
Software Pipelining

• Modern computers can execute parts of many
different instructions at the same time (not only
DSPs).

• C67x can execute up to 8 instructions at the
same time.

• Software pipelining is a technique used to
schedule instructions from loops (mostly) so
that multiple iterations of the loop execute in
parallel.

Andrzej Wąsowski Episode 7: Software Pipelining 7–2

Resource Constraints

• Function unit
If there are kfu multipliers (adders, etc) on the
chip, then at most kfu multiplication (additions,
etc) instructions can execute at once.

• Instruction Issue
The instruction issue unit can issue at most kii
instructions at a time.

• Register
At most kr registers can be in use at a time
(often split into files).

Andrzej Wąsowski Episode 7: Software Pipelining 7–4

Software Programmable DSP
Platform Analysis
Episode 7, Monday 19 March 2007, Ingredients

Software Pipelining
Data & Resource Constraints
Resource Constraints in C67x
Loop Scheduling Without Resource Bounds

Andrzej Wąsowski Episode 7: Ingredients 7–1

Data Dependence

If instruction A calculates a result that is used
as an operand of instruction B, then B cannot be
executed before A is finished.

Andrzej Wąsowski Episode 7: Software Pipelining 7–3



Resource Constraints in C67x (II)

A read/write hazard exists when two instructions on
the same functional unit attempt to read/write, to the
refister file on the same cycle.

An instruction of the following types scheduled on
cycle i has the following constraints:
• 2-cycle DP

• A single-cycle instruction cannot be scheduled on
that functional unit on cycle i +1 due to write hazard
on cycle i +1.

• 2-cycle DP cannot be scheduled on that functional
unit on cycle i +1 due to write hazard on cycle i +1.

[SPRU189F, p.4-12]

Andrzej Wąsowski Episode 7: Software Pipelining 7–6

Resource Constraints in C67x (IV)
Double-Precision Floating-Point Addition

ADDDP (.unit) src1, src2, dst

stage E1 E2 E3 E4 E5 E6 E7
read src1_l src1_h
written dst_l dst_h
unit in use .L .L

If dst is the source for ADDDP, CMPEQDP,
CMPLTDP, CMPGTDP, MPYDP, or SUBDP, the
number of delay slots can be reduced by 1.
These instructions read the lower word of the
source one cycle before the upper word.

[SPRU189F, pp.4-22/24]
Andrzej Wąsowski Episode 7: Software Pipelining 7–8

Resource Constraints in C67x (I)

An instruction scheduled on cycle i has the following
constraints:

• DP compare/ADDDP/SUBDP (double
precision float comparison)
No other instruction can use the functional unit
on cycles i and i +1

• MPYI/MPYID/MPYDP
No other instruction can use the functional unit
on cycles i ,i +1,i +2, and i +3.

• . . .

[SPRU189F, p.4-12]

Andrzej Wąsowski Episode 7: Software Pipelining 7–5

Resource Constraints in C67x (III)
• 4-cycle instruction

• A single-cycle instr. cannot be scheduled on that
functional unit on cycle i +3 due to a write hazard
on cycle i +3.

• Multiplication cannot be scheduled on that functional
unit on cycle i +2 due to write hazard on cycle i +3.

• MPYI
• A 4-cycle instruction cannot be scheduled on that

functional unit on cycles i +4, i +5, i +6.
• MPYDP cannot be scheduled on that functional unit

on cycles i +4, i +5, i +6.
• Multiplication cannot be scheduled on that functional

unit on cycle i +6 due to write hazard on cycle i +7.
• . . .

[SPRU189F, p.4-13]
Andrzej Wąsowski Episode 7: Software Pipelining 7–7



Loop Scheduling
Without Resource Bounds

For simplicity assume that
• Every instruction can be computed in 1 cycle.
• There are no resource constraints (only data

constraints)
• The number of iterations in the loop is fixed (like

with matrix multiplications)

Andrzej Wąsowski Episode 7: Software Pipelining 7–10

Example: A loop to be
software-pipelined

b← V [0]

for i ← 1 to N
a← j⊕b
b← a⊕ f
c← e⊕ j
d ← f ⊕c
e← b⊕d
f ← U[i ]
g : V [i ]← b
h : W [i ]← d
j ← X [i ]

Andrzej Wąsowski Episode 7: Software Pipelining 7–12

We Do Need Automatic Scheduling!

With so many complex constraints, it quickly
becomes a nightmare to find any nontrivial schedule
for a given assembly program. Undoubtedly we
need good automatic techniques for handling this.

Cl6x incorporates an assembly optimizer
containing a pipeline-aware automatic scheduler.

Manual techniques are given for highly fine-tuning
your code with respect to pipeline in chapter 5 of
Programmer’s Guide. [recommended reading]

Andrzej Wąsowski Episode 7: Software Pipelining 7–9

Aiken-Nicolau Loop Pipelining
Loop Scheduling without Resource Bounds

1 Unroll the loop entirely.
2 Schedule each instruction from each iteration at

the earliest possible time.
3 Find separated groups of instructions at given

slope.
4 Coalesce the slopes.
5 Reroll the loop.

Andrzej Wąsowski Episode 7: Software Pipelining 7–11



Aiken-Nicolau Loop Pipelining

b0← V [0]

for i ← 1 to N
ai ← ji−1⊕bi−1

bi ← ai ⊕ fi−1

ci ← ei−1⊕ ji−1

di ← fi−1⊕ci

ei ← bi ⊕di

fi ←U[i ]
g : V [i ]← bi

h : W [i ]← di

ji ← X [i ]

After indexing accesses with iteration numbers.
Andrzej Wąsowski Episode 7: Software Pipelining 7–14

Data-Dependence Graph Unrolled
b0← V [0]

for i ← 1 to N
ai ← ji−1⊕bi−1

bi ← ai ⊕ fi−1

ci ← ei−1⊕ ji−1

di ← fi−1⊕ci

ei ← bi ⊕di

fi ← U[i ]
g : V [i ]← bi

h : W [i ]← di

ji ← X [i ]

a1

a

j1

j

c1

c

b1

b

f1

f

d1

d

g1

g

h1

h
c

Andrzej Wąsowski Episode 7: Software Pipelining 7–16

Trivial Linear Schedule

b← V [0]

for i← 1 to N
a← j⊕b
b← a⊕ f‖c← e⊕ j
d ← f ⊕c
e← b⊕d‖f ← U[i ]‖V [i ]← b‖W [i ]← d‖j ← X [i ]

• Assumption: no hardware constraints (just data
dependencies)

• V , U, W and X are disjoint (commonly
required)

Andrzej Wąsowski Episode 7: Software Pipelining 7–13

Data-Dependence Graph
b0← V [0]

for i← 1 to N
ai ← ji−1⊕bi−1

bi ← ai ⊕ fi−1

ci ← ei−1⊕ ji−1

di ← fi−1⊕ci

ei ← bi ⊕di

fi ← U[i ]
g : V [i ]← bi

h : W [i ]← di

ji ← X [i ]

a

j

c

b
f

d

g
h

e

dotted: previous iteration deps

solid: current iteration deps

Andrzej Wąsowski Episode 7: Software Pipelining 7–15



Schedule Completely Unrolled Loop
• Scheduling DAGs is easy: run each instruction

as soon as all its predecessors have completed
• Do not take hardware limitations into account

(unbounded concurrency, etc)

Cycle Instructions
1 a1c1f1j1f2j2f3j3...
2 b1d1
3 e1g1h1a2
4 b2c2
5 d2g2a3

a1

a2

a3

j1

j2

c1

c2

b1

b2

f1

f2

d1

d2

g1

g2

h1

h2
c3

Andrzej Wąsowski Episode 7: Software Pipelining 7–18

Cycles/Iterations Tableau: patterns
1 2 3 4 5 6 iterations

1 acfj
2 bd fj
3 egh a
4 cb fj
5 dg a
6 eh b fj
7 cg a
8 d b
9 eh g fj
10 c a
11 d b
12 eh g fj
13 c a
14 d b
15 eh g

Andrzej Wąsowski Episode 7: Software Pipelining 7–20

Data-Dependence Graph Unrolled

a

j

c

b
f

d

g
h

e

a1

a2

a3

j1

j2

c1

c2

b1

b2

f1

f2

d1

d2

g1

g2

h1

h2
c3

Andrzej Wąsowski Episode 7: Software Pipelining 7–17

Cycles/Iterations Tableau

Cycle Instructions
1 a1c1f1 j1f2j2f3j3...
2 b1d1
3 e1g1h1a2
4 b2c2
5 d2g2a3

1 2 3 4 5 6 iterations
1 acfj fj fj fj fj fj
2 bd
3 egh a
4 cb
5 dg a
6 eh b
7 cg a
8 d b
9 eh g a
10 c b
11 d g a
12 eh b
13 c g
14 d
15 eh

Andrzej Wąsowski Episode 7: Software Pipelining 7–19



Optimal Schedule

• The optimal schedule can be found in Appel
(Fig. 20.7, p. 483)

• It may require some more massaging if values
of a given variable from several iterations are
live at the same time (for example f in the
example). This is shown on Fig. 20.8

Andrzej Wąsowski Episode 7: Software Pipelining 7–21

Resource Bounded Loop Pipelining

Outline of the algorithm:
• Check if the body of the loop can be scheduled

in ∆ cycles.
• If this is possible finish.
• Otherwise increase ∆ and retry.

Andrzej Wąsowski Episode 7: Software Pipelining 7–23

Cycles/Iterations Tableau: patterns
1 2 3 4 5 6 iterations

1 acfj
2 bd fj
3 egh a
4 cb fj prologue
5 dg a
6 eh b fj
7 cg a
8 d b
9 eh g fj new
10 c a body
11 d b
12 eh g fj
13 c a
14 d b
15 eh g epilgoue

Andrzej Wąsowski Episode 7: Software Pipelining 7–20

• The schedule returned is guaranteed to be
optimal for a machine that fullfills its hardware
requirements (8 concurrent instructions in this
case).

• 7+(N−4)+5 cycles, while the original loop
scheduled totally sequentially required 9∗N
cycles, while the trivial linear schedule (no
instruction reordering) requires 4∗N cycles.

• For N = 100 the numbers are: 108, 900, and
400 respectively.

• On real machine it will surely take more cycles
than 108.

• Software pipelining is difficult if there is control
(branches) in the body of the loop.

Andrzej Wąsowski Episode 7: Software Pipelining 7–22



Example
Same Program as Before, ∆ = 3

The machine can only perform one load instruction
at a time.

b0← V [0]

for i ← 1 to N

ai ← ji−1⊕bi−1

bi ← ai ⊕ fi−1

ci ← ei−1⊕ ji−1

di ← fi−1⊕ci

ei ← bi ⊕di

fi ← U[i ]

g : V [i ]← bi

h : W [i ]← di

ji ← X [i ]

An illegal schedule:
0
1 fi ← U[i ] ji ← X [i ]
2

Andrzej Wąsowski Episode 7: Software Pipelining 7–25

Example
Same Program as Before, ∆ = 3

Actually we can go even one step further
(backwards or forwards).

b0← V [0]

for i ← 1 to N

ai ← ji−1⊕bi−1

bi ← ai ⊕ fi−1

ci ← ei−1⊕ ji−1

di ← fi−1⊕ci

ei ← bi ⊕di

fi ← U[i ]

g : V [i ]← bi

h : W [i ]← di

ji ← X [i ]

Possibly extendable to a
legal schedule:

0
1 ji ← X [i ]
2 fi+1← U[i +1]

0 fi−1← U[i−1]
1 ji ← X [i ]
2

Andrzej Wąsowski Episode 7: Software Pipelining 7–27

Resource Bounded Loop Pipelining:
Scheduling

• Take current instruction and schedule it at time
t = t0

• If this violates constraints than increase t
• Repeat this until t can be scheduled or t = t0 +∆
• If no success then there is no schedule of

lenght ∆ (increase it).

Andrzej Wąsowski Episode 7: Software Pipelining 7–24

Example
Same Program as Before, ∆ = 3

We can try to move fi one cycle back or forward:

b0← V [0]

for i ← 1 to N

ai ← ji−1⊕bi−1

bi ← ai ⊕ fi−1

ci ← ei−1⊕ ji−1

di ← fi−1⊕ci

ei ← bi ⊕di

fi ← U[i ]

g : V [i ]← bi

h : W [i ]← di

ji ← X [i ]

Possibly extendable to a
legal schedule:

0 fi ← U[i ]
1 ji ← X [i ]
2

0
1 ji ← X [i ]
2 fi ← U[i ]

Andrzej Wąsowski Episode 7: Software Pipelining 7–26



Properties of the Algorithm

• The algorithm does such search in a greedy
manner for consecutive instructions

• Typically it will start with instructions that are
most dependent on other instructions, to
increase a chance of earlier termination
(relatively independent instructions are easy to
schedule).

Andrzej Wąsowski Episode 7: Software Pipelining 7–29

Sometimes Cl6x Gives up on
Pipelining

• If a value is live in a register for more than the
number of cycles in the loop

• If the loop contains very complex conditions in
the body.

• If the loop contains function calls (other than
intrinsics or inlined functions)

• If the loop contains break statements (rewrite to
use ifs).

: source Programmer’s guide p. 2-54

Andrzej Wąsowski Episode 7: Software Pipelining 7–31

Example
Same Program as Before, ∆ = 3

Though not more. Two steps would clash with j
again.

b0← V [0]

for i ← 1 to N

ai ← ji−1⊕bi−1

bi ← ai ⊕ fi−1

ci ← ei−1⊕ ji−1

di ← fi−1⊕ci

ei ← bi ⊕di

fi ← U[i ]

g : V [i ]← bi

h : W [i ]← di

ji ← X [i ]

An illegal schedule:

0
1 fi+1← U[i +1] ji ← X [i ]
2

0
1 fi−1← U[i−1] ji ← X [i ]
2

Andrzej Wąsowski Episode 7: Software Pipelining 7–28

• The algorithm is not guaranteed to find an
optimal solution

• It is not even guaranteed to find a solution of
size ∆ when one exists.

• It may also find a schedule for which a register
allocation fails (and then it needs to be run
again, as spills change scheduling)

• It may not terminate even! So often in practice it
stops examining a given ∆ after some time, and
tries the next one.

• The consolation is that it is reported to work
very well in practice.

Andrzej Wąsowski Episode 7: Software Pipelining 7–30



Thanks for Attention.

Andrzej Wąsowski Episode 7: Software Pipelining 7–33

“If” statements can only be used
around the code that updates
memory and around variables
whose values are calculated inside
the loop, but only used outside the
loops (we know that this is keeping
the induction variables linear...).

: source Programmer’s guide p. 2-54

Andrzej Wąsowski Episode 7: Software Pipelining 7–32


