
Reaching Definitions

• An unambigous definition d of t is an
assignment t ← a⊕b or t ←M [a].

• A definition d reaches a statement u if there is a
path of control edges leading from d to u that
does not pass through any other definitions of t .
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Reaching Definitions: gen/kill sets
Defs(t): set of all definitions of temporary t .

statement s gen[s] kill [s]

d : t ← b⊕c {d} defs(t)−{d}
d : t ←M [b] {d} defs(t)−{d}
M [a]← b {} {}
if a R b goto L1 else goto L2 {} {}
goto L {} {}
L : {} {}
f (a1, . . . ,an) {} {}
d : t ← f (a1, . . .an) {d} defs(t)−{d}
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Software Programmable DSP
Platform Analysis
Episode 6, Monday 12 March 2007

Dataflow Analysis
Reaching Definitions
Constant Propagation, Copy Propagation
Available Expressions, Reaching Expressions
Common Subexpression Elimination
Dead Code Elimination

Loop Optimizations
What is a loop? Loop Dominators.
Loop Invariants and Hoisting
Induction Variables. Strength Reduction
Loop Unrolling
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Reaching Definitions
Example

start

z← x⊕ y

x← x⊕ y

x← x⊕1

z < x

1

2

3

4

• Definition 1 reaches 4
• Definition 2 does not reach 4, because all paths

from 2 to 4 path through 3 that kills 2.
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a← 5
1

c← 1
2

c > a
3

c← c+ c
4

a← c−a
6

c← 0
7

n

a← 5

c← 1

if c > 0 goto L2

c← c+ c

a← c−a

c← 0

goto L1

L1 :

L2 :

source: Appel Program 17.3 p.389
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a← 5
1

c← 1
2

c > a
3

c← c+ c
4

a← c−a
6

c← 0
7

n

in[n] =
⋃

p∈pred[n] out[p] out[n] = gen[n]∪ (in[n]− kill[n])

1 6

2 4,7

/0 /0

4 2,7

6 1

7 2,4

gen[n] kill[n]

/0 1

1 1,2

1,2,4 1,2,4

1,2,4 1,4

1,2,4 2,4,6

2,4,6 6,7

in[n] out[n]

The only def of a reaching 3 is 1, so can rewrite 3 to c > 5

c > 5
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Calculating Reaching Definitions

Initialize in[n] and out [n] to be empty sets.

Apply following equations until a fixpoint is reached:

in[n] =
⋃

p∈pred[n]

out [p]

out [n] =gen[n]∪ (in[n]−kill[n])

Gen and kill sets are defined on previous slide.

Andrzej Wąsowski Episode 6: Dataflow Analysis 6–5

a← 5
1

c← 1
2

c > a
3

c← c+ c
4

a← c−a
6

c← 0
7

n

in[n] =
⋃

p∈pred[n] out[p] out[n] = gen[n]∪ (in[n]− kill[n])

1 6

2 4,7

/0 /0

4 2,7

6 1

7 2,4

gen[n] kill[n]

/0 1

1 1,2

1,2,4 1,2,4

1,2,4 1,4

1,2,4 2,4,6

2,4,6 6,7

in[n] out[n]
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Constant Propagation

• Let d be a statement: t ← c,
where c is constant.

• Let n be another statement such as y ← t⊕x .
• If d is the only definition of t reaching n,
• It is safe to rewrite n as y ← c⊕x .
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Available Expressions

An expression x ⊕y is available at a node n in the
flow graph if:
• on every path from the entry node to n, x ⊕y is

computed at least once,
• and there are no definitions of x or y since the

most recent occurrence of x ⊕y on that path.
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a← 5
1

c← 1
2

c > a
3

c← c+ c
4

a← c−a
6

c← 0
7

n

in[n] =
⋃

p∈pred[n] out[p] out[n] = gen[n]∪ (in[n]− kill[n])

1 6

2 4,7

/0 /0

4 2,7

6 1

7 2,4

gen[n] kill[n]

/0 1

1 1,2

1,2,4 1,2,4

1,2,4 1,4

1,2,4 2,4,6

2,4,6 6,7

in[n] out[n]

The only def of a reaching 3 is 1, so can rewrite 3 to c > 5

c > 5

Similarly with 6: a← c−5, but 4 cannot be rewritten.

a← c−5
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Copy Propagation
• Copy propagation is like constant propagation,

but instead of constant c a variable is used.
• Let d : t ← z be a statement.
• Let n : y ← t⊕x be a statement using t .
• If d is the only definition of t reaching n and

there is no definition of z on any path from d to
n then we can rewrite: n : y ← z⊕x .

• This may remove t entirely from the program.
• Mind the “any” requirement: this includes paths

that cross n more than once (for example
loops), so the redefinition after n can also
prevent copy propagation.
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Computing Available Expressions

statement s gen[s] kill [s]

d : t ← b⊕c {b⊕c}−kill [s] all containing t
d : t ←M[b] {M[b]−kill[s]} all containing t
M[a]← b {} all M[x ]
if a R b goto L1 else goto L2 {} {}

in[n] =
⋂

p∈pred[n]

out [p] if n is not entry

out [n] = gen[n]∪ (in[n]−kill[n])

Initialize in[entry] to empty set, initialize all other
sets to contain all expressions of the program.
Iterate until (the greatest) fixpoint is reached.
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Reaching Expressions
Example

1

2

3

4

5

6

7

8

t← x⊕ y t← x⊕ y

v← x⊕ y

t← x⊕ y

x← x⊕1

• 1 : x⊕y is reaching 2.
• 3 : x⊕y is not reaching 5, as 4 recomputes it.
• But 4 is reaching 5.
• 6 : x⊕y is not reaching 8, as 7 kills x .
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Available Expressions
Example

start

z← x⊕ y t← x⊕ y

v← x⊕ y

1 2

3

start

z← x⊕ y

x← x⊕ y

x← x⊕1

z < x

1

2

3

4

x ⊕y is available in 3 x⊕y is not available in 4

Andrzej Wąsowski Episode 6: Dataflow Analysis 6–13

Reaching Expressions

Reaching expressions, are much like reaching
definitions. Expression t ← x ⊕y in node s reaches
a node n if:
• there is a path from s to n that
• does not go through any assignment to x or y ,
• or through any other computation of x ⊕y .

Reaching expressions are characterized by their
own gen, kill and in, out equations as for previous
flow analyses. They are computed very much like
previous examples.
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Common Subexpression Elimination
Example

x = a + b + c;
y = a + b + d;

compiles to CSE copy prop. reg. alloc.

x ← a+b w ← a+b w ← a+b y ← a+b
x ← x +c x ← w x ← w +c x ← y +c
y ← a+b x ← x +c y ← w +d y ← y +d
y ← y +d y ← w

y ← y +d
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Loops
Examples

1

2

3

1

2

3

a while-do loop a do-while loop
(also known as repeat-until)
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Common Subexpression Elimination

If expression x ⊕y is available at s : t ← x ⊕y then
the computation of x ⊕y within s can be eliminated:
• Compute expressions x⊕y reaching s.
• Introduce a new (fresh) temporary w .
• For each such reaching node n : v ← x⊕y

rewrite n to be:

n : w ← x⊕y

n′ : v ← w

• Modify s to use w : s : t ← w
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Dead Code Elimination
If s : a← b⊕c (or s : a←M [x ]) and a is not live-out
of s then the instruction can be eliminated.

x = a + b + c;
y = a + b + d;
return y;

compiles to live-in[s] live-out [s] DCE

x ← a+b a,b a,b,c,x x ← a+b
x ← x +c a,b,c,x a,b
y ← a+b a,b d ,y y ← a+b
y ← y +d d ,y y y ← y +d
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Nested Loops
Examples

1

2

3

4

1

2

3 4

5

6

nested “do-while” loops nested loops with “break”

Many loop structures cry for an abstract definition.
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Loop Dominator
Node d dominates node n if every path of directed
edges from s0 to n must go through d . Every node
dominates itself.

. . .

d

n

. . .

d

n

d dominates n d does not dominate n
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Loops with Multiple Exit Points
Examples

1

2 3 4

1

2 3
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Loops Precisely Defined

A set of nodes S constitutes a loop if:
• S contains a header node h such that
• from any node in S there is a path leading to h.
• There are not any edges from nodes outside S

to nodes in S other than h.

All loops on previous slides are loops according to
this definition.
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Computing Dominators
Example

1

2

3 4

5 6

78

9

10

11

12

1

2

4

5

8

9

7

D[1] 1 immediate dominators
D[2] 1,2,3,4,5,6,7,8,9,10,11,12
D[3] 1,2,3,4,5,6,7,8,9,10,11,12
D[4] 1,2,3,4,5,6,7,8,9,10,11,12
D[5] 1,2,3,4,5,6,7,8,9,10,11,12
D[6] 1,2,3,4,5,6,7,8,9,10,11,12
D[7] 1,2,3,4,5,6,7,8,9,10,11,12
D[8] 1,2,3,4,5,6,7,8,9,10,11,12
D[9] 1,2,3,4,5,6,7,8,9,10,11,12
D[10] 1,2,3,4,5,6,7,8,9,10,11,12
D[11] 1,2,3,4,5,6,7,8,9,10,11,12
D[12] 1,2,3,4,5,6,7,8,9,10,11,12
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Dominator Tree
Example

1

2

3 4

5 6

78

9

10

11

12

1

2

4

5

8

9

7

1

2

3 4

5 6 7

8

9

10

11

12

1

2

4

5

8

9

7
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Computing Dominators

Dominators are computed by iterating the following
equations over the nodes of the flow graph:

D[s0] = {s0}

D[n] = {n}∪ (
⋂

p∈pred[n]

D[p]) for n 6= s0

Initially each D[n] should contain all nodes of the
graph (except D[n0]).
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Dominator Tree

Every node n has at most one immediate dominator
idom[n] such that:
• idom(n) is not the same node as n.
• idom(n) dominates n.
• idom(n) does not dominate any other dominator

of n.
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Loop Definition Revisitted

• The natural loop of a back-edge n→ h is the set
of nodes x , such that h dominates x and there
is a path from x to n not containing h.

• Node h is the header of the loop.

• This definition allows automatic detection of
loops.
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Loop Invariant

The definition d : t ← a1⊕a2 is a loop invariant
within loop L if d ∈ L and for each operand ai :
• ai is constant,
• or all the definitions of ai reaching d are outside

the loop,
• or only one definition of ai reaches d and that

definition is loop invariant.

Loop invariant computations can sometimes be
moved out (hoisted) out of the loop, speeding up the
execution.
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Back Edge
An edge from node n to h, where h dominates n.

1

2

3 4

5 6

78

9

10

11

12

1

2

4

5

8

9

7

1

2

3 4

5 6

78

9

10

11

12
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Natural Loop
Example

1

2

3 4

5 6

78

9

10

11

12

5

8

9

10

• Natural loop of back
edge 10→ 5

• Includes nodes:
5,8,9,10

• Contains the loop 8,9
nested.
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Hoisted.

L0 :t ← 0
t ← a⊕b

L1 :i ← i +1
M [i ]← t
if i < N goto L1

L2 :x ← t

• t ← a⊕b is loop
invariant.

• Moving it before the
loop would not change
the behaviour of our
program.

• It would make the
program faster.

• So the answer is: YES!
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Can We Hoist t → a⊕b?

L0 :t ← 0
L1 :i ← i +1

t ← a⊕b
M [i ]← t
t ← 0
M [j ]← t
if i < N goto L1

L2 :

• The original program
has more than one def
of t .

• Hoisting would change
the interleaving of the
assignments.

• So the answer is: NO!
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Can We Hoist t → a⊕b?

L0 :t ← 0
L1 :i ← i +1

t ← a⊕b
M [i ]← t
if i < N goto L1

L2 :x ← t

• t ← a⊕b is loop
invariant.

• Moving it before the
loop would not change
the behaviour of our
program.

• It would make the
program faster.

• So the answer is: YES!
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Can We Hoist t → a⊕b?

L0 :t ← 0
L1 :if i ≥ N goto L2

i ← i +1
t ← a⊕b
M [i ]← t
goto L1

L2 :x ← t

• The original program
does not always
execute t ← a⊕b.

• Hoisting would execute
it unconditionally always
at least once.

• Leading to a wrong
value of x if no loop
iterations are executed.

• So the answer is: NO!

Minimum trip count pragma might help though...
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Sufficient Conditions for Hoisting

Loop invariant computation d : t ← a⊕b can be
hoisted if:
• d dominates all loop exits at which t is live-out.
• There is only one def of t in the loop.
• t is not live-out of the loop preheader.
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Derived Induction Variable

s← 0
i ← 0

L1 :if i ≥ n goto L2

j ← i ·4
k ← j +a
x ←M [k ]

s← s +x
i ← i +1
goto L1

L2 :

k is a derived induction
variable if L contains only
one definition of k , k ← j ·c
or k ← j +d , where j is an
induction variable and c,d
are invariant.

If j is an induction variable
derived from i then the only
def of j that reaches k is the
one in the loop, and there is
no def of i between the def
of j and the def of k .

Andrzej Wąsowski Episode 6: Loop Optimizations 6–40

Can We Hoist t → a⊕b?

L0 :t ← 0
L1 :M [j ]← t

i ← i +1
t ← a⊕b
M [i ]← t
if i < N goto L1

L2 :x ← t

• t is used before the loop
invariant definition.

• So the answer is: NO!
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Basic Induction Variable

s← 0
i ← 0

L1 :if i ≥ n goto L2

j ← i ·4
k ← j +a
x ←M [k ]

s← s +x
i ← i +1
goto L1

L2 :

The variable i is a basic
induction variable in a loop L
with header node h if the
only definitions of i within L
are of the form i ← i +c or
i ← i−c, where c is loop
invariant.
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s← 0
i ← 0

L1 :if i ≥ n goto L2

j ← i ·4
k ← j +a
x ←M[k ]

s← s +x
i ← i +1
goto L1

L2 :

s← 0
i ← 0

j ′← 0 k ′← a
L1 :if i ≥ n goto L2

j ← j ′

k ← k ′

x ←M[k ]

s← s +x

i ← i +1 j ′← j ′+4 k ′← k ′+4
goto L1

L2 :
Dead code elimination will remove j ← j ′.
Elimination of useless variables (Appel p.424)
eliminates j ′← j ′+4 too.

Andrzej Wąsowski Episode 6: Loop Optimizations 6–42

Let loop L have header h and back edges s : si → h.
We unroll L as follows:
• Copy the nodes to make a loop L′ with header

h′ and back edges s′i → h′.
• Change all the back edges in L from si → h to

si → h′.
• Change all the back edges in L′ from s′i → h′ to

s′i → h.

Andrzej Wąsowski Episode 6: Loop Optimizations 6–44

Strength Reduction

• On many machines multiplication is more
expensive than addition (including C67xx).

• a definition of derived variable like j ← i ·c can
be replaced with addition.
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Loop Unrolling

Some loops have such a small body that most of the
time is spent incrementing the loop counter variable
and testing the loop-exit condition.

We can make these loops more efficient by unrolling
them, putting two or more copies of the loop body in
a row.
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Useful Loop Unrolling
Example

Use information about induction vars to combine
increments. This works for even number of
iterations:

L1 :x ←M[i ]
s← s +x
i ← i +4
if i < n goto L1 else L2

L2 :

L1 :x ←M[i ]
s← s +x
x ←M[i +4]

s← s +x
i ← i +8
if i < n goto L1 else L2

L2 :

General version in Appel p.430.
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Useless Loop Unrolling
Example

L1 :x ←M[i ]
s← s +x
i ← i +4
if i < n goto L1 else L2

L2 :

L1 :x ←M[i ]
s← s +x
i ← i +4

if i < n goto L′1 else L2

L′1 :x ←M[i ]
s← s +x
i ← i +4
if i < n goto L1 else L2
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Some Optimizations of cl6x

-O0 register allocation, loop rotation, dead code
elimination, keyword driven inlining

-O1 copy/constant propagation, useless variable
elimination, common subexpression elimination

-O2 software pipelining, loop optimizations, global
common subexpression elimination, global
useless variable elimination, strength reduction
with arrays and pointers, loop unrolling,

-O3 unsued function elimination, automatic inlining,
(limited) partial evaluation,

We have now covered most of these optimizations!
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