Software Programmable DSP
Platform Analysis

Episode 4, Tuesday 5 April 2006, Ingredients

Intermediate Representation
IR Expressions
IR Statements

Instruction Selection
Maximal Munch
Translating to Lists of Instructions

Andrzej Wasowski | Episode 4: Ingredients

IR: EXpressions

CONST | integer constant i
NAME N address of a symbolic label n
TEMPt temporary (think abstract register)

BINOP(0,e,,e,) evaluate e,, &, return e, 0e,
0c {+7_7X0Ra*7/a&7|7>>7<<}

MEM (e, n) content of n cells at address e.
Often drop nto avoid clutter
CALL(f,I) Call function at address f
with arguments on list |
ESEQ(s,e) execute stmt s, evaluate expr e,

return value of e.

Andrzej Wasowski | Episode 4: Intermediate Representation

Intermediate Representation

o After initial analyses, abstract syntax tree is
translated to an intermediate representation.

e Single back-end is used for several languages,

e and single front-end for various targets
(important for companies like TI)

e IR is a form of a tree-like language with limited
instruction set.

o Later the back-end shall translate IR to the
target instruction set.

Andrzej Wasowski | Episode 4: Intermediate Representation

Translating a Constant

Each integer constant i is translated to CONST i.
For example:

T(1) = CONST 1
Should we have more types of constants (for

example floats), a distinct constructor for each of
them should be included in the IR.

Andrzej Wasowski | Episode 4: Intermediate Representation

Translating Addition

T(e, +€,) = BINOP(+,T(e,), T(e,))

+

7N\

Andrzej Wasowski | Episode 4: Intermediate Representation

Unary Minus

T(—e1) = CONST 0—1(€1)

SRR
f

Andrzej Wasowski | Episode 4: Intermediate Representation

Variable Access

A stack allocated variable v at offset k;

MEM (BINOP(+, TEMP fp, CONST K))

MEM

/+\
TeEmP fp CONsT k

Andrzej Wasowski | Episode 4: Intermediate Representation

e If v is allocated in register rj then the translation
IS simply TEMP ;.

o Typically all variables that need explicit
addresses would be allocated on the stack,

o and all the others in abstract registers
(temporaries).

e Only at the later optimization steps abstract
registers will be mapped to finite number of
physical registers.

Andrzej Wasowski | Episode 4: Intermediate Representation

Translating Conditions (first attempt) IR: Statements

MOVE(TEMPt,e) move value of e to register t
1(@>bllc<d)=[[(>(1(a), 1(b)), < (t(c), 7(d)))) MovE(MEM(e,,n),e,) store value of e, in ncells at e,
compute value of g, discard it

| ExPe ,
\ Jumpe jump to program location

\ / returned by e
CJumP (0,e,,e,,t,f) compare values of e,,e, using
operator o, jump to label t or f
depending on the result.
oe{=l=,<,><>}

Does not preserve C semantics: no short circuit. SEQ(S,,Ss) execute s, and then s,
Needs control statements to achieve lazy evaluation.

LABEL n label n before next instruction

Andrzej Wasowski | Episode 4: Intermediate Representation Andrzej Wasowski | Episode 4: Intermediate Representation 4-10

Conditions Reuvisitted

Let lirue be the label of the code to be executed if the

computation of disjunction.
o Only compute the right side, if the left side fails.
o Compute the left side,

T(a>bljc<d) =
SEQ(CJIumP(>,1(a),1(b),ltrue, Inext),

e . . SEQ(LABEL lnex,
e and if it is true, jJump over the computation of
the right operand. CIumP(<,1(c), T(d), ltrue, | faise)))

computation of the right operand.

Andrzej Wasowski | Episode 4: Intermediate Representation

Andrzej Wasowski | Episode 4: Intermediate Representation

T(a> bljc < d):

N

Clump

AN

Andrzej Wasowski | Episode 4: Intermediate Representation

SEQ

/\

EL Inex Clump

AN
JAVAN

NAME ltrye NAME lt4s

While Loops

A while loop: while (e b;

Naturally expands to: but more popular is:
test:if (!e goto test;
goto done; beg: b;
b; test:if (e
goto test; got o beg;
done: ...
1 CJuMP per iteration 1 CJuMP per iteration

+ 1 JUMP per iteration + 1 JuMP to initialize

Andrzej Wasowski | Episode 4: Intermediate Representation

CJump

! CoNST 0 NAME lgone NAME lpggin

The rightmost variant translated to IR.

Andrzej Wasowski | Episode 4: Intermediate Representation

4-15

e More patterns of translation in Appel,
section 7.2.

e The IR language does not have the construct
for function definition (but it has calls).

e IR is suitable for representing function bodies.

e In this way platform dependent calling
conventions (entry and exit code) do not pollute
our IR, which should be general.

e This code is added by the compiler later on.

Andrzej Wasowski | Episode 4: Intermediate Representation

Agenda

Intermediate Representation
IR Expressions
IR Statements

Instruction Selection
Maximal Munch
Translating to Lists of Instructions

Andrzej Wasowski | Episode 4: Intermediate Representation

Instruction Selection

A node in the IR tree represents a single operation.
A target (VLIW) instruction represents many.

Example LDW on C67x: LDW *- A5[Al] , A7

Corresponds (roughly) to:
MovE

/" \

MEM TEMP A7

(sprulsQ pp. 3-68—3-71) ~ TEMPAS TEMPA1

Andrzej Wasowski | Episode 4: Instruction Selection

And LDH *++A4[Al], A8 is even more complex

/ SEQ\

MovE MovE
/' \ /' \
TEMP A4 + MEM TEMP A8
/" \
TEMP A4 CONST 2 +
/\
TEMPA4 TEMPA1

(source: sprul89, pp. 3-68—3-71)

Andrzej Wasowski | Episode 4: Instruction Selection

Target Instructions

name | semantics | C6xxx instr. pattern

ADD | Iy« Ij+1 [ADD 1,1y, I /+\
MPY 1j. 1. i /*\

+ +
/\/\

CoONST CoONSsT

MUL li < Ij*TIg

ADDI |1 «<rj+c | ADDC,rj,ri

Andrzej Wasowski | Episode 4: Instruction Selection

name | semantics COXXX Instr.
LOAD | rj < M[rj+c] | LDW xrj[c],r
MEM MEM MEM

I I I

The last pattern matches for ¢ = 0.

Andrzej Wasowski

/\/\

CONST

CONST

Episode 4: Instruction Selection

name

semantics

COXXX instr.

MOVEM | M[r] — M[r;]

n/a

MoVE

name | semantics

CHXXX Instr.

STORE | M[rj +¢] «r,

MovE

STW r;, #1;[c]

MoVE MovE

AN\ LN

/\ /\

CONST

CONST

The last pattern matches for ¢ = 0.

Andrzej Wasowski | Episode 4: Instruction Selection

afi*4] = x

MEM

MovE

MEM

/\

MEM MEM

MOVEM does not seem to have a direct C6xxx
counterpart, but we shall assume that we have it, for
simplicity of the examples.

Andrzej Wasowski | Episode 4: Instruction Selection 4-23

/+ -
MEM * TEMP{P (;NST X

I / \

+ TEMPi CONST 4

/ \

TEMPFP CONST a

Andrzej Wasowski | Episode 4: Instruction Selection

Maximal Munch

CeTN

ADDI

o Tile the tree with instruction patterns

e Always possible, but solutions is not unique.

o Maximal Munch finds the largest tile for the root
o and applies itself recursively to the subtrees.

Andrzej Wasowski | Episode 4: Instruction Selection

ADDI

Feverr]

(Fig. 9.2 left)

e Bigger by one instruction, but may be faster.

o Maximal Munch does not guarantee optimality.

o Optimal algorithm based on dynamic
programming, Appel p. 197.

Andrzej Wasowski | Episode 4: Instruction Selection

Linearization of the Tree

e Maximal Munch did the tiling top down.

e Translation to a sequence of instructions
proceeds bottom up.

o First instantiate leaves, then parents.

e The outcome:

LDW*FP[a], r,
MPY 4, i, 1,
ADD r,, 1, Iy
ADDI x, FP, r1,
MOVEM Kl — %Iy

Andrzej Wasowski | Episode 4: Instruction Selection

