
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 11

Peter Sestoft
IT University of Copenhagen

Friday 2016-11-18

IT University of Copenhagen 2

Plan for today
•  Michael and Scott unbounded queue 1996
•  Progress concepts

– Wait-free, lock-free, obstruction-free
•  Work-stealing dequeues

– Chase-Lev dequeue 2005
•  Union-find data structure

•  Possible parallel programming projects

Bonus: More on volatile and CAS speed
•  Int field increment:

– Single thread; and non-volatile or volatile
•  AtomicInteger “incr”:

– Single thread
– Single thread, one other interfering thread
– Single thread, one other non-interfering thread

•  Results

3

data.x = data.x + 1;

int old = data.get();
data.compareAndSet(old, old+1);

Activity Time/ns
Non-volatile field 0.9
Volatile field 8.8
CAS alone 11.4
CAS with interfering thread 74.5
CAS with non-interfering thread 11.7

Te
st

Ti
m

eC
as

.j
av

a

Lock-based queue with sentinel

4

private static class Node<T> {
 final T item;
 Node<T> next;
}

class LockingQueue<T> implements UnboundedQueue<T> {
 private Node<T> head, tail;

 public LockingQueue() {
 head = tail = new Node<T>(null, null);
 }
 ...
}

Make
sentinel node Te

st
M

S
qu

eu
e.

ja
va

Q 1

Invariants:
head≠null
tail.next=null
If empty, head=tail
If non-empty: head≠tail,

 head.next is first item,
 tail points to last item

sentinel

head

tail

7 9 13

Purpose: Avoid special
case for empty queue

IT University of Copenhagen

Lock-based queue operations

•  Important property:

– Enqueue (put) updates tail but not head!
– Dequeue (take) updates head but not tail!

5

public synchronized void enqueue(T item) {
 Node<T> node = new Node<T>(item, null);
 tail.next = node;
 tail = node;
}

public synchronized T dequeue() {
 if (head.next == null)
 return null;
 Node<T> first = head;
 head = first.next;
 return head.item;
}

Enqueue
at tail

Dequeue from
second node,
becomes new

sentinel

Te
st

M
S
qu

eu
e.

ja
va

Q 1

Atomic

Atomic

IT University of Copenhagen

Michael-Scott lock-free queue, CAS

•  If non-empty:

– As before, head.next is first item
– But tail points to last item ("quiescent state")

or second-last item ("intermediate state")
6

private static class Node<T> {
 final T item;
 final AtomicReference<Node<T>> next;
}

class MSQueue<T> implements UnboundedQueue<T> {
 private final AtomicReference<Node<T>> head, tail;

 public MSQueue() {
 Node<T> dummy = new Node<T>(null, null);
 head = new AtomicReference<Node<T>>(dummy);
 tail = new AtomicReference<Node<T>>(dummy);
 }
}

Q 2

Te
st

M
S
Q

ue
ue

.j
av

a

Michael and Scott: Simple, Fast,
and Practical Non-Blocking and
Blocking Concurrent Queue
Algorithms, 1996

Make
sentinel node

IT University of Copenhagen

Intermediate state and "help"

7

Q 2

G
oe

tz
 p

.
33

3

Michael & Scott queue operations

8

sentinel

head

tail

7 9 13

After Herlihy & Shavit p. 232

Two-step
dequeue

read value

CAS head

1

42 2

Two-step
enqueue

CAS next 1

CAS tail 2

Q 2

Michael-Scott dequeue (take)

9

public T dequeue() {
 while (true) {
 Node<T> first = head.get(),
 last = tail.get(),
 next = first.next.get();
 if (first == head.get()) {
 if (first == last) {
 if (next == null)
 return null;
 else
 tail.compareAndSet(last, next);
 } else {
 T result = next.item;
 if (head.compareAndSet(first, next)) {
 return result;
 }
 }
 }
 }
}

Try move
head

Intermediate,
try move tail

1

2

In Java or C#,
but not C/C++,

(1) can go after (2)

Q 2

Needed?

Te
st

M
S
qu

eu
e.

ja
va

Is empty

May be empty

IT University of Copenhagen

Michael-Scott enqueue (put)

10

public void enqueue(T item) { // at tail
 Node<T> node = new Node<T>(item, null);
 while (true) {
 Node<T> last = tail.get(),
 next = last.next.get();
 if (last == tail.get()) {
 if (next == null) {
 if (last.next.compareAndSet(next, node)) {
 tail.compareAndSet(last, node);
 return;
 }
 } else {
 tail.compareAndSet(last, next);
 }
 }
 }
}

Quiescent, try add

Success, try
move tail

Intermediate,
try move tail

1

2

"help another
enqueuer"

Needed?

Q 2

Te
st

M
S
qu

eu
e.

ja
va

Why must dequeue
mess with the tail?

11

public T dequeue() {
 ...
 if (first == last) {
 if (next == null)
 return null;
 else
 tail.compareAndSet(last, next);
 } else ...
}

Q 2

Te
st

M
S
qu

eu
e.

ja
va

sentinel

head

tail

7

A: enqueue(7)
A: update a.next
B: dequeue()
B: update head

A
ft

er
 H

er
lih

y
&

 S
ha

vi
t

p.
 2

33

Scenario without it:
If queue empty,
head==tail

Now tail lags behind
head, not good
So B: dequeue()
must move tail
before moving head

Intermediate,
try move tail

Understanding Michael-Scott queue
•  Linearization point: where method takes effect
•  Linearizable, with linearization points:

– enqueue: successful CAS at E9
– dequeue returning null: D3
– dequeue returning item: successful CAS at D13

12

public void enqueue(T item) { // at tail
 Node<T> node = new Node<T>(item, null);
 while (true) {
 Node<T> last = tail.get(),
 next = last.next.get();
 if (last == tail.get()) { // E7
 if (next == null) {
 if (last.next.compareAndSet(next, node)) {
 tail.compareAndSet(last, node);
 return;
 }
 } else
 tail.compareAndSet(last, next);
 }
 }
}

public T dequeue() { // from head
 while (true) {
 Node<T> first = head.get(),
 last = tail.get(),
 next = first.next.get();
 if (first == head.get()) { // D5
 if (first == last) {
 if (next == null)
 return null;
 else
 tail.compareAndSet(last, next);
 } else {
 T result = next.item;
 if (head.compareAndSet(first, next))
 return result;
 }
 }
 }
} Groves: Verifying Michael and Scott’s Lock-Free

Queue Algorithm using Trace Reduction, 2008

D13

D3

E9

private final AtomicReferenceFieldUpdater<Node<T>, Node<T>> nextUpdater
 = AtomicReferenceFieldUpdater.newUpdater((Class<Node<T>>)(Class<?>)(Node.class),
 (Class<Node<T>>)(Class<?>)(Node.class),
 "next");

Nice, but ... needs a lot of
AtomicReference objects

13

private static class Node<T> {
 final T item;
 final AtomicReference<Node<T>> next;

 public Node(T item, Node<T> next) {
 this.item = item;
 this.next = new AtomicReference<Node<T>>(next);
 }
}

private static class Node<T> {
 final T item;
 volatile Node<T> next;
 ...
}

Must be
CAS'able

One AR
per Node

Better, no
AtomicReference
object needed

Instead, make
an "updater"

Q 3

Q 3

Q 2

A
 la

 G
oe

tz
 p

.
33

5

IT University of Copenhagen

Michael-Scott enqueue,
using the "updater" for last.next!

14

public void enqueue(T item) { // at tail
 Node<T> node = new Node<T>(item, null);
 while (true) {
 Node<T> last = tail.get(), next = last.next;
 if (last == tail.get()) {
 if (next == null) {
 if (nextUpdater.compareAndSet(last, next, node)) {
 tail.compareAndSet(last, node);
 return;
 }
 } else {
 tail.compareAndSet(last, next);
 }
 }
 }
}

Q 3

If “next” field of
last equals

next, set to node!

IT University of Copenhagen

Queue benchmarks
•  Queue implementations

–  Lock-based
–  Lock-based, sentinel node
–  Lock-free, sentinel node, AtomicReference
–  Lock-free, sentinel node, AtomicReferenceFieldUpdater

•  Platforms
–  Hotspot 64 bit Java 1.7.0_b147, Windows 7, Xeon W3505,

2.53GHz, 2 cores, 2009Q1
–  Hotspot 64 bit Java 1.6.0_37, MacOS, Core 2 Duo,

2.66GHz, 2 cores, 2008Q1
–  Icedtea Java 1.7.0_b21, Linux, Xeon E5320, 1.86GHz, 4/8

cores, 2006Q4
–  Hotspot 64 bit Java 1.7.0_25-b15, Linux, AMD Opteron

6386 SE, 32 cores, 2012Q4
•  Measurements probably flawed: the client threads

do no useful work, only en/dequeue
•  Nevertheless, big differences between machines

15

Java 1.7, Xeon W3505, 2 cores

16

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20

LockQueue

MSNonblockingQueue

MSNonblockingQueueRefl

SentinelLockQueue

Time as
function of
number of
concurrent
threads

#threads

tim
e

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18 20

LockQueue

MSNonblockingQueue

MSNonblockingQueueRefl

SentinelLockQueue

Java 1.6, Core 2 Duo, 2 cores

17 #threads

tim
e

Java 1.7, Xeon E5320, 4x2 cores

18

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20

LockQueue

MSNonblockingQueue

MSNonblockingQueueRefl

SentinelLockQueue

#threads

tim
e

Java 1.7, AMD Opteron, 32 cores

19

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

LockQueue

MSNonblockingQueue

MSNonblockingQueueRefl

SentinelLockQueue

#threads

tim
e

IT University of Copenhagen 20

Plan for today
•  Michael and Scott unbounded queue 1996
•  Progress concepts

– Wait-free, lock-free, obstruction-free
•  Work-stealing dequeues

– Chase-Lev dequeue 2005
•  Union-find data structure

•  Possible parallel programming projects

Progress concepts
•  Non-blocking: A call by thread A cannot

prevent a call by thread B from completing
– Not true for lock-based queue: A holds lock to
put(), gets descheduled or crashes, while B
wants to take() but cannot get lock!

•  Wait-free: Every call finishes in finite time
– True for SimpleTryLock’s tryLock!
– Not true for AtomicInteger’s getAndAdd!

•  Bounded wait-free: Every ... in bounded time!
•  Lock-free: Some call finishes in finite time

– True for AtomicInteger’s getAndAdd!
– Any wait-free method is also lock-free
– Lock-free is good enough in practice

21

G
oe

tz
 §

15
.4

 a
nd

 H
er

lih
y

&
 S

ha
vi

t
§3

.7

Shavit et al, CACM November 2014, p. 13-15

Not same
as lock-less

IT University of Copenhagen

Obstruction freedom
•  Obstruction-free: If a method call executes

alone, it finishes in finite time
– Lock-based data structures are not obstruction-free
– A lock-free method is also obstruction-free
– Obstruction-free sounds rather weak, but in

combination with back-off it ensures progress
– Some people even think it too strong:

22

Ennals 2006: STM should not be obstruction-free

... we argue that obstruction-freedom is not an
important property for software transactional memory,
and demonstrate that, if we are prepared to drop the
goal of obstruction-freedom, software transactional
memory can be made significantly faster

IT University of Copenhagen 23

Plan for today
•  Michael and Scott unbounded queue 1996
•  Progress concepts

– Wait-free, lock-free, obstruction-free
•  Work-stealing dequeues

– Chase-Lev dequeue 2005
•  Union-find data structure

•  Possible parallel programming projects

IT University of Copenhagen

Perspective: Work-stealing dequeues
•  Double-ended concurrent queues
•  Used to implement

–  Java 7’s Fork-Join framework, and Akka (wk 13-14)
–  Java 8’s newWorkStealingPool executor
–  .NET 4.0 Task Parallel Library

•  Chase and Lev: Dynamic circular
work-stealing queue, SPAA 2005

•  Michael, Vechev, Saraswat: Idem-
potent work stealing, PPoPP 2009

•  Leijen, Schulte, Burckhardt: The design
of a task parallel library, OOPSLA 2009

24

Java 8
source

.NET
TPL

PCPP exam
Jan 2015

A worker/task framework

•  Worker threads pop and push tasks on queue
•  Not scalable because single queue is used

by many threads
25

Worker
threads Common task queue

pop task

push task

Better worker/task framework

•  Fewer memory write conflicts:
– Most queue accesses are from local thread only
– Pop from bottom, steal from top, conflicts are rare

•  Much better scalability 26

Worker
threads

Thread-local work-
stealing dequeues

pop task
push task

steal interface WSDeque<T> {
 void push(T item);
 T pop();
 T steal();
}

Chase-Lev workstealing queue (2005)

•  push and pop at bottom: stack for local thread
•  steal at top: queue for other threads

27

2 3 5

bottom!

top!

class ChaseLevDeque<T> {
 final T[] items;
 volatile long bottom = 0;
 final AtomicLong top = new AtomicLong();
 ...
}

items!

Fixed size,
for simplicity

Only the local
thread writes

push(7)!

7

pop()!

steal()!

Local
thread

Other
threads

M
os

t
ar

ra
y

w
ri
te

s
ar

e
th

re
ad

-l
oc

al

IT University of Copenhagen

Chase-Lev push at bottom

28

public void push(T item) {
 final long b = bottom, t = top.get(), size = b - t;
 if (size == items.length)
 throw new RuntimeException("queue overflow");
 items[index(b, items.length)] = item;
 bottom = b+1;
}

WS

Te
st

C
ha

se
Le

vQ
ue

ue
.j

av
a

•  This is thread-safe, even without locks or CAS
– Only one thread calls push!
– So only one thread updates the bottom field
– Other threads read it, so it must be volatile!

Chase-Lev steal at top

29

public T steal() {
 final long t = top.get(), b = bottom, size = b - t;
 if (size <= 0)
 return null;
 else {
 T result = items[index(t, items.length)];
 if (top.compareAndSet(t, t+1))
 return result;
 else
 return null;
 }
}

WS

Te
st

C
ha

se
Le

vQ
ue

ue
.j

av
a

Empty before call

Somebody else
stole top item

•  Several threads may call steal!
– And try to increment top, hence an AtomicLong
– So steal may fail (with null) due to interference

•  even if queue is non-empty

– OK because callers keep stealing until success

Chase-Lev pop at bottom

30

public T pop() {
 final long b = bottom - 1;
 bottom = b;
 final long t = top.get(), afterSize = b - t;
 if (afterSize < 0) {
 bottom = t;
 return null;
 } else {
 T result = items[index(b, items.length)];
 if (afterSize > 0)
 return result;
 else {
 if (!top.compareAndSet(t, t+1))
 result = null;
 bottom = t+1;
 return result;
 }
 }
}

Empty before call

WS

Te
st

C
ha

se
Le

vQ
ue

ue
.j

av
a

Non-empty after call

Became empty

Oops, somebody
stole last item

... so write top
then set bottom!

Why does pop update top?
•  If pop takes the last item, it may clash with a

concurrent steal operation
– Because then size == 0 and so bottom == top!

•  Hence pop must
–  check top is unchanged (nobody stole item yet)
–  if so, update top so stealers know item is taken
– both done by top.compareAndSet(t, t+1)!
– no ABA problem because top always increases! 31

5

bottom!

top!

items!

IT University of Copenhagen

Linearization points
•  When does steal take effect?
•  When does push take effect?
•  When does pop take effect?

32

IT University of Copenhagen 33

Plan for today
•  Michael and Scott unbounded queue 1996
•  Progress concepts

– Wait-free, lock-free, obstruction-free
•  Work-stealing dequeues

– Chase-Lev dequeue 2005
•  Union-find data structure

•  Possible parallel programming projects

The union-find data structure
•  Efficient way to maintain equivalence classes
•  Used in

–  type inference in compilers: F#, Scala, C# ...
–  image segmentation
– network analysis: chips, WWW, Facebook friends ...

•  Example: family relations, who are related?

34

Tarjan: Data structures and
network algorithms, 1983

Alice Sue

Mary
John

Pat

Bob

Sue is Pat’s sister
Alice is Bob’s sister
Mary is John’s mother
Mary is Bob’s mother

Are Sue and Mary
related?

root

root

class CoarseUnionFind implements UnionFind {!
 private final Node[] nodes;!
!
 public CoarseUnionFind(int count) {!
 this.nodes = new Node[count];!
 for (int x=0; x<count; x++)!
 nodes[x] = new Node(x);!
 }!

Three union-find implementations
•  A: Coarse-locking = Synchronized methods
•  B: Fine-locking = Lock on each set partition
•  C: Wait-free = Optimistic, CAS-based

35

interface UnionFind {!
 int find(int x);!
 void union(int x, int y);!
 boolean sameSet(int x, int y);!
}!

class Node {!
 volatile int !
 next, rank;!
}!

Te
st

U
ni

on
Fi

nd
.j

av
a

Coarse-locking union-find

36

UF A

class CoarseUnionFind implements UnionFind {!
 private final Node[] nodes;!
 public synchronized int find(int x) {!
 while (nodes[x].next != x) {!
 final int t = nodes[x].next, u = nodes[t].next;!
 nodes[x].next = u;!
 x = u;!
 }!
 return x;!
 }!
 public synchronized void union(int x, int y) {!
 int rx = find(x), ry = find(y);!
 if (rx == ry)!
 return;!
 if (nodes[rx].rank > nodes[ry].rank) {!
 int tmp = rx; rx = ry; ry = tmp;!
 }!
 nodes[rx].next = ry;!
 if (nodes[rx].rank == nodes[ry].rank)!
 nodes[ry].rank++;!
 }!
}!

Te
st

U
ni

on
Fi

nd
.j

av
a

Path
halving

x t u

Union
by rank

x y

rx! ry!

Find
roots

IT University of Copenhagen

Fine-locking union-find
•  No locking in find

– Do path compression separately
– Ensure visibility by volatile next, rank in Node

37

UF B

class FineUnionFind implements UnionFind {!
 public int find(int x) {!
 while (nodes[x].next != x) !
 x = nodes[x].next;!
 return x;!
 }!
 !
 // Assumes lock is held on nodes[root]!
 private void compress(int x, final int root) {!
 while (nodes[x].next != x) {!
 int next = nodes[x].next;!
 nodes[x].next = root;!
 x = next;!
 }!
 }!
}!

Te
st

U
ni

on
Fi

nd
.j

av
a

No path
halving

Path
compression

Fine-locking union-find

38

UF B

public void union(final int x, final int y) {!
 while (true) {!
 int rx = find(x), ry = find(y);!
 if (rx == ry)!
 return;!
 else if (rx > ry) { !
 int tmp = rx; rx = ry; ry = tmp; !
 }!
 synchronized (nodes[rx]) { !
 synchronized (nodes[ry]) {!
 if (nodes[rx].next != rx || nodes[ry].next != ry)!
 continue;!
 if (nodes[rx].rank > nodes[ry].rank) {!
 int tmp = rx; rx = ry; ry = tmp;!
 }!
 nodes[rx].next = ry;!
 if (nodes[rx].rank == nodes[ry].rank)!
 nodes[ry].rank++;!
 compress(x, ry);!
 compress(y, ry);!
 } } !
} }!

Te
st

U
ni

on
Fi

nd
.j

av
a

Consistent
lock order

Restart if
updated

Union by rank
and path

compression

Wait-free union-find with CAS

39

UF C

class Node {!
 private final AtomicInteger next;!
 private final int rank;!
}!

Te
st

U
ni

on
Fi

nd
.j

av
a

public int find(int x) {!
 while (nodes.get(x).next.get() != x) {!
 final int t = nodes.get(x).next.get(), !
 u = nodes.get(t).next.get();!
 nodes.get(x).next.compareAndSet(t, u);!
 x = u;!
 }!
 return x;!
}!

Path
halving

with CAS

boolean updateRoot(int x, int oldRank, int y, int newRank) {!
 final Node oldNode = nodes.get(x);!
 if (oldNode.next.get() != x || oldNode.rank != oldRank)!
 return false;!
 Node newNode = new Node(y, newRank);!
 return nodes.compareAndSet(x, oldNode, newNode);!
}!

Atomic update of root
nodes[x] to point to

fresh Node(y,newRank)!

Anderson and Woll: Wait-free
parallel algorithms for the
union-find problem, 1991

IT University of Copenhagen

Wait-free union-find: union

40

UF C

Te
st

U
ni

on
Fi

nd
.j

av
a

public void union(int x, int y) {!
 int xr, yr;!
 do {!
 x = find(x); !
 y = find(y);!
 if (x == y)!
 return;!
 xr = nodes.get(x).rank;!
 yr = nodes.get(y).rank;!
 if (xr > yr || xr == yr && x > y) {!
 { int tmp = x; x = y; y = tmp; }!
 { int tmp = xr; xr = yr; yr = tmp; }!
 }!
 } while (!updateRoot(x, xr, y, xr));!
 if (xr == yr) !
 updateRoot(y, yr, y, yr+1);!
 setRoot(x); !
}!

Union-by-rank,
deterministic

Restart if
updated

IT University of Copenhagen

Some PCPP-related thesis projects
•  Design, implement and test concurrent

versions of C5 collection classes for .NET
– http://www.itu.dk/research/c5/

•  The Popular Parallel Programming (P3) project
– Static dataflow partitioning algorithms
– Dynamic scheduling algorithms on .NET
– Vector (SSE, AVX) .NET intrinsics for spreadsheets
– Supercomputing with Excel and .NET
– http://www.itu.dk/people/sestoft/p3/

•  Investigate Java Pathfinder for test and
coverage analysis of concurrent software
– http://babelfish.arc.nasa.gov/trac/jpf

41

IT University of Copenhagen

This week
•  Reading

– Michael & Scott 1996: Simple, fast, and practical
non-blocking and blocking concurrent queue ...

– Chase & Lev 2005: Dynamic circular work-
stealing deque, sections 1, 2, 5

•  Exercises
– Test and experiment with the lock-free Michael &

Scott queue
– Test and experiment with the Chase-Lev work-

stealing dequeue
•  Read before next week – Claus lectures!

– Armstrong, Virding, Williams: Concurrent
programming in Erlang, chapters 1, 2, 5, 11.1

42

IT University of Copenhagen

Course evaluation
•  General satisfaction with course, teachers,

teaching assistants, exercises, ...

•  However, contents overlaps somewhat with
ITU BSc Software Development program

•  Possible actions, fall 2017
– Compress the Threads & Locks stuff even more
– Spend more time (> 5 weeks) on

•  transactional memory (week 9)?
•  lock-free data structures (week 10-11)?
• message passing and actors (week 12-13)?
•  other languages than Java (week 14) – but which ones?

43

IT University of Copenhagen

Numerical results (n=40) 2016

44

Question (6 = agree completely,
1 = disagree completely) average

Overall: I am happy about this course 5.12

I see a close correlation between the course
topics and the exam requirements 5.54

I sense a close correlation between the exam
requirements and the exam form 5.41
I think the course is relevant for my future
job profile 5.08
My time consumption for this course is too
high [...] 3.63

I am satisfied with my effort on this course 4.85

IT University of Copenhagen

Numerical results (n=38) 2015

45

Question (6 = agree completely,
1 = disagree completely) average

Overall: I am happy about this course 5.29

I see a close correlation between the course
topics and the exam requirements 5.47

I sense a close correlation between the exam
requirements and the exam form 5.50
I think the course is relevant for my future
job profile 5.16
My time consumption for this course is too
high [...] 3.63

I am satisfied with my effort on this course 4.71

IT University of Copenhagen

Numerical results (n=32) 2014

46

Question (6 = agree completely,
1 = disagree completely) average

Overall: I am happy about this course 5.06

I see a close correlation between the course
topics and the exam requirements 5.58

I sense a close correlation between the exam
requirements and the exam form 5.61
I think the course is relevant for my future
job profile 5.34
My time consumption for this course is too
high [...] 3.44

I am satisfied with my effort on this course 4.84

