
IT University of Copenhagen 1

Practical Concurrent and
Parallel Programming 14.1

Peter Sestoft
IT University of Copenhagen

Friday 2016-12-09*

IT University of Copenhagen 2

Plan for today
•  Part 1 (Peter):

– The Java Memory Model
– The C# Memory Model?

•  Part 2 (Ken Friis Larsen):

– Using Rust's type system to control shared
mutable memory and avoid some concurrency
problems

Why do I need a memory model?
•  Threads in Java and C# and C etc

communicate via shared mutable memory
•  We need CPU caches for speed

– With caches, write-to-RAM order may seem strange
•  We need compiler optimizations for speed

– Compiler optimizations that are harmless in thread
A may seem strange from thread B

•  Disallowing strangeness gives slow software
– So we have to live with some strangeness

•  A memory model tells how much strangeness
•  The Java Memory Model is quite well-defined

–  JLS §17.4, Goetz §16, Herlihy & Shavit §3.8
3

Memory model: Locks cause visibility

4

G
oe

tz
 p

.
37

lock = acquire

exit synchronized!

unlock = release

enter synchronized!

The happens-before relation in Java
•  A program order of a thread t is some total order of the thread’s actions

that is consistent with the intra-thread semantics of t

•  Action x synchronizes-with action y is defined as follows:
–  An unlock action on monitor m synchronizes-with all subsequent lock actions on m
–  A write to a volatile variable v synchronizes-with all subsequent reads of v by any

thread
–  An action that starts a thread synchronizes-with the first action in the thread it starts
–  The write of the default value (zero, false, or null) to each variable synchronizes-with

the first action in every thread
–  The final action in a thread T1 synchronizes-with any action in another thread T2

that detects that T1 has terminated
–  If thread T1 interrupts thread T2, the interrupt by T1 synchronizes-with any point

where any other thread (including T2) determines that T2 has been interrupted

•  Action x happens-before action y, written hb(x,y), is defined like this:
–  If x and y are actions of the same thread and x comes before y in program order,

then hb(x, y)
–  There is a happens-before edge from the end of a constructor of an object to the

start of a finalizer for that object
–  If an action x synchronizes-with a following action y, then we also have hb(x,y)
–  If hb(x, y) and hb(y, z), then hb(x, z) – that is, hb is transitive

5 Goetz §16.3.1 Java Language Specification §17.4

IT University of Copenhagen

Strange but legal behavior in Java
•  Java Language Specification (JLS), sect 17.4:

– Run these code fragments in two threads
– Distinct shared fields A and B, initially 0
– Local unshared variables r1, r2

•  What are the possible results?

–  Intuitively, either r2=A or r1=B is executed first
– And therefore either r2==0 or r1==0
– But r1==1 and r2==2 is possible, and legal by JLS
–  “Intuition”, sequential consistency, not guaranteed

6

r2=A;
B=1;

r1=B;
A=2;

Thread 1 Thread 2

JL
S
 8

 T
ab

le
s

17
.1

,
17

.5

Strange result, why legal?

•  What are the possible results?

– Result r1==1 and r2==2 is legal because
consistent with happens-before relation

•  (Probable cause: hardware cache store buffer)
7

r2=A;
B=1;

r1=B;
A=2;

Thread 1 Thread 2

JL
S
 8

 T
ab

le
s

17
.1

,
17

.5

B=1;
A=2;
r2=A;
r1=B;

Respects program
order in thread 1

Same for thread 2

No synchronization
order for the actions

Because fields A
and B are distinct

Because no locking,
no volatile fields

Another cause: compiler optimizations
•  More comprehensible example from JLS 17.4

– Assume p, q shared, p==q and p.x==0

– Compiler optimization, common subexpr. elimin.:

(p.x seems to switch from r2=0 to r4=3 and back to r5=0

•  Using volatile x prevents this strangeness
– But makes code slower (lecture 4) 8

r1 = p; !
r2 = r1.x; !
r3 = q; !
r4 = r3.x; !
r5 = r1.x;!

r6 = p; !
r6.x = 3;!

r1 = p; !
r2 = r1.x; !
r3 = q; !
r4 = r3.x; !
r5 = r2;!

r6 = p; !
r6.x = 3;!

Thread A Thread 2

NB!

VolatileArray.java

Observing it in practice

•  Without volatile, can get A_won = B_won = 1 !
– Caused by CPU store buffer delay (not by compiler)
– Memory updates are not sequentially consistent

•  With volatile, impossible in Java (but not C#)
9

class StoreBufferExample {
 volatile boolean A = false,
 B = false;
 int A_Won = 0, B_Won = 0;
 public void ThreadA() {
 A = true;
 if (!B)
 A_Won = 1;
 }
 public void ThreadB() {
 B = true;
 if (!A)
 B_Won = 1;
 }
}

O
st

ro
vs

ky
 2

01
3

Te

st
S
to

re
B
uf

fe
r.j

av
a

Executed on
thread A

Executed on
thread B

IT University of Copenhagen

•  Principle 3.4.1: Method calls should appear
to take effect in program order
– Program order is the order within a single thread

•  The full execution of a program is an
interleaving of each all threads’ executions

•  A read sees the most recent write before it
•  Seems natural

• And is natural – on single-core computers,
with no compiler optimizations

• But not on multicore or with compiler opt.

Sequential consistency

10

H
er

lih
y

&
 S

ha
vi

t
p.

 5
2

Interleavings assuming sequentially
consistent memory model

11

A=true
if (!B)
A_Won=1
B=true
if (!A)

A=true
if (!B)
B=true
A_Won=1
if (!A)

A=true
if (!B)
B=true
if (!A)
A_Won=1

A=true
B=true
if (!B)
if (!A)

A=true
B=true
if (!A)
if (!B)

B=true
if (!A)
B_Won=1
A=true
if (!B)

B=true
if (!A)
A=true
B_Won=1
if (!B)

B=true
if (!A)
A=true
if (!B)
B_Won=1

Initially: A = B = false and A_Won = B_Won = 0!

B=true
A=true
if (!A)
if (!B)

B=true
A=true
if (!B)
if (!A)

A won

B won

Nobody
won

Nobody
won

IT University of Copenhagen

Experiments on 4-core Intel i7
•  Java, without volatile and with volatile:

•  On 1-core ARM, double-wins seem impossible

12

A loses A wins

B loses 2668 438518

B wins 558814 0

A loses A wins

B loses 0 436649

B wins 550463 12888

Te
st

S
to

re
B
uf

fe
r.j

av
a

if (!B)
B=true
if (!A)
B_Won=1
A=true
A_Won=1

Some weird
execution

Some weird
executions??

Not sequentially consistent:
seen from thread A, order

if (!B) moved before A=true

Not sequentially consistent:
seen from thread A, the

if (!B) moved before A=true

IT University of Copenhagen

C#/.NET memory model?
•  Quite similar to Java

– C# Language Specification, Ecma-334 standard
•  But weaknesses and unclarities

– C# readonly has no visibility effect unlike final!
– C# volatile is weaker than in Java
– Allowed to lift variable read out of loop?
–  “Read introduction” seems downright horrible!

•  If you write concurrent C# programs, read:
– Ostrovsky: The C# Memory Model in Theory and

Practice, MSDN Magazine, December 2012
– Even though optional in this course

13

IT University of Copenhagen

•  Visibility effect of C#/.NET readonly fields not mentioned in C#
Language Specification or Ecma-335 CLI Specification (initonly)

•  In fact, no visibility guarantee is intended...

14 Works in Java, dubious in C#

IT University of Copenhagen

C#/.NET volatile weaker than Java’s

•  C#: possible to get A_Won = B_Won = 1 !!!!
– Even with volatile!
– To fix in C#, add MemoryBarrier call

15

class StoreBufferExample {
 volatile bool A = false,
 B = false;
 int A_Won = 0, B_Won = 0;
 public void ThreadA() {
 A = true;
 if (!B)
 A_Won = 1;
 }
 public void ThreadB() {
 B = true;
 if (!A)
 B_Won = 1;
 }
}

O
st

ro
vs

ky
 2

01
3

public void ThreadA() {
 A = true;
 Thread.MemoryBarrier();
 if (!B)
 A_Won = 1;
}

public void ThreadB() {
 B = true;
 Thread.MemoryBarrier();
 if (!A)
 B_Won = 1;
}

Te
st

S
to

re
B
uf

fe
r.c

s

IT University of Copenhagen

Experiments on 4-core Intel i7
•  C#/.NET 4.6, without and with volatile:

•  Volatile in C# not the same as in Java
•  Volatile keyword in C, C++, Java and C#

has four different meanings...

16

Te
st

S
to

re
B
uf

fe
r.c

s A loses A wins

B loses 522 912084

B wins 72290 15102

A loses A wins

B loses 600 874916

B wins 108249 16235

C# volatile
has no

effect here!!

C# volatile vs Java volatile

•  A C# volatile read may move earlier, a

volatile write may move later, hence trouble
•  Not in Java:

17

•  A read of a volatile field is called a volatile read. A volatile
read has “acquire semantics”; that is, it is guaranteed to
occur prior to any references to memory that occur after it in
the instruction sequence.

•  A write of a volatile field is called a volatile write. A volatile
write has “release semantics”; that is, it is guaranteed to
happen after any memory references prior to the write
instruction in the instruction sequence.

C
#

 L
an

gu
ag

e
S
pe

c
20

06
,

§1
7.

4.
3

If a programmer protects all accesses to shared data via locks
or declares the fields as volatile, she can forget about the Java
Memory Model and assume interleaving semantics, that is,
Sequential Consistency.

Lochbihler: Making the Java memory model safe, ACM TOPLAS, December 2013

IT University of Copenhagen

MemoryBarrier() in C#/.NET

•  But sometimes is needed anyway
– also on x86, contradicting the API docs ...

•  Java does not have MemoryBarrier, because
Java volatile gives good guarantees

 18

Synchronizes memory access as follows: The processor executing
the current thread cannot reorder instructions in such a way that
memory accesses prior to the call to MemoryBarrier execute after
memory accesses that follow the call to MemoryBarrier.

MemoryBarrier is required only on multiprocessor systems with
weak memory ordering (for example, a system employing
multiple Intel Itanium processors).

System.Threading.Thread.MemoryBarrier API docs 4.5 Dubious
claim

IT University of Copenhagen

This week
•  Reading

– Goetz et al chapter 16
–  Java Language Specification §17.4

•  No exercises

19

