Software Programmable DSP Platform Analysis Episode 4, Tuesday 5 April 2006, Ingredients

Intermediate Representation **IR Expressions IR** Statements

Instruction Selection

Maximal Munch Translating to Lists of Instructions

Andrzej Wąsowski Episode 4: Ingredients

IR: Expressions CONST *i* integer constant *i* NAME *n* address of a symbolic label *n* TEMP t temporary (think abstract register) BINOP (o, e_1, e_2) evaluate e_1, e_2 , return $e_1 o e_2$ $o \in \{+, -, XOR, *, /, \&, |, \gg, \ll\}$ MEM(e,n)content of n cells at address e. Often drop *n* to avoid clutter Call function at address fCALL(f, l)with arguments on list l ESEQ(s,e)execute stmt s, evaluate expr e, return value of e

Intermediate Representation

- After initial analyses, abstract syntax tree is translated to an intermediate representation.
- Single back-end is used for several languages,
- and single front-end for various targets (important for companies like TI)
- IR is a form of a tree-like language with limited instruction set.
- Later the back-end shall translate IR to the target instruction set.

Translating a Constant

Andrzej Wąsowski Episode 4: Intermediate Representation

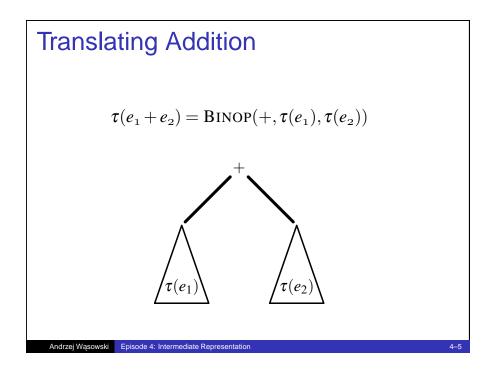
Each integer constant *i* is translated to CONST *i*. For example:

$$\tau(1) = \text{Const 1}$$

Should we have more types of constants (for example floats), a distinct constructor for each of them should be included in the IR.

Episode 4: Intermediate Representation

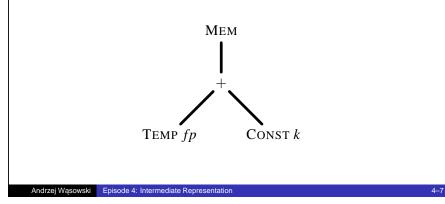
Andrzei Wasowski

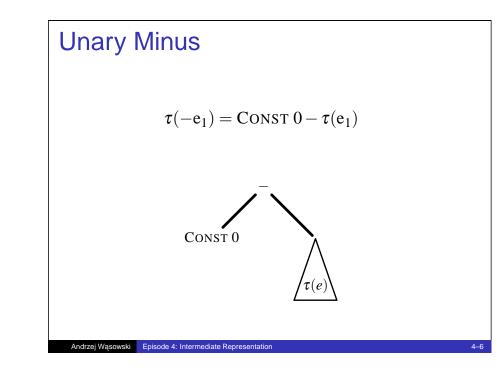


Variable Access

A stack allocated variable v at offset k:

```
Mem(Binop(+, Temp fp, Const k))
```

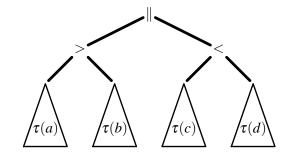




- If v is allocated in register r_i then the translation is simply TEMP r_i .
- Typically all variables that need explicit addresses would be allocated on the stack,
- and all the others in abstract registers (temporaries).
- Only at the later optimization steps abstract registers will be mapped to finite number of physical registers.

Translating Conditions (first attempt)

 $\tau(a > b \| c < d) = \| (> (\tau(a), \tau(b)), < (\tau(c), \tau(d))))$



Does not preserve C semantics: no short circuit. Needs control statements to achieve lazy evaluation.

Conditions Revisitted

Andrzej Wąsowski Episode 4: Intermediate Representation

- Use conditional jump (CJUMP) to shortcut computation of disjunction.
- Only compute the right side, if the left side fails.
- Compute the left side,
- and if it is true, jump over the computation of the right operand.
- If the left side gives fall, jump to the computation of the right operand.

IR: Statements	
MOVE(TEMP t, e)	move value of e to register t
$MOVE(MEM(e_1,n),e_2)$	store value of e_2 in n cells at e_1
EXP e	compute value of e, discard it
JUMP e	jump to program location returned by <i>e</i>
CJUMP (o, e_1, e_2, t, f)	compare values of e_1, e_2 using operator o , jump to label t or f depending on the result. $o \in \{=, !=, <, >, \leq, \geq\}$
$SEQ(s_1, s_2)$	execute s_1 and then s_2
LABEL <i>n</i>	label n before next instruction

Let l_{true} be the label of the code to be executed if the condition is true, and l_{false} otherwise. Then:

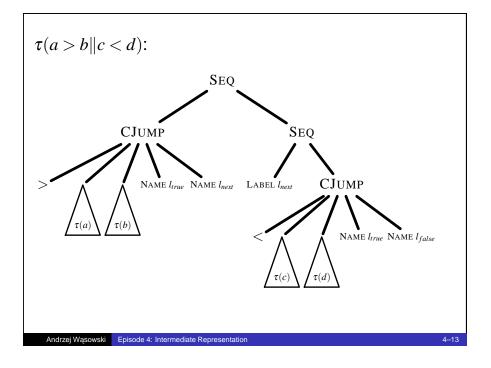
 $\begin{aligned} \tau(a > b \| c < d) &= \\ & \text{SEQ}(\begin{array}{c} \text{CJUMP}(>, \tau(a), \tau(b), l_{true}, l_{next}), \\ & \text{SEQ}(\text{LABEL } l_{next}, \\ & \text{CJUMP}(<, \tau(c), \tau(d), l_{true}, l_{false}))) \end{aligned}$

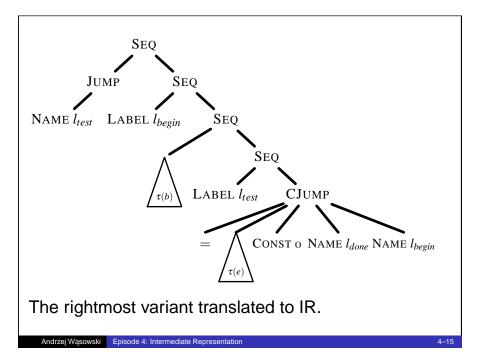
where l_{next} is a fresh, local label.

Episode 4: Intermediate Representation

Andrzei Wasowski

4-10





While Loops

h;

done:...

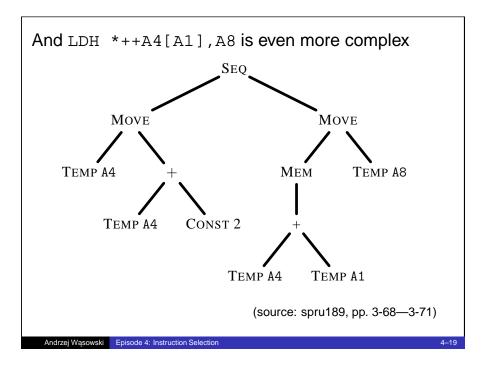
A while loop: while (e) b; Naturally expands to: but more popular is: test:**if** (!*e*)

goto test; goto done; beg: b; test:**if** (e) goto beg; qoto test; 1 CJUMP per iteration 1 CJUMP per iteration + 1 JUMP per iteration

+ 1 JUMP to initialize

Andrzej Wąsowski Episode 4: Intermediate Representation

- More patterns of translation in Appel, section 7.2. • The IR language does not have the construct
 - for function definition (but it has calls).
- IR is suitable for representing function bodies.
- In this way platform dependent calling conventions (entry and exit code) do not pollute our IR, which should be general.
- This code is added by the compiler later on.

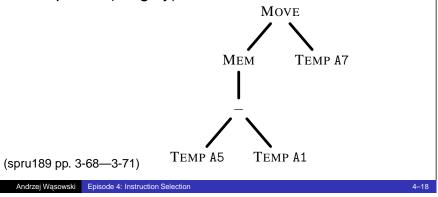


Instruction Selection

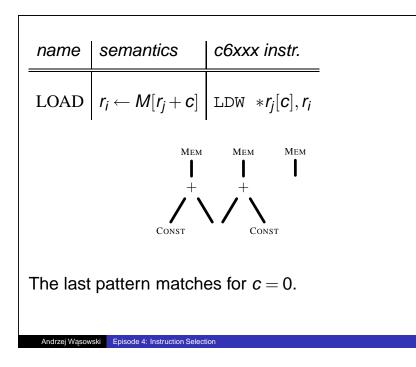
A node in the IR tree represents a single operation. A target (VLIW) instruction represents many.

Example LDW on C67x: LDW *-A5[A1],A7

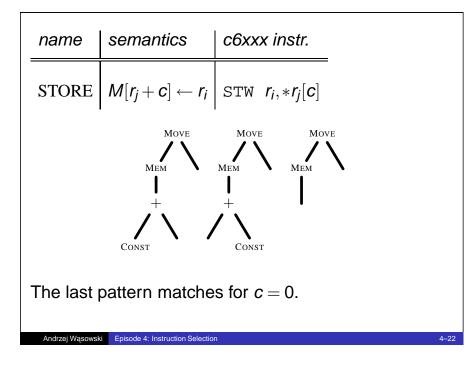
Corresponds (roughly) to:

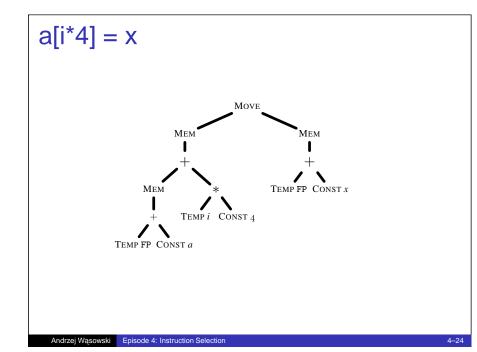


Target Instructions					
name	semantics	c6xxx instr.	pattern		
ADD	$r_i \leftarrow r_j + r_k$	ADD r_j, r_k, r_i			
MUL	$r_i \leftarrow r_j * r_k$	MPY r_j, r_k, r_i	×*\		
ADDI	$r_i \leftarrow r_j + c$	ADD $\boldsymbol{c}, \boldsymbol{r}_j, \boldsymbol{r}_i$	+ + Const Const		



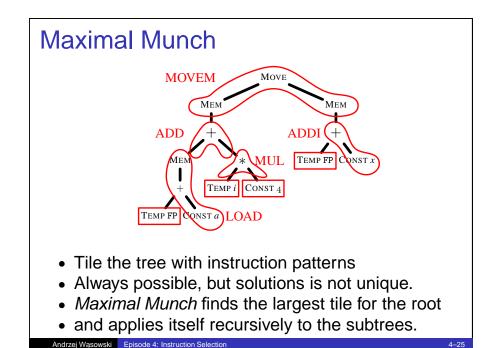
name	semantics	c6xxx instr.		
MOVEM	$M[r_j] \leftarrow M[r_i]$	n/a		
Move Mem Mem				
MOVEM does not seem to have a direct C6xxx counterpart, but we shall assume that we have it, for simplicity of the examples.				





Andrzej Wąsowski Episode 4: Instruction Selection

4–23



Linearization of the Tree

- Maximal Munch did the tiling top down.
- Translation to a sequence of instructions proceeds bottom up.
- First instantiate leaves, then parents.
- The outcome:

Andrzej Wąsowski Episode 4: Instruction Selection

LDW *FP[a], r_1 MPY 4, i, r_2 ADD r_1 , r_2 , r_3 ADDI x, FP, r_4 MOVEM $*r_3 \leftarrow *r_4$

Another Tiling of the Same Tree STORE MOVE HEMP FP CONST A MEM HEMP FP CONST A (Fig. 9.2 left)

- Bigger by one instruction, but may be faster.
- Maximal Munch does not guarantee optimality.

4-27

• Optimal algorithm based on dynamic programming, Appel p. 197.

Andrzej Wąsowski Episode 4: Instruction Selection

4-26