
Feedback on Student Programming Assignments:
Teaching Assistants vs Automated Assessment Tool

Nynne Grauslund Kristiansen
CCER: Center for

Computing Education Research
IT University of Copenhagen (ITU)

Denmark

Sebastian Mateos Nicolajsen
CCER: Center for

Computing Education Research
IT University of Copenhagen (ITU)

Denmark

Claus Brabrand
CCER: Center for

Computing Education Research
IT University of Copenhagen (ITU)

Denmark

ABSTRACT

Existing research does not quantify and compare the differences be-
tween automated and manual assessment in the context of feedback
on programming assignments. This makes it hard to reason about
the effects of adopting automated assessment at the expense of man-
ual assessment. Based on a controlled experiment involving N=117
undergraduate first-semester CS1 students, we compare the effects
of having access to feedback from: i) only automated assessment, ii)
only manual assessment (in the form of teaching assistants), and iii)
both automated as well as manual assessment. The three conditions
are compared in terms of (objective) task effectiveness and from a
(subjective) student perspective.

The experiment demonstrates that having access to both forms
of assessment (automated and manual) is superior both from a task
effectiveness as well as a student perspective. We also find that the
two forms of assessment are complementary: automated assess-
ment appears to be better in terms of task effectiveness; whereas
manual assessment appears to be better from a student perspec-
tive. Further, we found that automated assessment appears to be
working better for men than women, who are significantly more in-
clined towards manual assessment. We then perform a cost/benefit
analysis which leads to the identification of four equilibria that
appropriately balance costs and benefits. Finally, this gives rise to
four recommendations of when to use which kind or combination
of feedback (manual and/or automated), depending on the num-
ber of students and the amount of per-student resources available.
These observations provide educators with evidence-based justifi-
cation for budget requests and considerations on when to (not) use
automated assessment.

CCS CONCEPTS

• Social and professional topics→ Student assessment; CS1;
Computer science education.

KEYWORDS

automated assessment, teaching assistants, student experiments,
feedback

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Koli Calling, November 16–19, 2023, Koli, Finland

© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-8488-9/22/11. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:

Nynne Grauslund Kristiansen, Sebastian Mateos Nicolajsen, and Claus
Brabrand. 2023. Feedback on Student Programming Assignments: Teaching
Assistants vs Automated Assessment Tool. In 23rd Koli Calling International

Conference on Computing Education Research (Koli Calling ’23), November

16–19, 2023, Koli, Finland. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Universities are increasingly adopting automated feedback in Com-
puting courses by using Automated Assessment Tools (AATs) rather
than Teaching Assistants (TAs) in an attempt to scale educational
resources and reduce the cost of providing students with individ-
ualized feedback [29, 38, 41]. However, little research quantifies
the various benefits and consequences of using automatic feedback
(using computerized AATs) over manual assessment (using human
TAs). Investigating how automatic and manual feedback impact
students in isolation and together is crucial to understand the impli-
cations of particular design decisions and economic choices. Thus,
this study quantifies and compares the effects of providing only

automatic feedback, only manual feedback, and both automatic
and manual feedback for N=117 students enrolled in our bachelor
programme Software Development. These three conditions natu-
rally arise when adopting an institutional resource perspective, i.e.,
it boils down to the choice between a human teaching assistant
versus computerized (virtual) teaching assistants. For providing
students with feedback on their programming assignments, an ed-
ucational institution can either employ potentially several TAs or
have a single person set up and superintend an automated teach-
ing assistant—or a combination of both manual and automated
feedback.

We perform a controlled experiment that exposes all students
to the same programming exercise, but partition them into three
groups corresponding to the aforementioned three conditions. We
compare the objective task effectiveness of students’ solutions in
terms of correctness, duration, and code smells as well as subjective
student perspectives in terms of frustration, assistance, and prefer-

ences to provide educators with the data necessary to make action-
able evidence-based recommendations regarding the inclusion of
automatic feedback. We consider both objective task effectiveness
and a subjective student perspective to account for quality (using
multiple parameters) and student well-being.

2 BACKGROUND & RELATEDWORK

Automated assessment has been around for more than 60 years
to assess students’ assignments [7]. Researchers have compared
30 different automated assessment tools (AATs) and categorised

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

them [30]. Common for all is that they provide instant feedback on
student submissions, also being the primary argument for utilising
such platforms [3, 11, 39]. Most of these tools are web-based (online)
and support multiple languages [3, 30].

AATs usually focus on functional (aka, input/output) correctness
and provide feedback from summative assessment (i.e., of learning);
whereas teaching assistants (TAs) usually focus on overall structural
correctness and provide feedback from formative assessment (i.e.,
for learning) [10].

Automated assessment can differ according to multiple param-
eters, Nutbrown and Higgins differentiate between Combo tools

(combination of multiple automatic tools), Style and structure tools
(checking beyond input / output), Informative and specific (e.g., pro-
ducing student advice), Timely (The time taking for the tool to
provide feedback), Reliable and consistent (Both summative and
formative feedback should be reliable and testable), Clearly commu-

nicated (Feedback should be understandable), and useful for teachers
(Feedback and assessment is not only for the students) [28]

Separately, Ihantola et. al. categorise AATs into either tools for
programming competitions or (introductory) programming educa-
tion. [22] These various attributes can be realised in different ways,
e.g., building a custom email client on top of existing platforms
or using tools with the built in capability of checking for patterns
using regular expressions, such as CourseMarker [28].

On the use of Automated Assessment. Research reveals that
AATs positively impact student learning [3, 32]. However, this is
primarily measured by end-of-course grades and is not further ex-
plored on other parameters [3]. Also, research finds that automated
assessment platforms, such as the platform Kattis, release the bur-
den of marking/assessing programs and make students feel more
confident about their solutions [12]. Additionally, automated feed-
back has the benefit of low turnaround time and fairness which are
all concerns of manual feedback. Thus, with cohort sizes increasing,
reducing time is a substantial motivation [28].

A different, less obvious benefit, is that programming exercises
are a key source in the high levels of student stress, dissatisfaction,
academic dishonesty, low grades, and high drop out rates [5]. Au-
tomatic assessment tools are one way of alleviating some of these
issues through easy creation and grading, quick and accurate feed-
back to students, freeing of instructors’ time, and enabling many
small programming problems which are more digestible for the
students [5]. And these many small problems or coding exercises do
not impact students’ stress levels as they take less time to complete
from a student perspective [16].

Furthermore, when using automatic feedback some platforms
support activities seldom seen within manual assessment such as
impacting marks based on violations of particular standards or
requirements. Something which is difficult with manual assessment
due to human errors [28].

On the use of TAs. Separately, research finds that properly
trained TAs may positively impact students’ academic performance
[13]. Consequently, research outlines ideas for training, best prac-
tices, and various roles of TAs [21, 35]. Yet, according to a literature
review by Mirza et al. these best practices have yet to be rigorously
researched [27]. As the training of TAs varies greatly, it is intrinsi-
cally difficult to generalize their impact on student problem-solving

[34]. While mostly relying on anecdotal evidence, TAs are effec-
tive at providing detailed feedback tailored to the individual, and
increase student satisfaction, moral, attitude, and motivation [27].
Furthermore, there is no accepted definition of an expert human
TA. Yet, TA’s experience in teaching, as long as they are subject
matter experts and have the same base training, does not appear to
impact effectiveness [40].

Automated vs Manual Assessment. Automated assessment
tools provide the benefit of low turnaround time and fairness which
are both concerns of manual feedback. Thus, with cohort sizes
increasing, reducing time is a substantial motivation [28]. Prior
research argues for combining both manual and automated as TAs
can provide additional feedback (or override grades), e.g., what
Web-Cat does [22].

Despite the obvious benefits of automated assessment, prior
research has found contradicting results on its use. Considerable
divergences were found when grading using automated assessment
and a manual baseline on 77 assignments; automated assessment
awarded more top marks, but also a lot more failures (in fact, almost
half of the students (37:77) received a score of ≤30 from automated
assessment whereas this was only the case for 8% (6:77) using
manual assessment) [33]. Ultimately, automated assessment was
deemed unreliable for grading purposes. In contrast, Gordillo finds
that automated assessment improves student motivation, quality of
their work, and enhances practical programming skills, although
students find the feedback hard to understand [18]. Additionally,
Alemán found a positive effect in regards to debugging, deployment,
and versioning but not testing when students are using an AAT [4].

Research Gap. The prior work was in the context of grading
of submitted solutions and provide contradicting results, whereas
our work focuses on feedback during exercise classes. Our work
compares the use of a particular automated assessment tool with
the use of teaching assistants to better understand the interplay be-
tween automated and manual assessment for formative assessment.
While a variety of AATs exist (e.g., CodeLab [26], CodeJudge [24],
JavaAssess [23]), we have chosen the tool Kattis [2] as it is widely
adopted at our University. Kattis allows users to upload solutions
to individual programming problems in multiple programming lan-
guages using an online service. The platform then evaluates the
code according to a predefined set of unit test cases for the given
problem and provides the student with binary feedback; i.e., pass or
fail. We have deliberately chosenKattis and to provide the students
with limited quantitative pass/fail-feedback to study the extremes

along the spectrum from rich qualitative feedback (provided by a
human) to limited quantitative feedback (provided by a tool). For
other tools, providing more human-like feedback, we expect them
to behave interpolationally between the extreme end-points of our
study.

3 METHODOLOGY

We detail the setup of our controlled experiment.

3.1 Objectives

Our experiment is organized around two complementary research
questions. The first is focused on (objective) task effectiveness; the
second on (subjective) student perspectives:

RQ1 (Task Effectiveness): How do TAs vs AATs com-

pare for providing feedback on student programming as-
signments in terms of task effectiveness such as correct-
ness, duration, and code smells?

RQ2 (Student Perspectives): How do TAs vs AATs

compare for providing feedback on student programming
assignments in terms of student perspectives such as
frustration, assistance, and preferences?

In concert, the two research questions provide a complementary
perspective on the advantages and disadvantages of using teach-
ing assistants vs automated assessment tools, such as Kattis, for
providing feedback on student programming assignments.

3.2 Participants

The experiment takes place in the context of the three-year Bachelor
of Software Development (BSWU) at the IT University of Copen-
hagen (ITU). The programme does not require prior programming
skills and admits approximately 150 students each year. In 2022,
there were 153 students (hereof 20% women: 30 out of 153). 33%
had little or no prior programming experience; 45% had some lim-
ited experience; and 22% had prior programming experience. The
first semester of the programme consists of three simultaneous
courses: Introductory Programming (CS1), Discrete Mathematics,
and Project Work & Communication.

Our experiment was conducted a month into the 15 ECTS1
first-semester CS1 course which consists of seven weekly manda-
tory Kattis programming assignments, three mandatory one hour
closed-book on-premises programming tests, and two mandatory
hand-ins that must be approved before they are eligible for the
exam. The course utilises the BlueJ IDE. The automated assessment
platform Kattis is used for seven mandatory assignments. Our
experiment uses the fourth mandatory Kattis programming as-
signments as the task the students need to solve. The students will
therefore have used the platform minimally before the execution
of the experiment. However, this way the students get something
out of participating in the experiment. Similarly, all students have
prior experience with utilising teaching assistants. The experiment
is conducted as part of their regular teaching activities. On the day
of the experiment, N=117 students participated (hereof 25 women
and 44 students with little to no prior programming experience).

3.3 Task

For experimental task, we settled on the FizzBuzz Kattis prob-
lem (translated into a Danish version, ‘ØfGrynt’) since it exercises
student abilities in implementing nested if-else statements using
non-trivial boolean conditions. Besides, this problem had been in
use in previous editions of the CS1 course, constituting the fourth
mandatory Kattis programming problem.

A solution to the FizzBuzz programming problem is supposed to
output the first 1,000 integer numbers consecutively starting from
one, but where each number divisible by 3 is replaced by the word
‘Fizz’ and each number divisible by 5 by ‘Buzz’; numbers divisible
by both three and five (by 3 × 5) are replaced by the concatenation:
‘FizzBuzz’ (hence the name of the problem). Additionally, counting
1One academic year is 60 ECTS (European Credit Transfer and Accumulation System).

has to restart from one every time the count hits 100. Figure 1
horizontally lists an initial part of the intended output sequence.

The problem had earlier been made into a Kattis exercise specif-
ically for students taking another CS1 course by an independent
teacher2 and is inspired by the ’FizzBuzz’ problem used in many
programming interviews [17].

For assessment of task fulfillment, the Kattis problem comes
with two sets of unit test cases (withheld from the students): partial
correctness, comprises nine test cases; and full correctness adds
an additional five test cases with more corner cases. For the CS1
course, partial correctness is enough to get the mandatory problem
approved, but most students strive for full correctness.

3.4 Treatments

Our controlled experiment considers two treatments:
TAs: The first treatment is to use teaching assistants for provid-

ing feedback on student programming assignments. During exercise
classes, the role of a teaching assistant is usually to offer formative

feedback along the lines of a coach. Typically our TAs aid students
when errors arise or comment on the quality of the code written.
The students were free to ask as many questions to the TAs as they
wanted, only inhibited by the natural scarcity of shared limited
resources. All five TAs (three women, two men) were highly qual-
ified; in fact, they had been selected from a pool of 27 qualified
applicants. The TAs were given a correct solution a few days in
advance, in order for them to have adequate time to prepare to
assist the students with the programming problem.

AAT: The second treatment is to use an automated assessment

tool, specifically Kattis, for providing feedback on student pro-
gramming assignments. The role of the automated tool is usually
to offer summative feedback to the student (and teachers) along
the lines of a judge. The students were free to upload their solution
as many times as they wanted to the Kattis platform which then
responded with one of six verdicts: 1) compile-error, 2) runtime error,
3) time-limit exceeded, 4) incorrect, 5) partially correct, or 6) fully
correct. Hence, the tool provided limited quantitative feedback.

3.5 Conditions

For comparing the two treatments TAs vsAAT for assessing student
programming assignments, we use three conditions:

• TAs: Students will have only TAs at their disposal for feed-
back on their programming assignment;

• AAT: Students will have only an AAT at their disposal for
feedback on their programming assignment; and

• TAs+AAT: Students will have both TAs as well as an AAT
at their disposal for feedback on programming assignment.

The advantage of using these three conditions (where TAs as well
as AAT are subsumed by TAs+AAT) is that it makes it possible to
quantify the effect of adding TAs as well as that of adding an AAT
as a form of student feedback. The conditions { TAs, TAs+AAT }
attest to the effect of having TAs (irrespective of an AAT); whereas
the conditions { AAT, TAs+AAT } account for the effect of having a
AAT (irrespective of TAs).

2Developed by Prof. Thore Husfeldt; problem available from https://itu.kattis.com/.

https://itu.kattis.com/

1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz, 16, 17, Fizz, 19, ...

Figure 1: The “FizzBuzz” problem where every 3
rd

number is replaced by the word ‘Fizz’ and every 5
th

by ‘Buzz’; although, the
output is shown here with a comma rather than a newline. (Translated from Danish where ‘Fizz’ = ‘Øf’ and ‘Buzz’ = ‘Grynt’.)

3.6 Design

All 135 students were randomly assigned to one of the three con-
ditions. However, due to only N=117 students being present on
the day of the experiment, the three conditions, TAs, AAT, and
TAs+AAT; each received 𝑁1=39, 𝑁2=42, respectively, 𝑁3=36 stu-
dents. Each condition was assigned a dedicated room. The five
regular TAs from the CS1 course were assigned as TAs; two TAs
(one woman, one man) for the TAs condition; two TAs (one woman,
one man) for the TAs+AAT condition, and a single TA (woman) for
the AAT condition to simply passively monitor that the students
adhered to the rules of the experiment. The amount of TAs accessi-
ble to students within the TAs and TAs+AAT conditions simulate
the number of TAs accessible during a regular lab session. (In our
Danish context, usually around a 1:20 assistant-to-student ratio.)

The programming assignment was individual, so the students
were not allowed to interact with each other during the experiment.
The students, however, did have access to their notes, teaching
material, and access to the internet. (They were asked to not com-
municate with each other online. Note also that the experiment
took place before the proliferation of ChatGPT.)

The experiment began with a TA reading instructions that ex-
plained the rules of engagement. Hereafter, the students had one
hour to finish the task. For each student, we recorded a number of
metrics (see below). Upon finishing the task, the students had to
complete a survey (see further below).

3.7 Pilot Study

Before runnning the experiment, a pilot trial was performed with
six students who were taking a similar CS1 course, but on another
educational programme (Software Design). Two of these students
had some prior programming experience. Both CS1 courses used
Java and their learning goals were almost identical. The pilot con-
cluded that the Kattis problem was likely fitting for the intended
target audience of novice programmers with no or limited prior pro-
gramming experience. However, it became clear that the problem
specification needed to be further elaborated.

3.8 Metrics

For each student’s final submission, we recorded the correctness as
the percentage of successful unit tests (and whether or not the code,
in fact, compiled or ran). We recorded the total duration of the time
spent working on the programming assignment. Finally, we ran
SonarCube [37] (using default settings) on the student solution to
obtain the number of warnings (aka, code smells) based on analyzing,
e.g., naming conventions, indentation, and unused code. None of
this information was passed on to the students, but used solely for
this study as a superficial proxy assessing the code quality of the
solutions handed in.

3.9 Survey

Upon finishing the experiment, students received a questionnaire
which asked the students about their level of frustration and the
level of assistance available to them during the programming exer-
cise session, both on a 1–5 Likert scale. Students were also asked
about their preferences; whether they preferred feedback from a TA
or an AAT, or if they did not have any preference. Finally, students
were also invited to provide qualitative feedback elaborating on
their ratings.

3.10 Ethics

We solicited and obtained ethical approval from our University to
carry out this experiment as well as explicit informed consent from
the students to participate in the study. All students had a chance
to opt-out of the experiment (whereby we would not record any
data for them); however, all N=117 students present on the day
of the experiment consented. All data has been anonymized and
is GDPR complaint. We are not interested in the performance of
individual students; only in the “big picture,” comparing the three
conditions of the experiment (based on anonymized data from
around 40 students in each condition). Differential treatment of the
students was limited to this one hour experiment which differed
only in the assistance available to the students while working on
the FizzBuss exercise. To minimize the differential treatment, an
additional lab sessionwas offered to those in need (with bothKattis
and TAs available) with only a few attendees (from all treatments).
We did not include an unassisted feedback condition as this would
(in most cases) force the students under this condition to attend the
additional lab session. Student grades in the course did not, in any
way, depend on their performance in this experiment.

3.11 Analysis

For comparing vector data between two populations (e.g., correct-
ness percentages or Likert scale preferences for TAs vs TAs+AAT),
we used the (Mann-Whitney) U-Test3 which does not presuppose
that the data is normally distributed.

For comparing proportional data (e.g., ratios of students prefering
feedback from TAs vs AAT), we used the Z-Test4 (for two popu-
lation proportions) which is capable of comparing whether one
ratio, x1/y1, is statistically significantly greater than another, x2/y2
(whenever: 𝑥𝑖 ≥ 5 and 𝑦𝑖−𝑥𝑖 ≥ 5, for 𝑖 ∈ {1, 2}). Whenever the pre-
vious condition is not fulfilled, we use Fischer’s Exact test5 which
is capable of dealing with smaller sample sizes.

For all tests, we adopt a conventional 95% confidence interval (𝛼
= 5%) and perform only symmetrical two-tailed tests which do not
presuppose the superiority of either testee in question. Occasionally,

3U-Test: https://www.socscistatistics.com/tests/mannwhitney/
4Z-Test: https://www.socscistatistics.com/tests/ztest/
5Fischer’s Exact Test: https://www.socscistatistics.com/tests/fisher/default2.aspx

https://www.socscistatistics.com/tests/mannwhitney/
https://www.socscistatistics.com/tests/ztest/
https://www.socscistatistics.com/tests/fisher/default2.aspx

0%

20%

40%

60%

00% 01-50% 51-99% 100%

TAs AAT TAs+AAT

Figure 2: Correctness: Percentage of successful unit test cases

for students under the three conditions. The difference be-

tween TAs vs TAs+ATT is significant (𝑝=0.0024).

we will refer toweak significance using a 90% confidence interval (𝛼
= 10%) which is not unreasonable outside of the biomedical domain.

4 RESULTS

We consider the results according to our two research questions:

4.1 Objective Task Effectiveness (RQ1)

Correctness is defined as the percentage of unit test cases that a
student’s solution passes successfully, using the full correctness
suit of unit test cases; i.e., all 14 (9+5) test cases (cf. Section 3.3).

Observation 1a (Correctness): Studentswith access to feed-
back from both AAT and TAs make significantly more correct

solutions than those with access to feedback from only TAs.
Figure 2 shows the distribution of percentages of successful unit
test cases for students according to the three conditions. To the
far right, we see that more than 60% of the students with access
to feedback from both AAT and TAs write code that passes all
unit test cases. This ratio drops to 45% for students with access to
feedback from only AAT and, further, to around 30% for students
with TA-feedback only. To the far left, we see an inverted picture
for students not getting a single unit test case right. In fact, half of
the 16 students not getting any unit test cases right under the TAs
condition, hand in code that does not even compile. Students with
access to AAT (irrespective of whether there were TAs present)
only handed in compiling code (with one exception under the AAT
condition). After all, making sure the code compiles (and runs) is
precisely one among many intended benefits of an AAT.

The difference between the correctness scores for students under
the TAs vs TAs+AAT is statistically significant (𝑝=0.0024); whereas
the other pairwise differences are not (𝑝 ≥ 0.072).
Duration is quantified as the time spent working on the Kattis
programming assignment. Students received an hour for the task;
in the end, the students received an extra 10 minutes (since many
were close to finishing the task).

Observation 1b (Duration): Students handing in the final
submission with access to feedback from both AAT and TAs are
significantly faster than those with access to feedback from only
TAs.

Figure 3 shows a boxplot of the distribution of time spent working
on the assignment under the three conditions. The top and bottom

horizontal lines represent the longest and shortest time expenditure;

++
+

70'

60'

50'

40'

30'

20'

10' TAs

AAT
TAs+AAT

Figure 3: Duration: Distribution of time spent working on

the AAT programming assignment under the three condi-

tions. The difference between TAs vs TAs+ATT is significant

(𝑝=0.028).

0%

10%

20%

30%

40%

1-4 5-6 7-9 10+

TAs AAT TAs+AAT

Figure 4: Code smells: Number of warnings from SonarCube

under the three conditions. The difference between TAs vs

TAs+ATT is significant (𝑝=0.015).

the top and bottom of the square boxes represent the upper and lower
quartiles; the horizontal line inside the box represents the median;
finally, the plus designates the mean (average). From left to right,
we see a consistent drop in the median time from 51’29” to 46’30”
to 34’21”. (The mean time spent exhibits a similar drop from 47’16”
to 42’25” to 38’38”.)

Again, statistical analysis reveals that the pairwise difference
between TAs and TAs+AAT is significant (𝑝=0.028); whereas the
other pairwise differences are not (𝑝 ≥ 0.28).

Code smells are measured as the number of code smell warnings
reported by SonarCube. We use code smells as a superficial proxy
for the code quality of student solutions.

Observation 1c (Code Smells): Students with access to feed-
back from both AAT and TAs write code with significantly fewer

code smells than those with access to feedback from only TAs.

Figure 4 shows the distribution of the number of code smell warn-
ings under the three conditions. To the left, we see that more than
40% of the students under the TAs+AAT condition have four or
fewer code smells; under AAT, this number drops to around 30%
and to 20% under the TAs condition. We see the opposite pattern
when it comes to code with lots of warnings (see the right hand
side of Figure 4).

Once again, statistical analysis reports that the pairwise differ-
ence between TAs and TAs+AAT is significant (𝑝=0.015); whereas
the other pairwise differences are not (𝑝 ≥ 0.13).

0% 20% 40% 60% 80% 100%

TAs+AAT
AAT
TAs

TAs+AAT
AAT
TAs

1 2 3 4 5

WOMEN

MEN

Figure 5: Frustration: Student frustration levels (1–5) under

the three conditions. Darker shades of red (higher scores)

indicate higher levels of frustration. In general, women are

more frustrated than men (𝑝=0.00008). There appear to be

more maximally frustrated students under AAT than the

other conditions (𝑝=0.068).

Non-Dominant Perspective. In order to ensure that non-dominant
sub-groups are represented and not “diluted” into the data, we con-
sidered women and programming inexperienced students (those
starting CS1 without prior programming experience). For RQ1, the
results were similar when projecting onto either the 25 women or
44 students with no or little prior programming experience. The sta-
tistics revealed only weak significance (e.g., 𝑝=0.059 for correctness
& 𝑝=0.087 for duration when zooming in on the women); however,
this is presumably due to the lower number of data points. Im-
portantly, students without prior programming experience were
offered an intensive 3-day CS0 programming onboarding course
which, according to recent research, is sufficient to bridge the prior
experience gap [20]. Also, the experiment took place one month
into the CS1 course, further diminishing the prior experience gap.

4.2 Subjective Student Perspectives (RQ2)

For RQ2, there were considerable differences between the perspec-
tives of women vs men; hence, we have split the N=117 data points
into: 25 women & 92 men. (There were much less differences be-
tween students when considering prior programming experience.)
Frustration is quantified as a student self-reported number on a
1–5 scale where a rating of 1 is absence of frustration and a rating
of 5 is the highest level of frustration with the exercise session.

Observation 2a (Frustration): Women are, in general, sig-
nificantly more frustrated than men when solving the Kattis
problem, independent of the form of feedback. Also, there appear
to be more maximally frustrated students when having access
to only automated feedback than when (also) having access to
manual feedback from a human TA.

Figure 5 shows the levels of frustration under the three conditions
for women (top) vs men (bottom). We see that, in general, women
are significantly more frustrated than men (𝑝=0.00008). Also, both
genders are most frustrated under theAAT condition; in fact, 70% of
the women reported high levels of frustration (a frustration rating
of 4 or 5) when having access to feedback only from a computer
(ATT). The statistical analyses, however, report that the ratio of
students exhibiting the highest level of frustration (rating 5) is only
weakly significant (𝑝=0.068) when comparing the AAT condition

0% 20% 40% 60% 80% 100%

TAs+AAT
AAT
TAs

TAs+AAT
AAT
TAs

1 2 3 4 5

WOMEN

MEN

Figure 6: Assistance: Student unmet assistance needs (1–5)

under the three conditions. Darker shades of red (higher

scores) mean more unfulfilled assistance needs. Women are,

in general, more affected than men (𝑝<0.00001) as are women

with feedback from only a computer (AAT) than those with

feedback from (also) a human TA (𝑝=0.0083).

versus the two other conditions. TAs+AAT appears to be better
than the two other conditions, although the differences are not
significant (𝑝 ≥ 0.29).
Assistance is measured as a student self-reported number on a
1–5 scale where a rating of 1 corresponds to students getting all
the assistance needed; a rating of 5 means that they required a lot
more assistance than what was available.

Observation 2b (Assistance): Women, in general, report
significantly more unmet assistance needs thanmen; in particular,
women with access to only automated feedback assistance are
significantly more affected than women who (also) have access
to manual feedback assistance from a human TA.

Figure 6 shows the unmet assistance needs under the three con-
ditions for women (top) vs men (bottom). We see that women, in
general, have significantly more unmet assistance needs than men
(𝑝<0.00001). Also, significantly more women report high unmet
assistance needs (rating 4 or 5) when having access to feedback
only from a computer (ATT) compared to the two other conditions
(𝑝=0.0083). For men, there were no significant difference between
those under AAT vs the other conditions (𝑝=0.66). TAs+AAT ap-
pears to be better than the two other conditions, although the
differences are not significant (𝑝 ≥ 0.15).
Preferences.We asked the students to choose whether they pre-
ferred to receive feedback from: a (human) TA, a (computerized)
AAT, or if they did not have any preference.

Observation 2c (Preferences):Women, in general, prefer
access to feedback from a human TA over a computer (AAT); in
contrast, men, in general, do not exhibit a preference for receiving
feedback from either a human (TA) or a computer (AAT).

Figure 7 shows the preference for receiving feedback from a hu-
man (TA) vs a computer (AAT). For women, in general, we see
a strong preference for receiving feedback from a human over a
computer (𝑝=0.0023). For men, in general, there is no clear differ-
ence (𝑝=0.44). Because of diversity (different students have different
needs and want different things), the TAs+AAT condition is supe-
rior since it incorporates both forms of feedback: manual (human)
and automated (computer). These differential gender preferences

0% 20% 40% 60% 80% 100%

MEN

WOMEN

Prefer TA No preference Prefer ATT

Figure 7: Preferences: Student preferences for getting feed-

back from TAs vs AAT. The overall difference is not signifi-

cant (𝑝=0.368).

Cost: Measure TAs AAT TAs+AAT

Resources Time (effort) 𝑎 · |𝑆 | 𝑏 𝑎 · |𝑆 | + 𝑏
Asymptotic 𝑂 (|𝑆 |) 𝑂 (1) 𝑂 (|𝑆 |)

Benefit: Measure TAs AAT TAs+AAT

Correctness - +
RQ1 Duration - +

Code Smells - +
Frustration - +

RQ2 Assistance - +
Preferences - +

Figure 8: Cost/benefit trade-off summary of the different

forms of feedback. Cost is summarized at the top, benefit at

the bottom; |S| is the number of students in the given course.

’+/-’ denotes statistically significantly best/worst; whereas

’+/-’ (gray font) means best/worst, but non-significantly so.

on human vs machine feedback appear to coincide with recent re-
search demonstrating that women, in computing, in general, prefer
tasks involving people over things, whereas men, in computing, in
general, do not exhibit preferences along the people–things spec-
trum [8, 19, 25].

5 DISCUSSION

We first consider the cost/benefit trade-offs associated with each
of our three experimental conditions, and then use the implication
of our findings to issue recommendations for educators on how to
choose between different forms of providing students with feedback
on programming assignments.

5.1 Cost/Benefit

Figure 8 provides an overview of the cost and benefit under each of
the three conditions (cf. the three rightmost columns): (only) TAs,
(only) AAT, and (both) TAs+AAT.

Cost. The top part of the figure quantifies cost in terms of edu-
cational institutional resources. In the top row, cost is specified in
terms of temporal resources ’Time (effort)’ using coefficient vari-
ables: 𝑎 for per-student temporal cost and 𝑏 for constant temporal
cost (as in, e.g., 𝑎 · |𝑆 | +𝑏, where |𝑆 | denotes the number of students).
The bottom resource cost row gives the asymptotic cost complexity
(as a function of the number of students, |𝑆 |). Asymptotic complex-
ity is particularly important for reasoning about the scalability of
the various assignment feedback solutions available.

In the following, tasks common to all conditions, such as selecting
an appropriate assignment and formulating a problem specification,

have been abstracted away, since they would simply add additional
constant factors to the resource cost under all conditions.

Under the TAs condition, all TAs are collectively tasked with: T1)
read/solve the assignment (with a constant cost for each of the TAs
which is proportional to the number of students); plus T2) provide
formative feedback for all student solutions (with a per-student cost;
i.e., 𝑂 (|𝑆 |)). In total, this amounts to a linear cost: 𝑎 · |𝑆 | which is
in the 𝑂 (|𝑆 |) complexity class.

Under the AAT (AAT) condition, the tasks are: T1’) an educator
(teacher or TA) has to set up the AAT once and for all (with a
constant cost); plus T2’) the AAT has to provide summative feedback

of all student solutions (which is constant because of automation).
Overall, this amount to a constant cost: 𝑏 in 𝑂 (1). In practice,
there may be a negligible per-student overhead (monitoring student
progress); ideally, however, even this may be automated.

When both TAs and an AAT are accessible (the TAs+AAT condi-
tion), the cost will be the sum of the costs of both conditions with a
cumulative linear cost: 𝑎 · |𝑆 | + 𝑏 in 𝑂 (|𝑆 |).

Benefit. The middle and bottom part of Figure 8, summarizes
the benefits according to the results (Section 4), grouped by the
two research questions: RQ1 (objective task efficiency) and RQ2
(subjective student preferences). The black symbols (+/-) denote sta-
tistically significant evidence of ’+’ being statistically significantly
superior to ’-’. The gray symbols (+/-) means better/worse, but not
statistically significantly so. (For RQ2, gender is taken into account
when summarizing the better/worse (+/-) verdicts.)

For RQ1, all task efficiency metrics painted a consistent picture:
access to feedback from both TAs and an AAT is statistically sig-
nificantly superior to feedback from TAs in terms of correctness,
duration, and code smells. Also, all metrics consistently placed access
to feedback from both TAs and an AAT almost exactly in between
the two other conditions. Thus, it appears that TAs and an AAT
is better than AAT (although none of the pairwise tests between
these smaller differences, involving the AAT condition, exhibited
statistical significance).

For RQ2, frustration levels were weakly significantly worst under
the AAT condition; also, the TAs+AAT condition appeared to be
best, but not significantly so. In term of (lack of) assistance, women
were worst off under the AAT condition; also, the TAs+AAT condi-
tion appeared to be best, but not significantly so. Finally, in terms of
preferences, women significantly preferred a TA over an AAT which
means that AAT is worst and the combination of both (TAs+AAT) is
trivially best since it incorporated both forms of feedback: students
are free to choose for themselves wherefrom they want feedback.

5.2 Four Recommendations

Given the findings generally demonstrating complementary ad-
vantages of automated vs manual feedback, we can distill optimal
scenario equilibria which appropriately balance trade-offs between
costs and benefits, depending on the number of students and the
per-student resources available at the given educational institution.

Both TAs + AAT is optimal whenever there are enough students
for the overhead of introducing an AAT to pay off (from automation)
as well as an abundance of (per student) resources:

Recommendation 1 [↑Resources]: Educators with many

resources should consider providing students with access to

both instantaneous feedback from automated assessment as well
as formative feedback from manual assessment (human TAs).

Synergetically, having access to feedback from both manual as well
as an AAT is superior both from a task effectiveness and a student
perspective; in concert, the two forms of feedback essentially pro-
vide “the best of both worlds.” After all, the AAT plays the part
of a judge, while a TA plays the role of a coach. Access to both
comes with complementary advantages. This is also advantageous
because of diversity since different students have different pref-
erences. A case study of using automated assessment (during the
Covid-19 pandemic) found that if automated assessment is used as
an optional add-on, the majority of students would use it [6].

However, this solution compromizes on cost; not all educational
institution will be able to “afford the luxury” of providing access to
feedback from both TAs as well as an AAT. We now consider three
enumerable options that cut on cost, but, in turn, each compromize
along different dimensions.

Only AAT appears to be optimal whenever there are many
students and fewer institutional resources; then, many students can
be provided with feedback at a low per-student cost; however:

Recommendation 2 [↓Resources & ↑Students]: Educa-
tors with few resources and many students should be wary of

providing students with access to only instantaneous feedback
from automated assessment; although it provides scalability at
low cost, it will affect women negatively in terms of frustration,
assistance, and preference.

This solution is often adopted for Massive Open Online Courses
(MOOCs) where low-cost scalablity is critical [38]. However, it
compromizes on student perspectives (RQ2). While the negative
effects may be tolerable by men (see bottom parts of Figure 5, 6, & 7),
women are significantly negatively affected in terms of frustration,
assistance, and preference by not having access to human feedback
(see top parts of Figure 5, 6, & 7).

Only TA is optimal whenever there are few students and institu-
tional resources; then, there is no overhead of introducing an AAT
and few students can easily be accomodated by a (part-time) TA:

Recommendation 3 [↓Resources & ↓Students]: Educa-
tors with few resources and few students should consider pro-
viding students with access to only formative feedback from a
(part-time) human TA, proving personalized feedback without
any overhead from automation.

Small classes may benefit from individualized assistance [9]. How-
ever, this solution compromizes on task effectiveness (RQ1); in
particular, on student solution correctness, the time students spend
on assignments (duration), and superficial indicators of code quality
(code smells). (In countries with access to cheap student labor, it
may also be possible to use TAs for scalability [15], but this depends
on the cost of TAs which varies a lot between countries [1].)

Scalable Compromize. A pragmatic combination exists: It is
possible to harness automation for scalability, while providing hu-
man feedback from a very limited (sub-linear) pool of TAs assigned
to assist only the students mostly in need of individualized human
feedback and guidance:

Recommendation 4 [→Resources& ↑Students]: Educa-
tors withmoderate resources andmany students should consider

providing students with access to instantaneous feedback from
automated assessment as well as access to formative feedback
from a very limited pool of TAs assisting only the students mostly
in need of human feedback and guidance.

For true low-cost high-student-volume scalability, to several hun-
dreds or even thousands of students (including MOOCs [31]), the
number of TAs, |𝑇 |, may have to be sub-linear ; e.g., |𝑇 | = log(|𝑆 |).
Pragmatically, having a limited constant pool of TAs (|𝑇 | = 𝑘 or 1),
may go a long way to accommodate the students mostly in need of
a human feedback or guidance.

Please note that the choice of which of the four recommended
scenarios to opt for is highly context-dependent; it also depends
on teaching philosophies; in particular, trade-off of whether to
optimize for task effectiveness (RQ1) vs student perspectives (RQ2)
and the willingness of an institution to accommodate for diversity.

Overall, our findings and recommendations contribute with data
and evidence, including estimations of the size of the effects in-
volved. We direct our research to educators and educational in-
stitutions; the actionable evidence-based recommendations ought
to be straightforward for educators and institutions to heed and
operationalize.

6 THREATS TO VALIDITY

First, we consider methodological soundness of making conclusions
based on our study involving a single assignment (conclusion va-

lidity). Second, we scrutinize how the metrics were obtained and
measured (construct validity). Third, we investigate biases towards
the results obtained (internal validity). Fourth and finally, we ponder
the extent to which our findings generalize (external validity).

6.1 Conclusion Validity

Study based on one assignment? Our study involved only one
assignment; namely, FizzBuzz. However, it is a fairly prototypical
exercise involving integer arithmetic, Boolean conditions, nested
if-statements, output, and bounded iteration. It appears to be a very
common programming exercise problem; in fact, a Google search of
"FizzBuzz programming exercise" yields more than 40K search
results (as of March 2023). Futher, suffixing the search query with "
in "makes Google’s auto-completion suggests numerous program-
ming languages (including C, Python, Java, and JavaScript). We
therefore expect that our findings would be relevant for other, sim-
ilarly difficult introductory programming assignments. (For more
complex exercises, we refer to Section 6.4.) Of course, there is an in-
herent risk in extrapolating from a single assignment, but that does
not invalidate conclusions from single-case study research [14].

6.2 Construct Validity

Measuring duration? Time spent on the Kattis assignment is
measured as the difference between the start time (same for all
students) and the end time (when a student began filling out the
online survey). Students were instructed to start the survey as soon
as they finished the task; this was also written on the big screen in
each room and monitored by the TAs. Students were only allowed
to leave the room upon finishing the survey questionnaire.

Measuring gender? Participant gender information was ob-
tained from the enrollment system based on information from the

Danish central person registry (CPR). The gender in the registry is
binary, but people can have their gender information changed to
reflect their self-identification.

6.3 Internal Validity

Correctness biased towards the AAT? The AAT served two
purposes during the experiment: First, it was the feedback treatment
that two out of three of the students were exposed to; second, it
was also the tools used to assess the correctness of solutions. While
this is the natural usage of an automated assessment tool, it does,
by design, favor the conditions involving the AAT.

Students understood role of TAs? Students exposed to the
TA treatment were informed that they were allowed to ask for as
much help as needed. Due to social anxiety, some students find
it difficult to ask others for help. To accommodate this, the TAs
reminded students that they were allowed to ask questions as in
a typically exercise class (outside the experiment). We argue that
the situation is realistic in that it mimicks regular exercise classes.
This is also precisely why some students might prefer to receive
feedback from an automated tool over a TA.

Student interaction?During the experiment, students were not
allowed to interact and were informed of this before the experiment
started. This is because we wanted to record data for each individual
student, independently. Technically, malicious students could, in
principle, have communicated online, but since the stakes were
low and they were informed that this constituted research, we do
not believe this played any role in the experiment. The TAs also
monitored that students followed the rules.

TA comparability? Differences among the TAs may introduce
comparability biases. Note, however, that all TAs passed the TA
hiring criteria for CS1. All were competent, had TA experience
before the experiment, and were selected from a large pool of 27
qualified applicants. Also, we made sure that the two conditions
were feedback could be provided by a TA (i.e., { TAs, TAs+AAT
}) both has a woman and a man assistant TA to mitigate any TA
gender effects.

Different rooms? Due to limited room availability, two of the
conditions took place in (inclined) auditoria, while the third (TAs)
took place in a regular (flat) classroom. We expect this to have
minimal impact on the experiment especially since the students
have previously been working on assignments in both types of
rooms.

6.4 External Validity

Beyond Kattis? Our study used Kattis as the AAT, deliberately
configured to provide only a binary pass/fail level of information,
without revealing anything about which unit test cases may have
failed. Other automated assessment tools provides this information
to the student. We settled on Kattis as the tool is widely adopted in
our organisation and to compare the two extremes: TAs vs minimal
pass/fail feedback. It could be interesting to replicate the study
with an automated assessment tool that provides more feedback
to the student and investigate how this impacts the findings. We
expect frustration levels may drop if a tool provides more, especially
human-like, feedback.

Beyond simple programming tasks? The experiment tested
the student with one specific Kattis problem that most students
managed to solve within the designated one hour time limit. The
‘FizzBuzz’ problem has a difficulty level of 1.7 (for context, ‘Hello
World’ is 1.2, and the most challenging level is 9.6). We expect
our results to generalize to similarly simple tasks intended for
programming novices. We expect that harder tasks would make
access to feedback from TAs even more of a limited shared resource
to the point where it may start becoming a “bottle neck.” Similarly,
we expect frustration related to the AAT increases as the students
spend more time making their solution pass, leading to more failure
responses from the platform. However, this is speculation; it would
be interesting to see how the findings fare in the face larger more
difficult tasks.

Beyond lab setting? The study was conducted as a controlled
experiment in a “lab setting” which may have affected student
behavior. Our experiment essentially optimized internal validity
at the expense of external validity [36]. It would be interesting to
follow students over a longer period, in a more realistic setting.

Beyond Software Development? Since there is nothing in-
herent to Software Development in our experiment, we expect the
results generalize to any education for which programming plays a
major role; including, Computer Science and Software Engineering.

7 CONCLUSION

We conducted a controlled experiment to quantify and compare
the differences between two extremes: rich qualitative feedback
(from a human TA) versus limited quantitative instantaneous feed-
back (from a tool) in the context of programming assignments. Our
results demonstrated that the combination of both manual feed-
back (using TAs) as well as automated feedback (using Kattis)
was superior both in terms of objective task effectiveness (correct-
ness, duration, and code smells) and subjective student preferences
(frustration, assistance, and preferences). Also, automatic feedback
appears to be better in terms of task effectiveness; whereas manual
feedback (using only TAs) appears to be better in terms of student
perspectives. We uncovered significant gender differences related
to subjective student preferences (frustration, assistance, and prefer-

ences) where women are negatively affected by not having access
to feedback and guidance from a human TA.

The cost of providing manual feedback (in terms of TA resources)
is linear in the number of students; whereas the cost of automated
feedback is, in principle, constant (independent of the number of
students). A cost/benefit analysis led to the identification of four
equilibria which attempts to appropriately balance trade-offs be-
tween costs vs benefits of using manual versus automated feedback.
Educational institution with many resources should consider pro-
viding manual as well as automated feedback. Institutions with few
(per-student) resources should be wary of providing the students
with access to feedback from only automated assessment as it sig-
nificantly negatively affects women in terms of subjective student
perspectives (frustration, assistance, and preferences). Institutions
with few students should consider providing only manual feedback
(avoiding the overhead of feedback automation). Finally, institu-
tions with many students and moderate (per-student) resources,

may consider the “scalable compromize” of using automated feed-
back for everyone and then a very limited pool of TAs assisting
only the students mostly in need of human feedback and guidance.
This strategy offers low-cost scalability while retaining the benefits
of both automated and manual feedback.

These observations provide educators with evidence-based justi-
fication for budget requests.

REFERENCES

[1] [n. d.]. University Teaching Assistant Salaries by Country. https://www.
salaryexpert.com/salary/browse/countries/university-teaching-assistant. Ac-
cessed: 2023-03-17.

[2] Aditi Agrawal and Benjamin Reed. 2022. A survey on grading format of automated
grading tools for programming assignments. arXiv preprint arXiv:2212.01714

(2022).
[3] Kirsti M Ala-Mutka. 2005. A survey of automated assessment approaches for

programming assignments. Computer science education 15, 2 (2005), 83–102.
[4] José Luis Fernández Alemán. 2010. Automated assessment in a programming

tools course. IEEE Transactions on Education 54, 4 (2010), 576–581.
[5] Joe Michael Allen, Frank Vahid, Kelly Downey, and Alex Daniel Edgcomb. 2018.

Weekly programs in a CS1 class: Experiences with auto-graded many-small
programs (MSP). In 2018 ASEE Annual Conference & Exposition.

[6] Enrique Barra, Sonsoles López-Pernas, Álvaro Alonso, Juan Fernando Sánchez-
Rada, Aldo Gordillo, and Juan Quemada. 2020. Automated assessment in pro-
gramming courses: A case study during the COVID-19 era. Sustainability 12, 18
(2020), 7451.

[7] Julio C Caiza and José María del Álamo Ramiro. 2013. Programming assignments
automatic grading: review of tools and implementations. (2013).

[8] Ingrid Maria Christensen, Melissa Høegh Marcher, Paweł Grabarczyk, Therese
Graversen, and Claus Brabrand. 2021. Computing Educational Activities Involv-
ing People Rather Than Things AppealMore toWomen (Recruitment Perspective).
In Proceedings of the 17th ACM Conference on International Computing Education

Research (Virtual Event, USA) (ICER 2021). Association for Computing Machinery,
New York, NY, USA, 127–144. https://doi.org/10.1145/3446871.3469758

[9] Paul E. Dickson, Toby Dragon, and Adam Lee. 2017. Using Undergraduate Teach-
ing Assistants in Small Classes. In Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education (Seattle, Washington, USA) (SIGCSE
’17). Association for Computing Machinery, New York, NY, USA, 165–170.

[10] Dante D Dixson and Frank CWorrell. 2016. Formative and summative assessment
in the classroom. Theory into practice 55, 2 (2016), 153–159.

[11] Stephen H Edwards. 2003. Using test-driven development in the classroom: Pro-
viding students with automatic, concrete feedback on performance. In Proceedings
of the international conference on education and information systems: technologies

and applications EISTA, Vol. 3. Citeseer.
[12] Emma Enström, Gunnar Kreitz, Fredrik Niemelä, Pehr Söderman, and Viggo

Kann. 2011. Five years with kattis—using an automated assessment system in
teaching. In 2011 Frontiers in education conference (FIE). IEEE, T3J–1.

[13] Peter Farrell, Alison Alborz, Andy Howes, and Diana Pearson. 2010. The impact
of teaching assistants on improving pupils’ academic achievement in mainstream
schools: A review of the literature. Educational review 62, 4 (2010), 435–448.

[14] Bent Flyvbjerg. 2006. Five misunderstandings about case-study research. Quali-
tative inquiry 12, 2 (2006), 219–245.

[15] Jeffrey Forbes, David J. Malan, Heather Pon-Barry, Stuart Reges, and Mehran
Sahami. 2017. Scaling Introductory Courses Using Undergraduate Teaching
Assistants. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Com-

puter Science Education (Seattle, Washington, USA) (SIGCSE ’17). Association for
Computing Machinery, New York, NY, USA, 657–658.

[16] Adam M Gaweda and Collin F Lynch. 2021. Student Practice Sessions Modeled
as ICAP Activity Silos. International Educational Data Mining Society (2021).

[17] Imran Ghory. 2007. Using FizzBuzz to Find Developers who Grok Cod-
ing. https://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-
who-grok-coding/. Accessed: 2023-01-13.

[18] Aldo Gordillo. 2019. Effect of an instructor-centered tool for automatic assess-
ment of programming assignments on students’ perceptions and performance.
Sustainability 11, 20 (2019), 5568.

[19] Pawel Grabarczyk, Alma Freiesleben, Amanda Bastrup, and Claus Brabrand.
2022. Computing Educational Programmes with More Women Are More about
People & Less about Things. In Proceedings of the 27th ACM Conference on on

Innovation and Technology in Computer Science Education Vol. 1 (Dublin, Ireland)
(ITiCSE ’22). Association for Computing Machinery, New York, NY, USA, 172–178.
https://doi.org/10.1145/3502718.3524784

[20] Pawel Grabarczyk, Sebastian Mateos Nicolajsen, and Claus Brabrand. 2022. On
the Effect of Onboarding Computing Students without Programming-Confidence
or -Experience. In Proceedings of the 22nd Koli Calling International Conference

on Computing Education Research (Koli, Finland) (Koli Calling ’22). Association
for Computing Machinery, New York, NY, USA, Article 18, 8 pages. https:
//doi.org/10.1145/3564721.3564724

[21] Qiang Hao, David H Smith IV, Lu Ding, Amy Ko, Camille Ottaway, Jack Wilson,
Kai H Arakawa, Alistair Turcan, Timothy Poehlman, and Tyler Greer. 2022.
Towards understanding the effective design of automated formative feedback for
programming assignments. Computer Science Education 32, 1 (2022), 105–127.

[22] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review
of recent systems for automatic assessment of programming assignments. In
Proceedings of the 10th Koli calling international conference on computing education

research. 86–93.
[23] David Insa and Josep Silva. 2018. Automatic assessment of Java code. Computer

Languages, Systems & Structures 53 (2018), 59–72. https://doi.org/10.1016/j.cl.
2018.01.004

[24] Code judge. 2023. Code judge. https://codejudge.io. Accessed: 2023-01-13.
[25] Melissa Høegh Marcher, Ingrid Maria Christensen, Paweł Grabarczyk, Therese

Graversen, and Claus Brabrand. 2021. Computing Educational Activities Involv-
ing People Rather Than Things Appeal More toWomen (CS1 Appeal Perspective).
In Proceedings of the 17th ACM Conference on International Computing Education

Research (Virtual Event, USA) (ICER 2021). Association for Computing Machinery,
New York, NY, USA, 145–156. https://doi.org/10.1145/3446871.3469761

[26] Dragan Mirković and S Lennart Johnsson. 2003. CODELAB: A Developers’ Tool
for Efficient Code Generation and Optimization. In International Conference on

Computational Science. Springer, 729–738.
[27] DibaMirza, Phillip T Conrad, Christian Lloyd, ZiadMatni, and Arthur Gatin. 2019.

Undergraduate teaching assistants in computer science: a systematic literature
review. In Proceedings of the 2019 ACM Conference on International Computing

Education Research. 31–40.
[28] Stephen Nutbrown and Colin Higgins. 2016. Static analysis of programming

exercises: Fairness, usefulness and a method for application. Computer Science

Education 26, 2-3 (2016), 104–128.
[29] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated Assess-

ment in Computer Science Education: A State-of-the-Art Review. ACM Trans.

Comput. Educ. 22, 3, Article 34 (jun 2022), 40 pages. https://doi.org/10.1145/
3513140

[30] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated assess-
ment in computer science education: A state-of-the-art review. ACM Transactions

on Computing Education (TOCE) 22, 3 (2022), 1–40.
[31] Laura Pappano. 2012. The Year of the MOOC. The New York Times 2, 12 (2012),

2012.
[32] Raymond Scott Pettit, John D Homer, Kayla Michelle McMurry, Nevan Simone,

and Susan A Mengel. 2015. Are automated assessment tools helpful in program-
ming courses?. In 2015 ASEE Annual Conference & Exposition. 26–230.

[33] Vreda Pieterse and Janet Liebenberg. 2017. Automatic vs Manual Assess-
ment of Programming Tasks. In Proceedings of the 17th Koli Calling Interna-

tional Conference on Computing Education Research (Koli, Finland) (Koli Call-
ing ’17). Association for Computing Machinery, New York, NY, USA, 193–194.
https://doi.org/10.1145/3141880.3141912

[34] Emma Riese and Viggo Kann. 2020. Teaching assistants’ experiences of tutoring
and assessing in computer science education. In 2020 IEEE Frontiers in Education

Conference (FIE). IEEE, 1–9.
[35] Jonathan Sharples, P Blatchford, and RWebster. 2016. Making best use of teaching

assistants. (2016).
[36] Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on internal and

external validity in empirical software engineering. In 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, Vol. 1. IEEE, 9–19.
[37] SonarQube. 2023. SonarQube Documentation. https://docs.sonarqube.org/latest/.

Accessed: 2023-01-13.
[38] Thomas Staubitz, Hauke Klement, Jan Renz, Ralf Teusner, and Christoph Meinel.

2015. Towards practical programming exercises and automated assessment in
Massive Open Online Courses. In 2015 IEEE International Conference on Teaching,

Assessment, and Learning for Engineering (TALE). IEEE, 23–30.
[39] Zahid Ullah, Adidah Lajis, Mona Jamjoom, Abdulrahman Altalhi, Abdullah Al-

Ghamdi, and Farrukh Saleem. 2018. The effect of automatic assessment on
novice programming: Strengths and limitations of existing systems. Computer

Applications in Engineering Education 26, 6 (2018), 2328–2341.
[40] Kurt VanLehn. 2011. The relative effectiveness of human tutoring, intelligent

tutoring systems, and other tutoring systems. Educational psychologist 46, 4
(2011), 197–221.

[41] Chris Wilcox. 2015. The role of automation in undergraduate computer science
education. In Proceedings of the 46th ACM Technical Symposium on Computer

Science Education. 90–95.

https://www.salaryexpert.com/salary/browse/countries/university-teaching-assistant
https://www.salaryexpert.com/salary/browse/countries/university-teaching-assistant
https://doi.org/10.1145/3446871.3469758
https://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
https://imranontech.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/
https://doi.org/10.1145/3502718.3524784
https://doi.org/10.1145/3564721.3564724
https://doi.org/10.1145/3564721.3564724
https://doi.org/10.1016/j.cl.2018.01.004
https://doi.org/10.1016/j.cl.2018.01.004
https://doi.org/10.1145/3446871.3469761
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3141880.3141912

	Abstract
	1 Introduction
	2 Background & Related work
	3 Methodology
	3.1 Objectives
	3.2 Participants
	3.3 Task
	3.4 Treatments
	3.5 Conditions
	3.6 Design
	3.7 Pilot Study
	3.8 Metrics
	3.9 Survey
	3.10 Ethics
	3.11 Analysis

	4 Results
	4.1 Objective Task Effectiveness (RQ1)
	4.2 Subjective Student Perspectives (RQ2)

	5 Discussion
	5.1 Cost/Benefit
	5.2 Four Recommendations

	6 Threats to Validity
	6.1 Conclusion Validity
	6.2 Construct Validity
	6.3 Internal Validity
	6.4 External Validity

	7 Conclusion
	References

