAS at D13

public T dequeue() { // from head public void enqueue (T item) { // at tail

while (true) { Node<T> node = new Node<T>(item, null);
Node<T> first = head.get(), - while (true) {
last = tail.get(), Node<T> last = tail.get(),
next = first.next.get(); next = last.next.get();
if (first == head.get()) { // D5 if (last == tail.get()) { // E7
if (first == last) { if (next == null) {
if (next == null) if (last.next.compareAndSet (next, node)) ({
return null; tail.compareAndSet (last, node) ;
else return;
tail.compareAndSet(last, next); }
} else { } else
T result = next.item; tail.compareAndSet(last, next);
if (head.compareAndSet(first, next)) }
return result; }
} wm
}
}

b Groves: Verifying Michael and Scott’s Lock-Free
Queue Algorithm using Trace Reduction, 2008 12

Nice, but ... needs a lot of Q3
AtomicReference objects

private static class Node<T> {
final T item;
final AtomicReference<Node<T>> next;

public Node (T item, Node<T> next) {
this.item = item;
this.next = new AtomicReference<Node<T>> (next) ;

} Q2

private static class Node<T> {
final T item;
volatile Node<T> next;

A la Goetz p. 335

}... o3

private final AtomicReferenceFieldUpdater<Node<T>, Node<T>> nextUpdater
= AtomicReferenceFieldUpdater.newUpdater ((Class<Node<T>>) (Class<?>) (Node.class),
(Class<Node<T>>) (Class<?>) (Node.class),
"next") ; 13

Michael-Scott enqueue, Q3
using the "updater” for last.next

public void enqueue (T item) { // at tail
Node<T> node = new Node<T> (item, null):;
while (true) {
Node<T> last = tail.get (), next = last.next;
if (last == tail.get()) {
if (next == null) {
1f (nextUpdater.compareAndSet (last, next, node)) {
tail.compareAndSet (last, node);
return;
}
} else {
tail.compareAndSet (last, next);

}

IT University of Copenhagen 14

Queue benchmarks

e Queue implementations

Lock-based

Lock-based, sentinel node

Lock-free, sentinel node, AtomicReference

Lock-free, sentinel node, AtomicReferenceFieldUpdater

e Platforms

Hotspot 64 bit Java 1.7.0_b147, Windows 7, Xeon W3505,
2.53GHz, 2 cores, 2009Q1

Hotspot 64 bit Java 1.6.0_37, MacOS, Core 2 Duo,
2.66GHz, 2 cores, 2008Q1

Icedtea Java 1.7.0_b21, Linux, Xeon E5320, 1.86GHz, 4/8
cores, 2006Q4

Hotspot 64 bit Java 1.7.0_25-b15, Linux, AMD Opteron
6386 SE, 32 cores, 2012Q4

e Measurements probably flawed: the client threads
do no useful work, only en/dequeue

e Nevertheless, big differences between machines

IT University of Copenhagen 15

Java 1.7, Xeon W3505, 2 cores

time

e

/\
4 6 8 10 12 14 16 18 20
#threads

Time as
function of
number of
concurrent
threads

=o=LockQueue
=#—=MSNonblockingQueue
=/+=MSNonblockingQueueRefl
=>=SentinelLockQueue

16

Java 1.6, Core 2 Duo, 2 cores

time

=o=LockQueue

=#—=MSNonblockingQueue
=/+=MSNonblockingQueueRefl

=>=SentinelLockQueue

2 4 6 8 10 12 14 16 18 20

#threads 17

40

35

30

25

20

15

10

time

r

/

[

A
V

/

18 20

#threads

Java 1.7, Xeon E5320, 4x2 cores

=o=LockQueue
=#—=MSNonblockingQueue
=/+=MSNonblockingQueueRefl

=>=SentinelLockQueue

18

60

50

40

30

20

10

Java 1.7, AMD Opteron, 32 cores

time

=o=LockQueue

=#—=MSNonblockingQueue
=#=MSNonblockingQueueRefl
=>¢=SentinelLockQueue

2 4 6 8 10 12 14 16 18

20

#threads

19

e Michael and Scott unbounded queue 1996

e Progress concepts
- Wait-free, lock-free, obstruction-free

e Work-stealing dequeues
— Chase-Lev dequeue 2005

e Union-find data structure

e Possible parallel programming projects

IT University of Copenhagen

e Non-blocking: A call by thread A cannot

prevent a call by thread B from completing

— Not true for lock-based queue: A holds lock to
put (), gets descheduled or crashes, while B
wants to take () but cannot get lock

o Wait-free: Every call finishes in finite time
— True for SimpleTryLock’s tryLock
— Not true for Atomiclnteger’'s getAndadd

e Bounded wait-free: Every ... in bounded time

Goetz §15.4 and Herlihy & Shavit §3.7

o [ock-free: Some call finishes in finite time
— True for Atomiclnteger’s getAndAadd Not same
- Any wait-free method is also lock-free | @s lock-less

— Lock-free is good enough in practice
Shavit et al, CACM November 2014, p. 13-15

Obstruction freedom

e Obstruction-free: If a method call executes
alone, it finishes in finite time
- Lock-based data structures are not obstruction-free
— A lock-free method is also obstruction-free

— Obstruction-free sounds rather weak, but in
combination with back-off it ensures progress

— Some people even think it too strong:

... We argue that obstruction-freedom is not an
important property for software transactional memory,
and demonstrate that, if we are prepared to drop the
goal of obstruction-freedom, software transactional

memory can be made significantly faster
Ennals 2006: STM should not be obstruction-free

IT University of Copenhagen 22

e Michael and Scott unbounded queue 1996

e Progress concepts
- Wait-free, lock-free, obstruction-free

e Work-stealing dequeues
- Chase-Lev dequeue 2005

e Union-find data structure

e Possible parallel programming projects

IT University of Copenhagen

Perspective: Work-stealing dequeues

e Double-ended concurrent queues

e Used to implement
— Java 7’'s Fork-Join framework, and Akka (wk 13-14)
— Java 8’s newWorkStealingPool executor
- .NET 4.0 Task Parallel Library

e Chase and Lev: Dynamic circular
work-stealing queue, SPAA 2005

e Michael, Vechev, Saraswat: Idem- —-

potent work stealing, PPoPP 2009 _

e Leijen, Schulte, Burckhardt: The design
of a task parallel library, OOPSLA 2009

IT University of Copenhagen 24

A worker/task framework

Worker
Common task queue threads
@S
gagh rast
<€ >

\

e Worker threads pop and push tasks on queue

e Not scalable because single queue is used
by many threads

25

Better worker/task framework

Thread-local work-
stealing dequeues

pop task

—-—
—
-—
—-—
- =
—
—

Worker
threads

interface WSDeque<T> ({
void push (T item) ;
T pop()
T steal();

}

e Fewer memory write conflicts:
— Most queue accesses are from local thread only
- Pop from bottom, steal from top, conflicts are rare

e Much better scalability

26

Chase-Lev workstealing queue (2005)

items 2131517

top

bottom 4
class ChaseLevDeque<Tu
final T[] items;
volatile long bottom = O0;
final AtomicLong top = new AtomicLong() ;
}

e push and pop at bottom: stack for local thread
e steal at top: queue for other threads

27

S
Chase-Lev push at bottom .

public void push (T item) ({
final long b = bottom, t = top.get(), size = b - t;

if (size == items.length)
throw new RuntimeException ("queue overflow") ;
items[index (b, items.length)] = item;

bottom = b+1;
}

TestChaselLevQueue.java

e This is thread-safe, even without locks or CAS
— Only one thread calls push
— So only one thread updates the bottom field
— Other threads read it, so it must be volatile

IT University of Copenhagen 28

Chase-Lev steal at top

public T steal () {
final long t = top.get(), b = bottom, size = b - t;

 etien nall, - Empty before call
return null;

else {
T result = items[index(t, items.length)];
if (top.compareAndSet(t, t+1))

return result;
else

return null;
}
}

e Several threads may call steal

— And try to increment top, hence an AtomicLong

WS

TestChaselLevQueue.java

- So steal may fail (with null) due to interference

e even if queue is non-empty

— OK because callers keep stealing until success

29

Chase-Lev pop at bottom -

public T pop() {
final long b = bottom - 1;
bottom = b;
final long t = top.get(), afterSize = b - t;
if (afterSize < 0) {

TestChaselLevQueue.java

bottom = t;
return null;
} else {

T result = items[index (b, items.length)];
return result;
if (!'top.compareAndSet(t, t+1))

result = null;
bottom = t+1;

return result;

30

Why does pop update top?

o If pop takes the last item, it may clash with a
concurrent steal operation

— Because then size == 0 and soO bottom == top
items 5
top
bottom

e Hence pop must
— check top is unchanged (nobody stole item yet)
— if so, update top so stealers know item is taken
- both done by top.compareAndSet(t, t+1)
— no ABA problem because top always increases -,

Linearization points

e When does steal take effect?
e \When does push take effect?
e When does pop take effect?

IT University of Copenhagen

32

e Michael and Scott unbounded queue 1996

e Progress concepts
- Wait-free, lock-free, obstruction-free

e Work-stealing dequeues
— Chase-Lev dequeue 2005

e Union-find data structure

e Possible parallel programming projects

IT University of Copenhagen

The union-find data structure

e Efficient way to maintain equivalence classes

: Tarjan: Data structures and
¢ Used N network algorithms, 1983

- type inference in compilers: F#, Scala, C# ...
- Image segmentation
- network analysis: chips, WWW, Facebook friends ...

e Example: family relations, who are related?

l Sue is Pat’s sister

Al Alice is Bob’s sister
ice Bob Sue Mary is John’s mother
Mary is Bob’s mother

Pat Are Sue and Mary
Mary P h related?
o

34

Three union-find implementations

e A: Coarse-locking = Synchronized methods
e B: Fine-locking = Lock on each set partition
e C: Wait-free = Optimistic, CAS-based

interface UnionFind {
int find(int x); Ji)
void union(int x, int y);
boolean sameSet(int x, int y); T
}
class Node { class CoarseUnionFind implements UnionFind {
volatile int private final Node[] nodes;
next, rank;
} public CoarseUnionFind(int count) {

this.nodes = new Node[count];
for (int x=0; x<count; x++)
nodes[x] = new Node(x);

TestUnionFind.java

UF A
Coarse-locking union-find I

class CoarseUnionFind implements UnionFind {

private final Node[] nodes;
public synchronized int find(int x) { -
while (nodes[x].next != x) {

final int t = nodes[x].next, u = nodes[t].next;
nodes[x] .next = u;

l’ TestUnionFind.java

} —>I x t—{u

return x;

}

public synchronized void union(int x, int y) {

int rx = find(x), ry = £find(y);
it (tx == 1Y) i
return;

if (nodes[rx].rank > nodes[ry].rank) {
int tmp = rx; rx = ry; ry = tmp;

}
nodes[rx] .next = ry;
if (nodes[rx].rank == nodes[ry].rank)

nodes[ry] .rank++;

UF B

Fine-locking union-find

e No locking in find
— Do path compression separately
— Ensure visibility by volatile next, rank in Node

class FineUnionFind implements UnionFind {
public int find(int x) {

while (nodes[x].next != Xx)
X = nodes[x].next;

return x;

}

// Assumes lock is held on nodes[root]

private void compress(int x, final int root) {

while (nodes[x].next != x) {
int next = nodes[x].next; -
nodes[x] .next = root;

X = next;

TestUnionFind.java

}

}
}

IT University of Copenhagen 37

UF B

Fine-locking union-find

public void union(final int x, final int y) {
while (true) {
int rx = find(x), ry = find(y);
if (rx == ry)
return;

else if (rx > ry) {

}

synchronized (nodes[rx]) {

S

} o}
} o}

rnchronized (nodes[ry]) {

continue;

if (nodes[rx].next != rx || nodes[ry].next != ry)

if (nodes[rx].rank > nodes[ry].rank) {
int tmp = rx; rx = ry; ry = tmp;

}
nodes[rx] .next = ry;
if (nodes[rx].rank == nodes[ry].rank)

nodes[ry] .rank++;
compress(x, ry);
compress(y, ry);

TestUnionFind.java

38

Wait-free union-find with CAS L[UF¢c

class Node { Anderson and Woll: Wait-free
parallel algorithms for the
union-find problem, 1991

private final AtomicInteger next;
private final int rank;

}

public int find(int x) {
while (nodes.get(x).next.get() != x) {
final int t = nodes.get(x).next.get(),
u = nodes.get(t).next.get();
nodes.get (x) .next.compareAndSet(t, u);
X = u;

TestUnionFind.java

}

return x;

}

boolean updateRoot (int x, int oldRank, int y, int newRank) {
final Node oldNode = nodes.get(x);
if (oldNode.next.get() != x || oldNode.rank != oldRank)
return false;
Node newNode = new Node(y, newRank);
return nodes.compareAndSet (x, oldNode, newNode);

} 39

UF C
Wait-free union-find: union T

public void union(int x, int y) {
int xr, yr;
do {
x = find(x);

Xr = nodes.get(X) .rank;
yr = nodes.get(y).rank;
if (xr > yr || xr == yr && x > y) {
{ int tmp = x; x = y; y = tmp; }
{ int tmp = xr; xr = yr; yr = tmp; }

}
} (while (!updateRoot(x, xr, y, xr));

if (xr == yr)
updateRoot(y, yr, y, yr+l);
setRoot (x);

y = find(y); g
if (x ==y) E
return; S

=

i

IT University of Copenhagen 40

Some PCPP-related thesis projects

e Design, implement and test concurrent
versions of C5 collection classes for .NET

- http://www.itu.dk/research/c5/

e The Popular Parallel Programming (P3) project
— Static dataflow partitioning algorithms
— Dynamic scheduling algorithms on .NET
— Vector (SSE, AVX) .NET intrinsics for spreadsheets
— Supercomputing with Excel and .NET
- http://www.itu.dk/people/sestoft/p3/

e Investigate Java Pathfinder for test and
coverage analysis of concurrent software
- http://babelfish.arc.nasa.qgov/trac/ipf

IT University of Copenhagen 41

e Reading

— Michael & Scott 1996: Simple, fast, and practical
non-blocking and blocking concurrent gueue ...

— Chase & Lev 2005: Dynamic circular work-
stealing deque, sections 1, 2, 5
e EXxercises

— Test and experiment with the lock-free Michael &
Scott queue

— Test and experiment with the Chase-Lev work-
stealing dequeue

e Read before next week - Claus lectures!

- Armstrong, Virding, Williams: Concurrent
programming in Erlang, chapters 1, 2, 5, 11.1

IT University of Copenhagen

e General satisfaction with course, teachers,
teaching assistants, exercises, ...

e However, contents overlaps somewhat with
ITU BSc Software Development program

e Possible actions, fall 2017

— Compress the Threads & Locks stuff even more

— Spend more time (> 5 weeks) on
e transactional memory (week 9)?
e lock-free data structures (week 10-11)?
e message passing and actors (week 12-13)?
e other languages than Java (week 14) - but which ones?

IT University of Copenhagen

Numerical results (n=40) 2016

Question (6 = agree completely,

1 = disagree completely) average
Overall: I am happy about this course 5.12
I see a close correlation between the course

topics and the exam requirements 5.54
I sense a close correlation between the exam
requirements and the exam form 5.41
I think the course is relevant for my future

job profile 5.08
My time consumption for this course is too

high [...] 3.63
I am satisfied with my effort on this course 4.85

IT University of Copenhagen

44

Numerical results (n=38) 2015

Question (6 = agree completely,

1 = disagree completely) average
Overall: I am happy about this course 5.29
I see a close correlation between the course

topics and the exam requirements 5.47
I sense a close correlation between the exam
requirements and the exam form 5.50
I think the course is relevant for my future

job profile 5.16
My time consumption for this course is too

high [...] 3.63
I am satisfied with my effort on this course 4.71

IT University of Copenhagen

45

Numerical results (n=32) 2014

Question (6 = agree completely,

1 = disagree completely) average
Overall: I am happy about this course 5.06
I see a close correlation between the course

topics and the exam requirements 5.58
I sense a close correlation between the exam
requirements and the exam form 5.61
I think the course is relevant for my future

job profile 5.34
My time consumption for this course is too

high [...] 3.44
I am satisfied with my effort on this course 4,84

IT University of Copenhagen

46

