
Reaching Definitions

• An unambigous definition d of t is an
assignment t ← a⊕b or t ←M [a].

• A definition d reaches a statement u if there is a
path of control edges leading from d to u that
does not pass through any other definitions of t .
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Reaching Definitions: gen/kill sets
Defs(t): set of all definitions of temporary t .

statement s gen[s] kill [s]

d : t ← b⊕c {d} defs(t)−{d}
d : t ←M [b] {d} defs(t)−{d}
M [a]← b {} {}
if a R b goto L1 else goto L2 {} {}
goto L {} {}
L : {} {}
f (a1, . . . ,an) {} {}
d : t ← f (a1, . . .an) {d} defs(t)−{d}
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Software Programmable DSP
Platform Analysis
Episode 6, Wednesday 3 May 2006

Dataflow Analysis
Reaching Definitions
Constant Propagation, Copy Propagation
Available Expressions, Reaching Expressions
Common Subexpression Elimination
Dead Code Elimination

Loop Optimizations
What is a loop? Loop Dominators.
Loop Invariants and Hoisting
Induction Variables. Strength Reduction
Loop Unrolling
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Reaching Definitions
Example

start

z← x⊕ y

x← x⊕ y

x← x⊕1

z < x

1

2

3

4

• Definition 1 reaches 4
• Definition 2 does not reach 4, because all paths

from 2 to 4 path through 3 that kills 2.
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a← 5
1

c← 1
2

c > a
3

c← c+ c
4

a← c−a
6

c← 0
7

n

a← 5

c← 1

if c > 0 goto L2

c← c+ c

a← c−a

c← 0

goto L1

L1 :

L2 :

source: Appel Program 17.3 p.389
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a← 5
1

c← 1
2

c > a
3

c← c+ c
4

a← c−a
6

c← 0
7

n

in[n] =
⋃

p∈pred[n] out[p] out[n] = gen[n]∪ (in[n]− kill[n])

1 6

2 4,7

/0 /0

4 2,7

6 1

7 2,4

gen[n] kill[n]

/0 1

1 1,2

1,2,4 1,2,4

1,2,4 1,4

1,2,4 2,4,6

2,4,6 6,7

in[n] out[n]

The only def of a reaching 3 is 1, so can rewrite 3 to c > 5

c > 5
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Calculating Reaching Definitions

Initialize in[n] and out [n] to be empty sets.

Apply following equations until a fixpoint is reached:

in[n] =
⋃

p∈pred[n]

out [p]

out [n] =gen[n]∪ (in[n]−kill[n])

Gen and kill sets are defined on previous slide.
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a← 5
1

c← 1
2

c > a
3

c← c+ c
4

a← c−a
6

c← 0
7

n

in[n] =
⋃

p∈pred[n] out[p] out[n] = gen[n]∪ (in[n]− kill[n])

1 6

2 4,7

/0 /0

4 2,7

6 1

7 2,4

gen[n] kill[n]

/0 1

1 1,2

1,2,4 1,2,4

1,2,4 1,4

1,2,4 2,4,6

2,4,6 6,7

in[n] out[n]
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Constant Propagation

• Let d be a statement: t ← c,
where c is constant.

• Let n be another statement such as y ← t⊕x .
• If d is the only definition of t reaching n,
• It is safe to rewrite n as y ← c⊕x .
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Available Expressions

An expression x ⊕y is available at a node n in the
flow graph if:
• on every path from the entry node to n, x ⊕y is

computed at least once,
• and there are no definitions of x or y since the

most recent occurrence of x ⊕y on that path.
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a← 5
1

c← 1
2

c > a
3

c← c+ c
4

a← c−a
6

c← 0
7

n

in[n] =
⋃

p∈pred[n] out[p] out[n] = gen[n]∪ (in[n]− kill[n])

1 6

2 4,7

/0 /0

4 2,7

6 1

7 2,4

gen[n] kill[n]

/0 1

1 1,2

1,2,4 1,2,4

1,2,4 1,4

1,2,4 2,4,6

2,4,6 6,7

in[n] out[n]

The only def of a reaching 3 is 1, so can rewrite 3 to c > 5

c > 5

Similarly with 6: a← c−5, but 4 cannot be rewritten.

a← c−5
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Copy Propagation
• Copy propagation is like constant propagation,

but instead of constant c a variable is used.
• Let d : t ← z be a statement.
• Let n : y ← t⊕x be a statement using t .
• If d is the only definition of t reaching n and

there is no definition of z on any path from d to
n then we can rewrite: n : y ← z⊕x .

• This may remove t entirely from the program.
• Mind the “any” requirement: this includes paths

that cross n more than once (for example
loops), so the redefinition after n can also
prevent copy propagation.
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Computing Available Expressions

statement s gen[s] kill [s]

d : t ← b⊕c {b⊕c}−kill [s] all containing t
d : t ←M[b] {M[b]−kill[s]} all containing t
M[a]← b {} all M[x ]
if a R b goto L1 else goto L2 {} {}

in[n] =
⋂

p∈pred[n]

out [p] if n is not entry

out [n] = gen[n]∪ (in[n]−kill[n])

Initialize in[entry] to empty set, initialize all other
sets to contain all expressions of the program.
Iterate until (the greatest) fixpoint is reached.
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Reaching Expressions
Example

1

2

3

4

5

6

7

8

t← x⊕ y t← x⊕ y

v← x⊕ y

t← x⊕ y

x← x⊕1

• 1 : x⊕y is reaching 2.
• 3 : x⊕y is not reaching 5, as 4 recomputes it.
• But 4 is reaching 5.
• 6 : x⊕y is not reaching 8, as 7 kills x .
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Available Expressions
Example

start

z← x⊕ y t← x⊕ y

v← x⊕ y

1 2

3

start

z← x⊕ y

x← x⊕ y

x← x⊕1

z < x

1

2

3

4

x ⊕y is available in 3 x⊕y is not available in 4
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Reaching Expressions

Reaching expressions, are much like reaching
definitions. Expression t ← x ⊕y in node s reaches
a node n if:
• there is a path from s to n that
• does not go through any assignment to x or y ,
• or through any other computation of x ⊕y .

Reaching expressions are characterized by their
own gen, kill and in, out equations as for previous
flow analyses. They are computed very much like
previous examples.
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Common Subexpression Elimination
Example

x = a + b + c;
y = a + b + d;

compiles to CSE copy prop. reg. alloc.

x ← a+b w ← a+b w ← a+b y ← a+b
x ← x +c x ← w x ← w +c x ← y +c
y ← a+b x ← x +c y ← w +d y ← y +d
y ← y +d y ← w

y ← y +d
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Loops
Examples

1

2

3

1

2

3

a while-do loop a do-while loop
(also known as repeat-until)
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Common Subexpression Elimination

If expression x ⊕y is available at s : t ← x ⊕y then
the computation of x ⊕y within s can be eliminated:
• Compute expressions x⊕y reaching s.
• Introduce a new (fresh) temporary w .
• For each such reaching node n : v ← x⊕y

rewrite n to be:

n : w ← x⊕y

n′ : v ← w

• Modify s to use w : s : t ← w
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Dead Code Elimination
If s : a← b⊕c (or s : a←M [x ]) and a is not live-out
of s then the instruction can be eliminated.

x = a + b + c;
y = a + b + d;
return y;

compiles to live-in[s] live-out [s] DCE

x ← a+b a,b a,b,c,x x ← a+b
x ← x +c a,b,c,x a,b
y ← a+b a,b d ,y y ← a+b
y ← y +d d ,y y y ← y +d
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Nested Loops
Examples

1

2

3

4

1

2

3 4

5

6

nested “do-while” loops nested loops with “break”

Many loop structures cry for an abstract definition.
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Loop Dominator
Node d dominates node n if every path of directed
edges from s0 to n must go through d . Every node
dominates itself.

. . .

d

n

. . .

d

n

d dominates n d does not dominate n
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Loops with Multiple Exit Points
Examples

1

2 3 4

1

2 3
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Loops Precisely Defined

A set of nodes S constitutes a loop if:
• S contains a header node h such that
• from any node in S there is a path leading to h.
• There are not any edges from nodes outside S

to nodes in S other than h.

All loops on previous slides are loops according to
this definition.
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Computing Dominators
Example

1

2

3 4

5 6

78

9

10

11

12

1

2

4

5

8

9

7

D[1] 1 immediate dominators
D[2] 1,2,3,4,5,6,7,8,9,10,11,12
D[3] 1,2,3,4,5,6,7,8,9,10,11,12
D[4] 1,2,3,4,5,6,7,8,9,10,11,12
D[5] 1,2,3,4,5,6,7,8,9,10,11,12
D[6] 1,2,3,4,5,6,7,8,9,10,11,12
D[7] 1,2,3,4,5,6,7,8,9,10,11,12
D[8] 1,2,3,4,5,6,7,8,9,10,11,12
D[9] 1,2,3,4,5,6,7,8,9,10,11,12
D[10] 1,2,3,4,5,6,7,8,9,10,11,12
D[11] 1,2,3,4,5,6,7,8,9,10,11,12
D[12] 1,2,3,4,5,6,7,8,9,10,11,12
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Dominator Tree
Example

1

2

3 4

5 6

78

9

10

11

12

1

2

4

5

8

9

7

1

2

3 4

5 6 7

8

9

10

11

12

1

2

4

5

8

9

7
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Computing Dominators

Dominators are computed by iterating the following
equations over the nodes of the flow graph:

D[s0] = {s0}

D[n] = {n}∪ (
⋂

p∈pred[n]

D[p]) for n 6= s0

Initially each D[n] should contain all nodes of the
graph (except D[n0]).
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Dominator Tree

Every node n has at most one immediate dominator
idom[n] such that:
• idom(n) is not the same node as n.
• idom(n) dominates n.
• idom(n) does not dominate any other dominator

of n.
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Loop Definition Revisitted

• The natural loop of a back-edge n→ h is the set
of nodes x , such that h dominates x and there
is a path from x to n not containing h.

• Node h is the header of the loop.

• This definition allows automatic detection of
loops.
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Loop Invariant

The definition d : t ← a1⊕a2 is a loop invariant
within loop L if d ∈ L and for each operand ai :
• ai is constant,
• or all the definitions of ai reaching d are outside

the loop,
• or only one definition of ai reaches d and that

definition is loop invariant.

Loop invariant computations can sometimes be
moved out (hoisted ) out of the loop, speeding up the
execution.
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Back Edge
An edge from node n to h, where h dominates n.

1

2

3 4

5 6

78

9

10

11

12

1

2

4

5

8

9

7

1

2

3 4

5 6

78

9

10

11

12
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Natural Loop
Example

1

2

3 4

5 6

78

9

10

11

12

5

8

9

10

• Natural loop of back
edge 10→ 5

• Includes nodes:
5,8,9,10

• Contains the loop 8,9
nested.
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Hoisted.

L0 :t ← 0
t ← a⊕b

L1 :i ← i +1
M [i ]← t
if i < N goto L1

L2 :x ← t

• t ← a⊕b is loop
invariant.

• Moving it before the
loop would not change
the behaviour of our
program.

• It would make the
program faster.

• So the answer is: YES!
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Can We Hoist t → a⊕b?

L0 :t ← 0
L1 :i ← i +1

t ← a⊕b
M [i ]← t
t ← 0
M [j ]← t
if i < N goto L1

L2 :

• The original program
has more than one def
of t .

• Hoisting would change
the interleaving of the
assignments.

• So the answer is: NO!
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Can We Hoist t → a⊕b?

L0 :t ← 0
L1 :i ← i +1

t ← a⊕b
M [i ]← t
if i < N goto L1

L2 :x ← t

• t ← a⊕b is loop
invariant.

• Moving it before the
loop would not change
the behaviour of our
program.

• It would make the
program faster.

• So the answer is: YES!
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Can We Hoist t → a⊕b?

L0 :t ← 0
L1 :if i ≥ N goto L2

i ← i +1
t ← a⊕b
M [i ]← t
goto L1

L2 :x ← t

• The original program
does not always
execute t ← a⊕b.

• Hoisting would execute
it unconditionally always
at least once.

• Leading to a wrong
value of x if no loop
iterations are executed.

• So the answer is: NO!

Minimum trip count pragma might help though...
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Sufficient Conditions for Hoisting

Loop invariant computation d : t ← a⊕b can be
hoisted if:
• d dominates all loop exits at which t is live-out.
• There is only one def of t in the loop.
• t is not live-out of the loop preheader.
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Derived Induction Variable

s← 0
i ← 0

L1 :if i ≥ n goto L2

j ← i ·4
k ← j +a
x ←M [k ]

s← s +x
i ← i +1
goto L1

L2 :

k is a derived induction
variable if L contains only
one definition of k , k ← j ·c
or k ← j +d , where j is an
induction variable and c,d
are invariant.

If j is an induction variable
derived from i then the only
def of j that reaches k is the
one in the loop, and there is
no def of i between the def
of j and the def of k .
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Can We Hoist t → a⊕b?

L0 :t ← 0
L1 :M [j ]← t

i ← i +1
t ← a⊕b
M [i ]← t
if i < N goto L1

L2 :x ← t

• t is used before the loop
invariant definition.

• So the answer is: NO!
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Basic Induction Variable

s← 0
i ← 0

L1 :if i ≥ n goto L2

j ← i ·4
k ← j +a
x ←M [k ]

s← s +x
i ← i +1
goto L1

L2 :

The variable i is a basic
induction variable in a loop L
with header node h if the
only definitions of i within L
are of the form i ← i +c or
i ← i−c, where c is loop
invariant.
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s← 0
i ← 0

L1 :if i ≥ n goto L2

j ← i ·4
k ← j +a
x ←M[k ]

s← s +x
i ← i +1
goto L1

L2 :

s← 0
i ← 0

j ′← 0 k ′← a
L1 :if i ≥ n goto L2

j ← j ′

k ← k ′

x ←M[k ]

s← s +x

i ← i +1 j ′← j ′+4 k ′← k ′+4
goto L1

L2 :
Dead code elimination will remove j ← j ′.
Elimination of useless variables (Appel p.424)
eliminates j ′← j ′+4 too.
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Let loop L have header h and back edges s : si → h.
We unroll L as follows:
• Copy the nodes to make a loop L′ with header

h′ and back edges s′i → h′.
• Change all the back edges in L from si → h to

si → h′.
• Change all the back edges in L′ from s′i → h′ to

s′i → h.
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Strength Reduction

• On many machines multiplication is more
expensive than addition (including C67xx).

• a definition of derived variable like j ← i ·c can
be replaced with addition.
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Loop Unrolling

Some loops have such a small body that most of the
time is spent incrementing the loop counter variable
and testing the loop-exit condition.

We can make these loops more efficient by unrolling
them, putting two or more copies of the loop body in
a row.
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Useful Loop Unrolling
Example

Use information about induction vars to combine
increments. This works for even number of
iterations:

L1 :x ←M[i ]
s← s +x
i ← i +4
if i < n goto L1 else L2

L2 :

L1 :x ←M[i ]
s← s +x
x ←M[i +4]

s← s +x
i ← i +8
if i < n goto L1 else L2

L2 :

General version in Appel p.430.
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Useless Loop Unrolling
Example

L1 :x ←M[i ]
s← s +x
i ← i +4
if i < n goto L1 else L2

L2 :

L1 :x ←M[i ]
s← s +x
i ← i +4

if i < n goto L′1 else L2

L′1 :x ←M[i ]
s← s +x
i ← i +4
if i < n goto L1 else L2
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Some Optimizations of cl6x

-O0 register allocation, loop rotation, dead code
elimination, keyword driven inlining

-O1 copy/constant propagation, useless variable
elimination, common subexpression elimination

-O2 software pipelining, loop optimizations, global
common subexpression elimination, global
useless variable elimination, strength reduction
with arrays and pointers, loop unrolling,

-O3 unsued function elimination, automatic inlining,
(limited) partial evaluation,

We have now covered most of these optimizations!
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