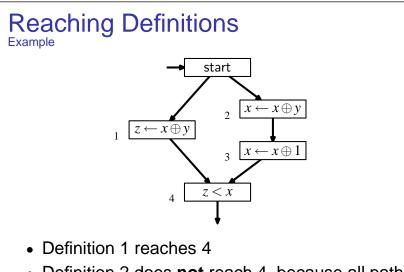
Software Programmable DSP Platform Analysis Episode 6, Wednesday 3 May 2006 Datafbw Analysis Reaching Definitions Constant Propagation, Copy Propagation Available Expressions, Reaching Expressions Common Subexpression Elimination Dead Code Elimination Dead Code Elimination Mhat is a loop? Loop Dominators. Loop Invariants and Hoisting Induction Variables. Strength Reduction Loop Unrolling



• Definition 2 does **not** reach 4, because all paths from 2 to 4 path through 3 that kills 2.

Andrzej Wąsowski Episode 6: Dataflow Analysis

Reaching Definitions

- An unambigous definition *d* of *t* is an assignment *t* ← *a*⊕ *b* or *t* ← *M*[*a*].
- A definition *d* reaches a statement *u* if there is a path of control edges leading from *d* to *u* that does not pass through any other definitions of *t*.

Reaching Definitions: gen/kill sets

Defs(t): set of all definitions of temporary t.

statement s	gen[s]	kill[s]
$d: t \leftarrow b \oplus c$	{ <i>d</i> }	$defs(t) - \{d\}$
$d: t \leftarrow M[b]$	{ d }	$defs(t) - \{d\}$
$M[a] \leftarrow b$	{}	{}
if $a R b$ goto L_1 else goto L_2	{}	{}
goto L	{}	{}
L:	{}	{}
$f(a_1,\ldots,a_n)$	{}	{}
$d: t \leftarrow f(a_1, \dots a_n)$	{ d }	$defs(t) - \{d\}$

Andrzej Wąsowski Episode 6: Dataflow Analysis

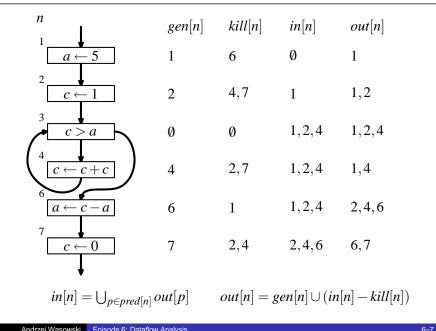
Calculating Reaching Definitions

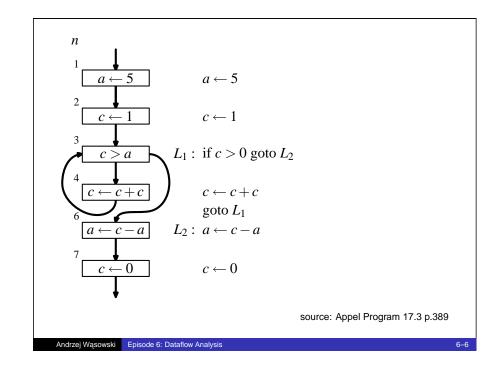
Initialize *in*[n] and *out*[n] to be empty sets.

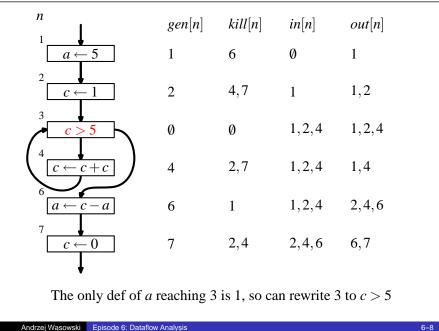
Apply following equations until a fixpoint is reached:

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$
$$out[n] = gen[n] \cup (in[n] - kill[n])$$

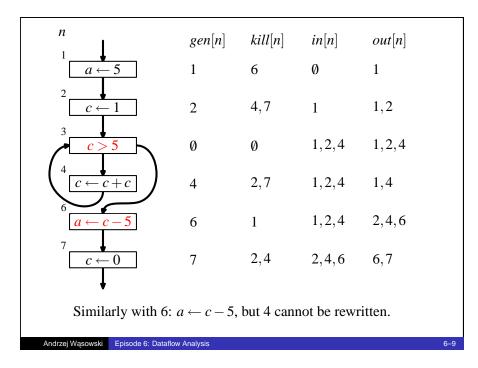
Gen and kill sets are defined on previous slide.







Andrzej Wąsowski Episode 6: Dataflow Analysis



Copy Propagation

- Copy propagation is like constant propagation, but instead of constant *c* a variable is used.
- Let $d: t \leftarrow z$ be a statement.
- Let $n: y \leftarrow t \oplus x$ be a statement using t.
- If *d* is the only definition of *t* reaching *n* and there is no definition of *z* on **any** path from *d* to *n* then we can rewrite: *n* : *y* ← *z* ⊕ *x*.
- This may remove *t* entirely from the program.
- Mind the "any" requirement: this includes paths that cross *n* more than once (for example loops), so the redefinition after *n* can also prevent copy propagation.

Constant Propagation

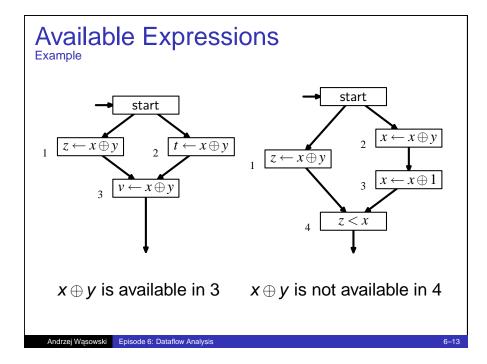
- Let *d* be a statement: *t* ← *c*, where *c* is constant.
- Let *n* be another statement such as $y \leftarrow t \oplus x$.
- If *d* is the only definition of *t* reaching *n*,
- It is safe to rewrite n as $y \leftarrow c \oplus x$.

Available Expressions

Andrzej Wąsowski Episode 6: Dataflow Analysis

An expression $x \oplus y$ is available at a node *n* in the fbw graph if:

- on every path from the entry node to n, x ⊕ y is computed at least once,
- and there are no definitions of *x* or *y* since the most recent occurrence of *x* ⊕ *y* on that path.



Reaching Expressions

Reaching expressions, are much like reaching definitions. Expression $t \leftarrow x \oplus y$ in node *s* reaches a node *n* if:

- there is a path from s to n that
- does not go through any assignment to x or y,

• or through any other computation of $x \oplus y$. Reaching expressions are characterized by their own *gen*, *kill* and *in*, *out* equations as for previous fbw analyses. They are computed very much like previous examples.

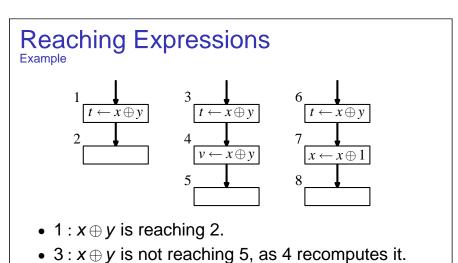
Computing Available Expressions

statement s	gen[s]	kill[s]
$d: t \leftarrow b \oplus c$	$\{b \oplus c\} - kill[s]$	all containing t
$d: t \leftarrow M[b]$	$\{M[b] - kill[s]\}$	all containing t
$M[a] \leftarrow b$	{}	all <i>M</i> [<i>x</i>]
if $a R b$ goto L_1 else goto L_2	{}	{}

 $in[n] = \bigcap_{p \in pred[n]} out[p] \quad \text{if } n \text{ is not entry}$ $out[n] = gen[n] \cup (in[n] - kill[n])$

Initialize *in*[entry] to empty set, initialize all other sets to contain all expressions of the program. Iterate until (the greatest) fixpoint is reached.

Andrzej Wąsowski Episode 6: Dataflow Analysis



- But 4 is reaching 5.
- 6 : $x \oplus y$ is not reaching 8, as 7 kills x.

6–14

Common Subexpression Elimination

If expression $x \oplus y$ is **available** at $s : t \leftarrow x \oplus y$ then the computation of $x \oplus y$ within *s* can be eliminated:

- Compute expressions $x \oplus y$ reaching *s*.
- Introduce a new (fresh) temporary w.
- For each such reaching node *n*: *v* ← *x* ⊕ *y* rewrite *n* to be:

 $n: w \leftarrow x \oplus y$ $n': v \leftarrow w$

6 - 17

• Modify s to use w: $s: t \leftarrow w$

Dead Code Elimination

Andrzej Wąsowski Episode 6: Dataflow Analysis

If $s : a \leftarrow b \oplus c$ (or $s : a \leftarrow M[x]$) and *a* is **not** live-out of *s* then the instruction can be eliminated.

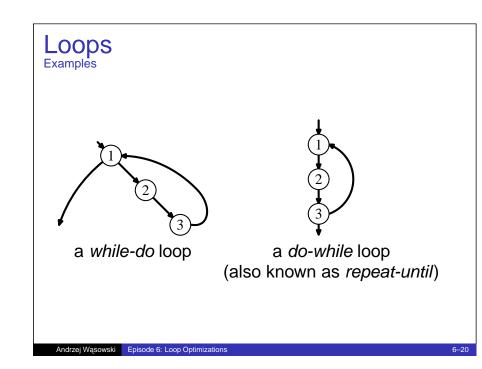
x = a + b + c; y = a + b + d; return y;			
compiles to	<i>live-in</i> [s]	<i>live-out</i> [s]	DCE
$x \leftarrow a + b$	a,b	a,b,c,x	$x \leftarrow a + b$
$x \leftarrow x + c$	a,b,c,x	<mark>a,b</mark>	
$egin{array}{ll} egin{array}{ll} egin{array} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{ar$	a,b	d,у	$y \leftarrow a + b$
	d,y	у	$y \leftarrow y + d$

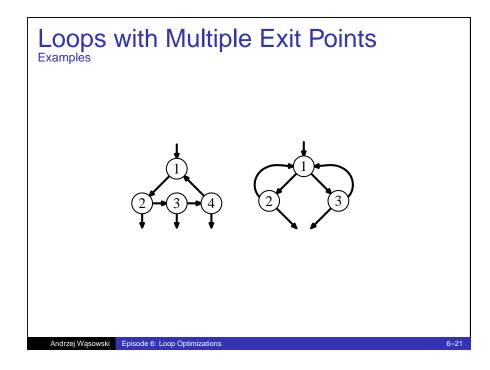
Andrzej Wąsowski Episode 6: Dataflow Analysis

Example
$$x = a + b + c;$$

 $y = a + b + d;$ compiles toCSEcopy prop.reg. alloc. $x \leftarrow a + b$ $w \leftarrow a + b$ $w \leftarrow a + b$ $y \leftarrow a + b$ $x \leftarrow x + c$ $x \leftarrow w$ $x \leftarrow w + c$ $x \leftarrow y + c$ $y \leftarrow a + b$ $x \leftarrow x + c$ $y \leftarrow w + c$ $x \leftarrow y + c$ $y \leftarrow a + b$ $x \leftarrow x + c$ $y \leftarrow w + d$ $y \leftarrow y + d$ $y \leftarrow y + d$ $y \leftarrow w$ $y \leftarrow y + d$ $y \leftarrow y + d$ $y \leftarrow w$ $y \leftarrow y + d$

Cubeverseeien Elimination



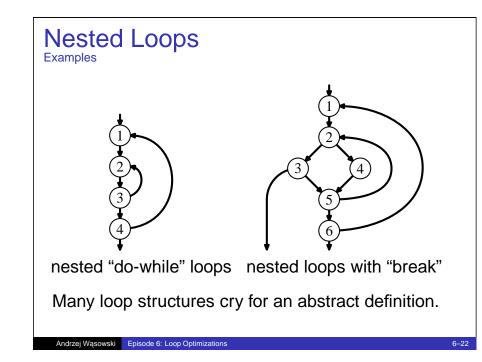


Loops Precisely Defined

A set of nodes S constitutes a loop if:

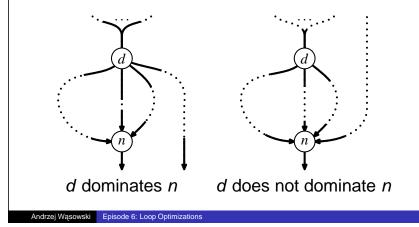
- S contains a header node h such that
- from any node in S there is a path leading to *h*.
- There are not any edges from nodes outside *S* to nodes in *S* other than *h*.

All loops on previous slides are loops according to this definition.



Loop Dominator

Node *d* dominates node *n* if every path of directed edges from s_0 to *n* must go through *d*. Every node dominates itself.



Computing Dominators

Dominators are computed by iterating the following equations over the nodes of the fbw graph:

$$D[s_0] = \{s_0\}$$
$$D[n] = \{n\} \cup (\bigcap_{p \in pred[n]} D[p]) \text{ for } n \neq s_0$$

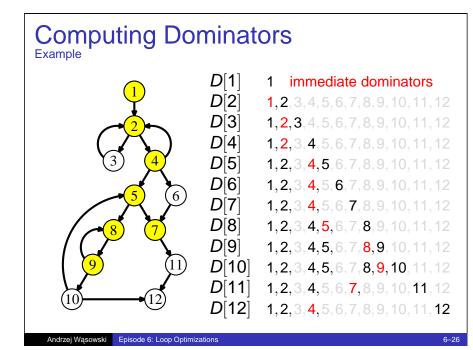
Initially each D[n] should contain all nodes of the graph (except $D[n_0]$).

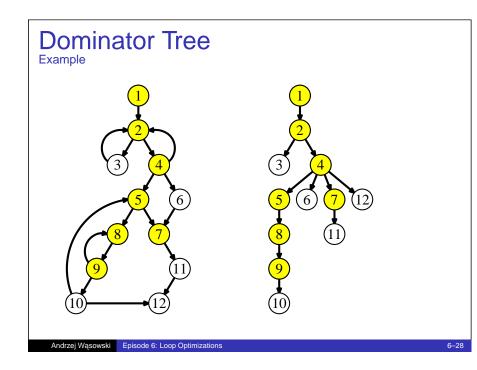
Andrzej Wąsowski Episode 6: Loop Optimizations

Dominator Tree

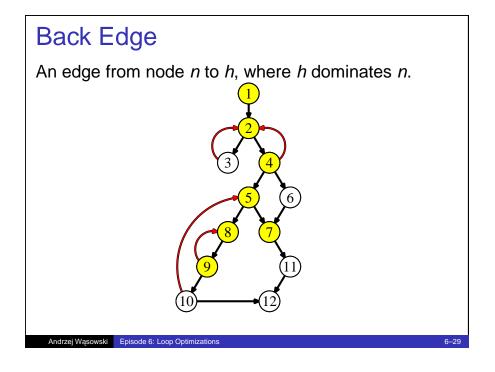
Every node *n* has at most one *immediate dominator idom*[*n*] such that:

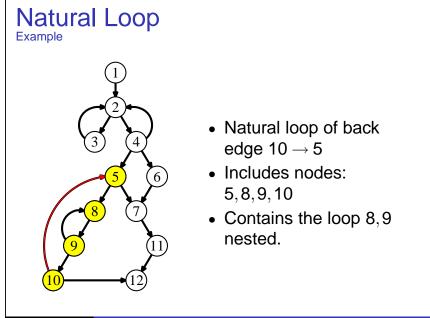
- *idom*(*n*) is not the same node as *n*.
- *idom*(*n*) dominates *n*.
- *idom*(*n*) does not dominate any other dominator of *n*.





6–25





Loop Definition Revisitted

- The natural loop of a back-edge n → h is the set of nodes x, such that h dominates x and there is a path from x to n not containing h.
- Node *h* is the header of the loop.

Episode 6: Loop Optimizations

• This definition allows automatic detection of loops.

Loop Invariant

Andrzei Wasowski

The definition $d : t \leftarrow a_1 \oplus a_2$ is a loop invariant within loop *L* if $d \in L$ and for each operand a_i :

- *a_i* is constant,
- or all the definitions of *a_i* reaching *d* are outside the loop,
- or only one definition of *a_i* reaches *d* and that definition is loop invariant.

Loop invariant computations can sometimes be moved out (*hoisted*) out of the loop, speeding up the execution.

6–31

Andrzej Wąsowski Episode 6: Loop Optimizations

Can We Hoist $t - L_0: t \leftarrow 0$ $L_1: i \leftarrow i + 1$ $t \leftarrow a \oplus b$ $M[i] \leftarrow t$ if $i < N$ goto L_1 $L_2: x \leftarrow t$	 → a ⊕ b? t ← a ⊕ b is loop invariant. Moving it before the loop would not change the behaviour of our program. It would make the program faster. So the answer is: YES!
Andrzej Wąsowski Episode 6: Loop Optimizations	6-33

Can We Hoist $t \rightarrow a \oplus b$?		
$L_0: t \leftarrow 0$ $L_1: \text{if } i \ge N \text{ goto } L_2$ $i \leftarrow i+1$ $t \leftarrow a \oplus b$ $M[i] \leftarrow t$ $\text{goto } L_1$ $L_2: x \leftarrow t$	 The original program does not always execute t ← a ⊕ b. Hoisting would execute it unconditionally always at least once. Leading to a wrong value of x if no loop iterations are executed. So the answer is: NO! 	
Minimum trip count pragma might help though		

Andrzej Wąsowski Episode 6: Loop Optimizations

```
6–35
```

Hoisted.

 $L_0: t \leftarrow 0$ $t \leftarrow a \oplus b$ $L_1: i \leftarrow i + 1$ $M[i] \leftarrow t$ if i < N goto L_1 $L_2: \mathbf{x} \leftarrow t$

Andrzej Wąsowski Episode 6: Loop Optimizations

- $t \leftarrow a \oplus b$ is loop invariant.
- Moving it before the loop would not change the behaviour of our program.
- It would make the program faster.
- So the answer is: YES!

Can We Hoist $t \rightarrow a \oplus b$?

 $L_0: t \leftarrow 0$ $L_1: i \leftarrow i + 1$ $t \leftarrow a \oplus b$ $M[i] \leftarrow t$ *t* ← 0 $M[j] \leftarrow t$ if i < N goto L_1 L_2 :

- The original program has more than one def of t.
- Hoisting would change the interleaving of the assignments.
- So the answer is: NO!

6–34

Can We Hoist $t \rightarrow a \oplus b$?

Episode 6: Loop Optimizations

 $L_0: t \leftarrow 0$ $L_1: M[j] \leftarrow t$ $i \leftarrow i + 1$ $t \leftarrow a \oplus b$ $M[i] \leftarrow t$ if i < N goto L_1 $L_2: \mathbf{X} \leftarrow \mathbf{t}$

Andrzej Wąsowski

- *t* is used before the loop invariant definition.
- So the answer is: NO!

Basic Induction Variable $s \leftarrow 0$ $i \leftarrow 0$ L_1 : if $i \ge n$ goto L_2 $j \leftarrow i \cdot 4$ $k \leftarrow j + a$ $x \leftarrow M[k]$

$s \leftarrow s + x$ $i \leftarrow i + 1$ aoto L_1

The variable *i* is a basic induction variable in a loop Lwith header node *h* if the only definitions of *i* within L are of the form $i \leftarrow i + c$ or $i \leftarrow i - c$, where c is loop invariant.

 L_2 :

Episode 6: Loop Optimizations

Sufficient Conditions for Hoisting

Loop invariant computation $d: t \leftarrow a \oplus b$ can be hoisted if:

- *d* dominates all loop exits at which *t* is live-out.
- There is only one def of t in the loop.
- *t* is not live-out of the loop preheader.

Derived Induction Variable

Episode 6: Loop Optimizations

Episode 6: Loop Optimizations

 $s \leftarrow 0$ $i \leftarrow 0$ L_1 : if $i \ge n$ goto L_2 $j \leftarrow i \cdot 4$ $k \leftarrow j + a$ $x \leftarrow M[k]$ $s \leftarrow s + x$ $i \leftarrow i + 1$ goto L_1 L_2 :

Andrzej Wąsowski

k is a derived induction variable if *L* contains only one definition of k, $k \leftarrow j \cdot c$ or $k \leftarrow j + d$, where j is an induction variable and c, d are invariant.

If *i* is an induction variable derived from *i* then the only def of *j* that reaches k is the one in the loop, and there is no def of *i* between the def of *j* and the def of *k*.

6-37

Strength Reduction

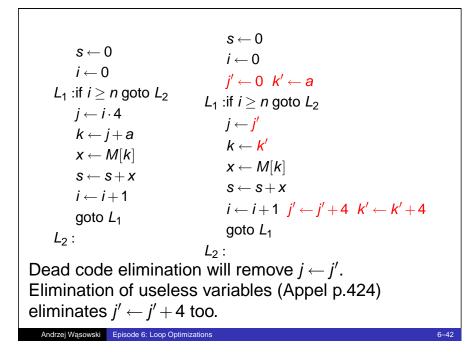
- On many machines multiplication is more expensive than addition (including C67xx).
- a definition of derived variable like *j* ← *i* · *c* can be replaced with addition.

Loop Unrolling

Andrzej Wąsowski Episode 6: Loop Optimizations

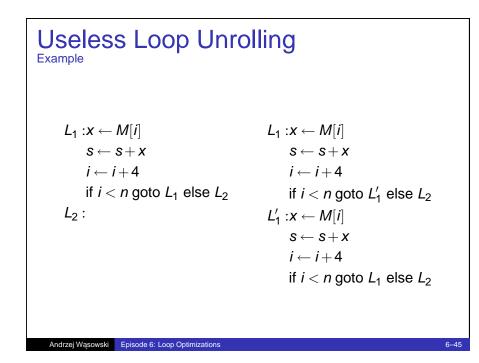
Some loops have such a small body that most of the time is spent incrementing the loop counter variable and testing the loop-exit condition.

We can make these loops more efficient by unrolling them, putting two or more copies of the loop body in a row.



Let loop *L* have header *h* and back edges $s : s_i \rightarrow h$. We unroll *L* as follows:

- Copy the nodes to make a loop L' with header h' and back edges $s'_i \rightarrow h'$.
- Change all the back edges in *L* from $s_i \rightarrow h$ to $s_i \rightarrow h'$.
- Change all the back edges in L' from $s'_i \rightarrow h'$ to $s'_i \rightarrow h$.



Some Optimizations of cl6x

- -O0 register allocation, loop rotation, dead code elimination, keyword driven inlining
- -O1 copy/constant propagation, useless variable elimination, common subexpression elimination
- -O2 software pipelining, loop optimizations, global common subexpression elimination, global useless variable elimination, strength reduction with arrays and pointers, loop unrolling,
- -O3 unsued function elimination, automatic inlining, (limited) partial evaluation,

We have now covered most of these optimizations!

Useful Loop Unrolling

Use information about induction vars to combine increments. This works for even number of iterations:

