
Intermediate Representation

• After initial analyses, abstract syntax tree is
translated to an intermediate representation.

• Single back-end is used for several languages,
• and single front-end for various targets

(important for companies like TI)
• IR is a form of a tree-like language with limited

instruction set.
• Later the back-end shall translate IR to the

target instruction set.

Andrzej Wąsowski Episode 4: Intermediate Representation 4–2

Translating a Constant

Each integer constant i is translated to CONST i.
For example:

τ() = CONST 

Should we have more types of constants (for
example floats), a distinct constructor for each of
them should be included in the IR.

Andrzej Wąsowski Episode 4: Intermediate Representation 4–4

Software Programmable DSP
Platform Analysis
Episode 4, Tuesday 5 April 2006, Ingredients

Intermediate Representation
IR Expressions
IR Statements

Instruction Selection
Maximal Munch
Translating to Lists of Instructions

Andrzej Wąsowski Episode 4: Ingredients 4–1

IR: Expressions
CONST i integer constant i

NAME n address of a symbolic label n

TEMP t temporary (think abstract register)

BINOP(o,e,e) evaluate e, e, return e o e

o ∈ {+,−,XOR,∗,/,&, |,�,�}

MEM(e,n) content of n cells at address e.
Often drop n to avoid clutter

CALL(f , l) Call function at address f
with arguments on list l

ESEQ(s,e) execute stmt s, evaluate expr e,
return value of e.

Andrzej Wąsowski Episode 4: Intermediate Representation 4–3

Unary Minus

τ(−e1) = CONST 0− τ(e1)

CONST 0

τ(e)

−

Andrzej Wąsowski Episode 4: Intermediate Representation 4–6

• If v is allocated in register ri then the translation
is simply TEMP ri.

• Typically all variables that need explicit
addresses would be allocated on the stack,

• and all the others in abstract registers
(temporaries).

• Only at the later optimization steps abstract
registers will be mapped to finite number of
physical registers.

Andrzej Wąsowski Episode 4: Intermediate Representation 4–8

Translating Addition

τ(e + e) = BINOP(+,τ(e),τ(e))

τ(e1) τ(e2)

+

Andrzej Wąsowski Episode 4: Intermediate Representation 4–5

Variable Access

A stack allocated variable v at offset k:

MEM(BINOP(+,TEMP fp,CONST k))

MEM

+

TEMP fp CONST k

Andrzej Wąsowski Episode 4: Intermediate Representation 4–7

IR: Statements
MOVE(TEMP t,e) move value of e to register t

MOVE(MEM(e,n),e) store value of e in n cells at e

EXP e compute value of e, discard it

JUMP e jump to program location
returned by e

CJUMP (o,e,e, t, f) compare values of e,e using
operator o, jump to label t or f
depending on the result.
o ∈ {=, ! =,<,>,≤,≥}

SEQ(s,s) execute s and then s

LABEL n label n before next instruction

Andrzej Wąsowski Episode 4: Intermediate Representation 4–10

Let ltrue be the label of the code to be executed if the
condition is true, and l f alse otherwise. Then:

τ(a > b‖c < d) =

SEQ(CJUMP(>,τ(a),τ(b), ltrue, lnext),

SEQ(LABEL lnext ,

CJUMP(<,τ(c),τ(d), ltrue, l f alse)))

where lnext is a fresh, local label.

Andrzej Wąsowski Episode 4: Intermediate Representation 4–12

Translating Conditions (first attempt)

τ(a > b‖c < d) = ‖(> (τ(a),τ(b)),< (τ(c),τ(d))))

τ(a) τ(b) τ(c) τ(d)

‖

> <

Does not preserve C semantics: no short circuit.
Needs control statements to achieve lazy evaluation.

Andrzej Wąsowski Episode 4: Intermediate Representation 4–9

Conditions Revisitted

• Use conditional jump (CJUMP) to shortcut
computation of disjunction.

• Only compute the right side, if the left side fails.
• Compute the left side,
• and if it is true, jump over the computation of

the right operand.
• If the left side gives fall, jump to the

computation of the right operand.

Andrzej Wąsowski Episode 4: Intermediate Representation 4–11

While Loops

A while loop: while (e) b;

Naturally expands to:

test:if (!e)
goto done;

b;
goto test;

done:. . .

but more popular is:

goto test;
beg: b;
test:if (e)

goto beg;

1 CJUMP per iteration
+ 1 JUMP per iteration

1 CJUMP per iteration
+ 1 JUMP to initialize

Andrzej Wąsowski Episode 4: Intermediate Representation 4–14

• More patterns of translation in Appel,
section 7.2.

• The IR language does not have the construct
for function definition (but it has calls).

• IR is suitable for representing function bodies.
• In this way platform dependent calling

conventions (entry and exit code) do not pollute
our IR, which should be general.

• This code is added by the compiler later on.

Andrzej Wąsowski Episode 4: Intermediate Representation 4–16

τ(a > b‖c < d):

SEQ

CJUMP SEQ

>

τ(a) τ(b)

NAME ltrue NAME lnext LABEL lnext CJUMP

<

τ(c) τ(d)

NAME ltrue NAME l f alse

Andrzej Wąsowski Episode 4: Intermediate Representation 4–13

SEQ

JUMP SEQ

NAME ltest LABEL lbegin SEQ

τ(b)

SEQ

LABEL ltest CJUMP

=

τ(e)

CONST  NAME ldone NAME lbegin

The rightmost variant translated to IR.

Andrzej Wąsowski Episode 4: Intermediate Representation 4–15

Instruction Selection
A node in the IR tree represents a single operation.
A target (VLIW) instruction represents many.

Example LDW on C67x: LDW *-A5[A1],A7

Corresponds (roughly) to:

(spru189 pp. 3-68—3-71)

MOVE

MEM TEMP A7

−

TEMP A5 TEMP A1

Andrzej Wąsowski Episode 4: Instruction Selection 4–18

Target Instructions

name semantics c6xxx instr. pattern

ADD ri ← rj + rk ADD rj , rk , ri

+

MUL ri ← rj ∗ rk MPY rj , rk , ri

∗

ADDI ri ← rj +c ADD c, rj , ri

+

CONST

+

CONST

Andrzej Wąsowski Episode 4: Instruction Selection 4–20

Agenda

Intermediate Representation
IR Expressions
IR Statements

Instruction Selection
Maximal Munch
Translating to Lists of Instructions

Andrzej Wąsowski Episode 4: Intermediate Representation 4–17

And LDH *++A4[A1],A8 is even more complex

SEQ

MOVE MOVE

TEMP A4 + MEM TEMP A8

TEMP A4 CONST 2 +

TEMP A4 TEMP A1

(source: spru189, pp. 3-68—3-71)

Andrzej Wąsowski Episode 4: Instruction Selection 4–19

name semantics c6xxx instr.

STORE M [rj +c]← ri STW ri ,∗rj [c]

MEM

+

CONST

MEM

+

CONST

MOVE MOVE MOVE

MEM

The last pattern matches for c = 0.

Andrzej Wąsowski Episode 4: Instruction Selection 4–22

a[i*4] = x

MOVE

MEM MEM

+ +

MEM ∗ TEMP FP CONST x

+ TEMP i CONST 

TEMP FP CONST a

Andrzej Wąsowski Episode 4: Instruction Selection 4–24

name semantics c6xxx instr.

LOAD ri ←M [rj +c] LDW ∗rj [c], ri

MEM

+

CONST

MEM

+

CONST

MEM

The last pattern matches for c = 0.

Andrzej Wąsowski Episode 4: Instruction Selection 4–21

name semantics c6xxx instr.

MOVEM M [rj]←M [ri] n/a

MEM

MOVE

MEM

MOVEM does not seem to have a direct C6xxx
counterpart, but we shall assume that we have it, for
simplicity of the examples.

Andrzej Wąsowski Episode 4: Instruction Selection 4–23

Linearization of the Tree
• Maximal Munch did the tiling top down.
• Translation to a sequence of instructions

proceeds bottom up.
• First instantiate leaves, then parents.
• The outcome:

LDW *FP[a], r

MPY 4, i, r

ADD r, r, r

ADDI x, FP, r

MOVEM ∗r←∗r

Andrzej Wąsowski Episode 4: Instruction Selection 4–26

Maximal Munch
MOVE

MEM MEM

+ +

MEM ∗ TEMP FP CONST x

+ TEMP i CONST 

TEMP FP CONST a

MOVEM

ADD

LOAD

MUL

ADDI

• Tile the tree with instruction patterns
• Always possible, but solutions is not unique.
• Maximal Munch finds the largest tile for the root
• and applies itself recursively to the subtrees.

Andrzej Wąsowski Episode 4: Instruction Selection 4–25

Another Tiling of the Same Tree
MOVE

MEM MEM

+ +

MEM ∗ TEMP FP CONST x

+ TEMP i CONST 

TEMP FP CONST a

STORE

ADD

LOAD

MUL

ADDI

(Fig. 9.2 left)

• Bigger by one instruction, but may be faster.
• Maximal Munch does not guarantee optimality.
• Optimal algorithm based on dynamic

programming, Appel p. 197.
Andrzej Wąsowski Episode 4: Instruction Selection 4–27

