
Three +1 Perspectives on Computational Thinking
Sebastian Mateos Nicolajsen, Magda Pischetola, Paweł Grabarczyk, & Claus Brabrand

Center for Computing Education Research (CCER), IT University of Copenhagen
Denmark

ACM Reference Format:
Sebastian Mateos Nicolajsen, Magda Pischetola, Paweł Grabarczyk, & Claus
Brabrand. 2021. Three +1 Perspectives on Computational Thinking. In 21st
Koli Calling International Conference on Computing Education Research (Koli
Calling ’21), November 18–21, 2021, Joensuu, Finland. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3488042.3490024

ABSTRACT
Computational Thinking (CT) is a highly contentious subject with
many diverging meanings and de�nitions. This study presents a pre-
liminary literature review of 71 peer-reviewed articles on CT. The
papers indicate the existence of �ve main aspects that have histori-
cally been used in association with its de�nition: A��������, A��
���������, M��������, S���������, and I�������������. Based
on this preliminary literature study, semi-structured interviews
with eight CT scholars are conducted, in order to evaluate these
aspects and to identify qualitatively di�erent perspectives on CT,
which integrate the mentioned aspects in di�erent ways. From the
interviews, three di�erent perspectives emerged, focusing on: R���
������, S�������������, and A���������. Furthermore, the
goal of having computationally educated citizens is extrapolated
from the interviews, indicating an additional perspective (+1) titled
E����������, which appears as embedded within all the previ-
ous three perspectives. This paper proposes to put these three (+1)
perspectives in dialogue, in an e�ort to support researchers and
practitioners working with CT across di�erent �elds.

1 INTRODUCTION
In recent years, Computational Thinking (CT) has drawn increas-
ing attention, not only in Computer Science education but also
across other disciplines and academic �elds [80]. It has been used
all around the globe to advocate computational knowledge for ev-
eryone and de�ned as a crucial competence to be developed across
all educational levels [6, 85]. However, the de�nition of CT is still
heavily debated and controversial.

First, it is still not yet clear how to separate CT from program-
ming [10, 94] and whether a stronger focus should be given to a
’computational’ part or to a ’thinking’ part. On one hand, discipline-
based approaches [61] emphasise the need to spread domain-speci�c
knowledge from Computer Science that is considered useful for
other �elds [20]. On the other hand, psychology-based approaches

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Koli Calling ’21, November 18–21, 2021, Joensuu, Finland
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8488-9/21/11. . . $15.00
https://doi.org/10.1145/3488042.3490024

[61] emphasise the cognitive aspects related to CT, such as problem-
solving [38, 41] and cognitive information processing [58, 95]. The
focus on cognitive theory is predominant in literature, probably
due to the fact that the �rst wave of research on CT started in the
1980s when computers were less proli�c [50].

Second, CT has been strongly related to teaching and learning.
[61] gather these approaches in a category that they de�ne as
’education-oriented.’ These perspectives especially emphasise the
abilities and skills acquired in relation to CT. In this view, CT-
related constructs and tools are implemented to promote so-called
CT skills [4, 37, 66, 71], considered among the necessary “twenty-
�rst century skills” [60, 90]. A great amount of literature has been
published with focus on practitioners’ experiences about teaching
CT [1, 22, 48], on how to conceive CT as part of a school subject
[12, 13, 65, 83], on the e�ectiveness of some speci�c activities on the
development of CT skills among students [16, 85, 90], and on the
kinds of devices that should be used to learn CT [3, 19, 36]. Some
studies o�er a proposal about how to operationalise CT facets in
educational activities that foster the development of di�erent skills
[71]. However, even among education-oriented approaches, there
are great theoretical di�erences, which are often not explicit.

In some cases, CT has been considered as a synonym of ’CT
education’ tout court [5, 56]. In others, CT can be presented as inter-
twined with information and media literacy [23, 44] or associated
with critical thinking [57]. Moreover, as there is still no consensus
about which CT skills should be taught at school, there are several
challenges regarding both positioning CT in the formal curricu-
lum [76, 83] and assessing CT skills [8, 78], with consequences on
teachers’ preparation and self-e�cacy [79].

From this brief introduction, it is evident that di�erent theoretical
perspectives on CT are directing actions towards di�erent, but
equally important, practices in learning and teaching. On these
grounds, [50] suggest considering these perspectives in dialogue,
rather than in opposition. The authors de�ne three theoretical
framings of CT - cognitive, situated, and critical - and propose
that Computer Science researchers make room for multiple and
interdisciplinary perspectives.

Drawing on these insights, this paper starts from the premise
that some de�nitions of CT found in literature are not mutually
exclusive, but rather co-constitutive and overlapping. However,
despite the great body of literature that has been published on
the topic in the last two decades, few studies have undertaken an
analysis of common aspects that drive each theoretical perspective
and related de�nition.

This study has the objective to address this gap in literature, by
analysing common aspects and theoretical perspectives used in
literature to de�ne CT.

2 METHODOLOGY
This study is guided by the following research questions:

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Sebastian Mateos Nicolajsen, Magda Pischetola, Paweł Grabarczyk, & Claus Brabrand

• RQ1: What common aspects are used in literature to de�ne CT?
• RQ2: How do these aspects contribute to di�erent perspectives

on CT?
The research used an exploratory qualitative approach [33], in two
steps. First, a preliminary literature review was conducted, investi-
gating 71 articles on CT, and providing a historical and contempo-
rary understanding on the concept and its main aspects. Education-
oriented articles were excluded from the selection, as the focus
of the study was not providing information for practitioners, but
rather explore the theoretical groundings of CT. No limitations
regarding the publication date were taken into account.

To triangulate the results, and further explore the topic, the pre-
liminary study was used as the o�set for the second iteration, in
which qualitative semi-structured interviews were undertaken with
scholars involved in CT studies. The interviewees were tasked to
both validate and criticise the aspects identi�ed during the prelim-
inary literature review. Interviews were transcribed, coded, and
triangulated with the results from the �rst iteration. This brought
the amount of aspects down from 8 to 5. The qualitative codes as-
signed to the interviews were combined into di�erent perspectives,
which are composed by aspects that are considered of relevance by
the interviewed scholars [77].

Figure 1 provides a visual summary of the iterations and overall
research design:

Figure 1: Two iterations (proceeding upwards) 71 (S)ource
papers, eight initial (A)spects, eight (I)nterviews, which val-
idated �ve of the initial (A)spects and formed three (+1)
(P)erspectives.

2.1 Iteration 1: Preliminary literature Review
The goal of the preliminary literature review was to gather aspects
that are related to a de�nition of CT. The gathering of articles
were done in three steps. Firstly, database searches were conducted
with the following keywords: “CT AND (definition OR concept

OR theory)”. Then, the references of identi�ed literature reviews
were investigated (e.g. [15, 87]). Lastly, the set of collected studies
was compared to public lists of CT research papers.1 The body of
studies was �ltered to not include education-oriented, as well as
practice- and implementation-related studies, since these mostly
function as studies testing certain theories. We do recognise that
such a selection criteria may exclude some theoretical contributions.
1https://csedresearch.wordpress.com/computational-thinking/

However, in most cases, these studies address speci�c sets of skills
and educational contexts, without providing a clear de�nition of
CT. Additionally, as the intention was to focus on the integration
of di�erent aspects that de�ne CT, articles which only examined
the depth of one single aspect of CT (e.g. Activities of Abstraction),
were not investigated.

After an initial review of the collected data, lines were coded
if they centralised any speci�c component or idea in their descrip-
tion of CT. Afterwards, lines were compared across articles. If two
lines utilised the same term, or described the same idea, they were
merged. The ideas which were central to more than single articles,
became the initial eight aspects. The analysis refers to the method
in the Grounded Theory [42], where coding starts from open cat-
egories and leads to a systematic relation or integration between
the emerging categories.

2.2 Iteration 2: Semi-Structured Interviews
To evaluate the aspects that emerged from the preliminary literature
review, a semi-structured interviewwas constructed. The aim of this
second iteration was to explore which aspects would be mentioned
by the scholars as relevant for a conceptual de�nition of CT, or
perspective, as we called it. Speci�cally, the interview aimed to
identify (1) the interviewee’s de�nition of CT, based on some of
the identi�ed aspects; (2) any objections to other de�nitions; and (3)
what the interviewee believes is the intent of CT. Beyond the semi-
structured interview, the interviewees were also introduced to the
initial eight aspects. They were then tasked to evaluate these; which
do they �nd relevant, which could be discarded, and which were
lacking. Consequently, three of the initial aspectswere discarded. An
example of this, was the P�������� aspect, which closely resembled
the I������������� aspect.

The interviewees were eight prominent scholars within CT. They
were selected based on their publications concerning CT, as well
as involvement in related (CT) research centres. Four of these re-
searchers were, at the time of the interview (2020), employed at
Danish universities:

CT Researcher A�liation
Andrea DiSessa University of California, Berkeley
Dor Abrahamson University of California, Berkeley
Jeannette Wing Avanessians Director of the Data Science In-

stitute, Columbia University
Matti Tedre University of Eastern Finland
Michael E. Caspersen Director, It-vest (3 collaborating universities)
Morten Misfeldt Head of Center for Digital Education, Univer-

sity of Copenhagen
Nina Bonderup Dohn Head of Center for Learning Computational

Thinking, University of Southern Denmark
Tom Nyvang Co-Head of Center for Computational Think-

ing, Aalborg University

Table 1: Overview of interviewed researchers.

The interview (both the semi-structured interview and the follow
up exercise) was subsequently transcribed following [86] and coded
in two rounds. Firstly, the transcripts were coded using data-driven

Three +1 Perspectives on Computational Thinking Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

qualitative coding and organised in six categories to steer the analy-
sis further towards the area under investigation:

D����������: “CT is...”
A�����������: “CT can be used for...”
I�����������: “CT will impact...”

C�������������: “CT is too...”
M����������: “CT is important because...”

P������������: “CT teachers must be able to...”
Secondly, the resulting descriptions were coded once more, in the
same approach as the articles from the �rst iteration. The result of
this, is the quotes presented in the paper.

Interviewswere conducted online; in Danish, for the four Danish-
speaking researchers; and in English, for the remaining four, who
were all native or �uent in English. For the purposes of this paper,
selected quotes have been translated from Danish. All scholars have
afterwards received transcripts, translations, and speci�c quotes
for the opportunity to correct them.

3 ASPECTS OF COMPUTATIONAL THINKING
Data analysis from the preliminary literature review underlines
the presence of �ve main aspects related to di�erent de�nitions
of CT: A��������, A����������,M��������, S���������, and
I�������������. A visualisation of these aspects and how they
have appeared to relate to the physical computer, is given in Figure
2. It is here important to notice that this visualisation is a rough
approximation of the trends found during Iteration 1. In what fol-
lows, we will provide a brief historical overview of the appearance
in literature of each aspect.

Figure 2: Aspects and their general appearing dependency
towards the physical computer.

3.1 The A�������� Aspect
This aspect emerged in the 1960s with researchers such as Snow
and Perlis, who argued for the need to introduce new language
forms and communication descriptions, in education, to improve
algorithmic knowledge [15, 43, 53]. During the 1970s, de�nitions
began to describe what algorithms, and the associated thinking, was
[54]. This introduced the need of being able to transform something
into an appropriate (algorithmic) representation, as described by
Dijkstra [29]. Simultaneously, other researchers began to describe
the bene�ts of ’algorithmic thinking’. Knuth put many of the other
aspects investigated, inside of algorithmic thinking, introducing
algorithmic thinking as a superset of the others [54]. During the
1990s and early 2000s the idea of studying algorithms, remained
central. In 2011, Aho described the ability to formulate problems in
an algorithmic manner as CT [2].

3.2 The A���������� Aspect
Abstraction is often referred to as a central concept of Computer
Science [91]. The term is very common in computer science litera-
ture around 1965 and 1990. In the 1960s, researchers were arguing

for abstractions as fundamental to the bene�ts of Computer Science
[39]. Soon hereafter, and for the next 15 years, researchers began
describing abstractions as common concepts to be navigating, deal-
ing with, and developing—when working within Computer Science
[29]. Researchers continued to stress the opportunities, and impor-
tance, of abstractions [55]. Additionally, researchers—through out
the years—suggested a close relation between this aspect, the model,
and automation [93]. And while researchers of today continue to
underline this aspect of CT, they also stress a need to understand
the implications, and consequences, of abstraction.

3.3 The M�������� Aspect
A model is “a simpli�ed description, especially a mathematical one,
of a system or process, to assist calculations and predictions [70].
The development of a model is known as modelling. In this aspect
we are including both terms, model and modelling, as they often ap-
pear in literature as synonyms. Since the 1950s, researchers such as
Fein and Perlis began arguing for the importance of models that are
used to design and develop computer systems [35, 53]. Knuth (1985)
described the important ability of “representing reality,” which to-
day is understood as part of modelling [55]. Papert (1980) continued
discussing the properties of the physical computer, focusing on its
ability to give us a grounded reference [72]. When Wing (2006)
provided her de�nition of CT, she described a computer/model,
which can be both an electronic computer and a human being [92].
This view on models goes against arguments of prior researchers,
such as Knuth describing the physical computer as central in ex-
ploring the richness of the discipline [54]. Later, researchers also
presented an interesting hierarchy between the model, and the
algorithm—arguing for representations (models) being the essence,
and algorithms being secondary [26]. Aho summarised this aspect
by mentioning how models are central to CT and computing in
general [2].

3.4 The S��������� Aspect
When simulation emerged as a scienti�cally-valid tool, de�nitions
did not explicit a major interest in the concept of CT as part of more
sciences [24]. However, the literature shows the widespread use of
computational simulations in other disciplinary �elds after 1960.
Even mathematicians found tools to aid them in theorem proving
[32]. This was when interest in subdividing teaching of di�erent
Computer Science aspects within other disciplinary areas, was
acknowledged, albeit for various other reasons; e.g. economy [47].
In the 1960s, Nygaard & Dahl set out to create a generic “simulation
system,” but ended up inventing the object-oriented programming
paradigm wherein classes and objects represent (simulate) concepts
and phenomena from reality, “[Simula 67] is [..] intended mainly
as a general purpose programming language, but with simulation
capabilities” [21]. Document analysis shows that a new growth in
interest occurred after 1980, which is when computational science
became viable. After the 1990s, the interest appears to decline. This
may relate to the fact that sciences had developed independent
computational branches - and the separate notion of computational
science, was no longer needed. This evolution was truly recognised
by the year 2000, when computational literacy was introduced,
arguing for CT being able to become a literacy, not only being

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Sebastian Mateos Nicolajsen, Magda Pischetola, Paweł Grabarczyk, & Claus Brabrand

part of other sciences, but intertwined within all of society [25, 30].
Simulations became even more bene�cial, with the new found
pro�leration of machine learning [93].

3.5 The I������������� Aspect
This aspect has its roots in Engineering. “Engineers work to apply
scienti�c principles in order to build structures and machines” [28].
Despite their di�erences in purpose and procedures, Computer
Science and Engineering share the process of designing “intended
applications” [73]. They both use mathematics and technology to
�nd the best solution to a problem, and implement it [96]. It is
worth mentioning that the concept of ’software engineering’ is not
introduced until 1968, during a NATO meeting in which experts
described the current period as a ’software crisis’ [64]. In 1967,
researchers discussed to whom the computer belonged, describing
it as belonging to both science and engineering [69]. Hamming
even argued that computing was more related to engineering, than
mathematics, which was opposing the predominant argument at
the time [47]. When Wing discussed CT in 2006, she—and the
frameworks which followed her de�nition [18]—drew parallels to
both mathematics and engineering [92]. However, compared to
Hamming, her focus lies on the interaction with the real world,
rather than ’balancing of con�icting aims’ [47].

4 PERSPECTIVES ON COMPUTATIONAL
THINKING

The analysis of the existing de�nitions of CT helped us identify
key aspects that appear in these de�nitions. While these aspects
remain to be central elements of CT, it becomes clear through both
Iteration 1 and 2 that these do not themselves constitute viewpoints
on CT. Rather, they are a means (to and end) and act building
blocks for such viewpoints. Consequently, we will now switch
our attention from aspects to perspectives. Perspectives can be seen
as reconstructed de�nitions built from certain subsets of aspects.
They are viewpoints which gather and present opinions of di�erent
intents and suggestions of what CT aims to do, and how.

Iteration 2 addressed RQ2 by organising these results through a
qualitative analysis. Semi-structured interviews with scholars sup-
ported such an organisation. The results indicate the existence of (at
least) three di�erent perspectives on CT, with an additional perspec-
tive (+1) that appears to be embedded in the previous ones. These
perspectives are de�ned by a central aim of CT, emerging from the in-
terviews: R��������, S�������������, A���������, and E��
���������. In Figure 3, they are visualised in a spectrum that
represents their General dependency towards the electronic computer,
whose ends are de�ned as Low and High dependency. TheR������
��� and A��������� perspective are, respectively, positioned at
either extreme of the spectrum. S�������������, which is a per-
spective in its own right, is located in the middle, but is also utilised
by andwithin the former two perspectives. This organisational struc-
ture will be motivated and explained in the following along with
the combination, relevance, and integration of aspects within each
perspective. Furthermore, Table 2 provides an overview of which
articles express the di�erent perspectives.

Figure 3: Overview of the three (+1) perspectives along with
their inter-dependencies.

Perspective Articles
R��������: [2, 6, 7, 11, 15, 25, 26, 29, 34, 35, 39, 40, 43, 45, 53–

55, 59, 61, 62, 67, 71, 72, 74, 81, 82, 87, 92, 93]
S�������������: [2, 6, 15, 21, 24–26, 29, 30, 32, 35, 39, 43, 47, 53–

55, 72, 84, 87, 92, 93]
A���������: [2, 11, 15, 17, 18, 21, 24–26, 29, 30, 32, 34, 35, 39,

43, 45, 47, 53–55, 63, 69, 72, 74, 89, 92, 93]

Table 2: Overview of which articles express the di�erent per-
spectives (or their aspects).

4.1 The R�������� Perspective

Figure 4: The Reasoning Perspective and its related aspects.

Information technology and Computer Science is ubiquitous. Once
trained, its e�ects and applications become both comprehensible
and understandable. We learn to utilise such reasoning, to under-
stand and solve preexisting problems in new and di�erent ways.
Some may go as far, as comparing it to the discovery of gravity.
Even today, this idea is a fundamental part of reasoning about our
world and its physical properties - helping us understand when the
apple will hit the ground, and how faraway galaxies are orbiting
each other. Exactly this construction of new formalizations, and
their use in di�erent domains, is central to this perspective, which
concerns itself with, applying concepts of Computer Science as a way
of processing information and solving general problems.

Proponents of this perspective concern themselves with formal-
ising and synthesizing processes and concepts that enable novel
approaches to solving problems, but also understanding problems.
A���������� is at the core of these processes, based on A����
�����—and algorithmic thinking—andM��������, or “models of
computation” [2]. Knuth (1985) noticed that this kind of reasoning
di�ered from mathematics, as it included—besides abstraction—
a reduction to simpler problems and information structures, i.e.

Three +1 Perspectives on Computational Thinking Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

decomposition [55]. Tedre and Denning (2016) refer to this un-
derstanding of CT as a sort of “mental zoom lens” and underline
that such a view was already present in Dijkstra’s work in 1974
[87]. Aho (2011) de�ned such a thought process as one made by
“computational steps” [2]. Once constructs are formalised, we can
work with them by reducing similar problems to these formal de-
scriptions, abstracting away the details which are insigni�cant to
the construct. We can then apply any computer to interpret these
constructs according to our formalisation. This last step is what
Wing (2008) describes as “mechanizing our abstractions and their
relationships,” so that a computer will interpret the abstractions
[93]. In the interviews, these aspects are mentioned with a focus
on how CT re�ects the way that a computer scientist thinks, that
is, utilising speci�c cognitive procedures to solve problems:

People in computing, or whoever works in any way
with programming, I think they are computational thinkers,
by their profession. So, everybody who looks into the
world through a computational lens, in one way or an-
other is somehow a computational thinker.

- Matti Tedre, Int.
CT is thinking like a computer scientist, and thus, what
are the ways, in which computer scientists are trained
to solve problems? And then you go through this list
that you have, which is basically ways a computer sci-
entist attacks problems. [...] We have a lot to o�er to
the world. The ways in which we think can help every-
one. Regardless of whether you are a Computer Science
major, or not, and regardless of what your profession
is.

- Jeannette Wing, Int.
A few interviewees have also underlined how this way of under-
standing CT is related to language; a focus that appears in literature
since the 1960s [40, 53, 72]. The languages applicable for construct-
ing such formalisations are proli�c and range from “wordy” de-
scriptions and graphical representations (such as data structures or
UML diagrams) to domain-speci�c languages to full-blown general-
purpose programming languages. Central to all of them, is their
ability to allow us to formalise a given process, approach, or prob-
lem. According to the following quotes from the interviews, the
computer and its feature of programming languages is central to
this process, as follows:

CT is about how you train the mind, and we should ask
ourselves, what should people be doing to train their
minds better. Should they be studying Latin? Or maybe
they should be studying Logo.

- Dor Abrahamson, Int.
[...] it is related to general cognitive skills, which have
been trained in mathematics courses, but which can
also be trained in many other di�erent problem spaces.

- Morten Misfeldt, Int.
However, exactly this idea strongly enforces a dependency towards
general-purpose programming languages, and thereby, indirectly,
on the computer, as part of training your mind. Other scholars
argue that the computer is rather an intermediary obstacle which
heightens the barrier to entry:

If you want humanists to think about problem-solving
in this way, then it can be a really good idea to introduce
a set of problems which can be solved analoguely, so
that the computer-part doesn’t get in the way.

- Nina Bonderup Dohn, Int.
And exactly this low dependency towards the physical computer is
most common within this perspective. But no matter which stance
one agrees with, they both argue that CT is a way to apply Com-
puter Science’s ways of reasoning in a more general context. Once
applied in this way, it is one speci�c way of looking at, and solving,
problems:

In the same way, we can say that in economics we
use mathematics. Is that then economics or mathemat-
ics? Well, it is the mathematical language. You also use
Danish and English when writing articles. And writing
an article isn’t only writing; it’s also a realisation pro-
cess. You know that yourself, when you have written
something; if you are really thorough with writing and
structuring your thoughts, what you express, then it’s
also a realisation process. So the computational is also
a language.

- Michael E. Caspersen, Int.

4.2 The S������������� Perspective

Figure 5: The Simpli�cation Perspective and its related as-
pects.

Complexity is a barrier to entry for working with many concepts in
di�erent domains. However, CT allows us to create objects which
simplify our understanding of concepts which are otherwise dif-
�cult to comprehend. Objects such as these could be mas, which
simplify an otherwise incomprehensible amount of data, highlight-
ing the parts relevant to us, such as drawing paths feasible for a
hiking trip in an otherwise steep and uncertain environment. This
is done mainly through abstractions and representations, de�ned
by models, which in turn allow us - with the computer - to simu-
late certain paths and how they will a�ect our hike. And exactly
this simpli�cation is central to this perspective, which is concerned
with reducing the complexity of a problem so that it becomes more
approachable.

Simpli�ed descriptions of objects have increasing relevance to
practice, and this is why S������������� is both related to R���
������ and A���������. In this perspective, while formalisation
- and algorithms - are part of realising simpli�cations, it is rather
the process of A���������� and simplifying which is central. In
1967, Forsythe explained that one of the reasons the computer is
a valuable tool is this capacity to "store the abstractness of the
information", be it represented by numbers, letters, punctuation,
or in any other way [39]. We can represent anything in a com-
puter, which in turn allows us to comprehend and re�ect about the
problem or domain that we are addressing:

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Sebastian Mateos Nicolajsen, Magda Pischetola, Paweł Grabarczyk, & Claus Brabrand

Take modelling of dynamic systems, such as waves. It
is very di�cult mathematics, but modelling it computa-
tionally is so absurdly simple that a child in �fth-sixth
grade can understand the model, enter it, and manip-
ulate it; gaining ownership of it. [...] Reality is always
more rich and nuanced than what we represent, both
mathematically and computationally. It’s always a map,
not a landscape. There is uncertainty in our representa-
tion. Then, we can transform as crazy as we want the
representation we have, and at some point, we interpret
the result.

- Michael E. Caspersen, Int.
Two re�ections can be drawn from this centrality of representation.
First, CT appears to be connected with understanding the domain
that we are aiming to describe computationally. This reminds us
of what Perlis highlighted, that is, understanding the computer
structure (model) is what allows individuals to transform existing
structures and create new ones (modelling) [53]. The computer also
has a physical nature which is grounding any abstract work, as
Papert pointed out [72]. The computer model can simulate reality
without a mathematisation, and this is, according to Forsythe the
great potential of computer models [39]. Second, the uncertainty
in our representations has consequences, as the following excerpts
clarify:

[...] a lot of mathematicians and physicists object to
computational representations, because that’s not the
real stu� - the real stu� is calculus, we live in a contin-
uous world. I have gotten this a lot, and I think that’s
one view, but I think computation is a legitimate repre-
sentational system, and understood appropriately it’s
not everything, but most of the understanding I want
to convey to students.

- Andrea DiSessa, Int.
This realisation that it is not simply objective that we
have modelled in a certain way, and that our decision
has resulted in a speci�c algorithmic solution of our
problem. But, the model has chosen something instead
of something else - the algorithm does what we ask,
and humans are only subjects.

- Tom Nyvang, Int.

4.3 The A��������� Perspective

Figure 6: The A��������� Perspective and its related as-
pects.

Technological advancements have through generations improved
the every day life of people across the world with Automation,
that is, by substituting human e�ort with mechanical, electrical, or
computerised elements [70]. Technology has both simpli�ed and
completely removed manual work�ows in all domains. Sometimes

these automations are invisible to the user and sometimes they are
actively used concepts. However, these automations are not nec-
essarily available to all, as they may require training. An example
of this could be utilising technology such as a bike. Once you are
able to utilise this tool, you will greatly reduce travel time from
A to B. Yet, you are still required to control and actively turn the
wheels using your legs. As you become more con�dent and faster
on your bike, the bene�t of the bike increases. The idea of CT being
such a tool for A��������� is the essence of this perspective as
it is concerned with enabling individuals with the capabilities of
computational technology.

In this perspective, we see a High computer dependency which
bases itself on all aspects.A��������� answers the question: how
can we use technology to improve the e�ciency and/or reliability
of something we do or want to do? Alternatively, how can pro-
cesses be automated by using technology? As in the R��������
perspective, here algorithms are central again, not only as processes
that “describe and transform information” [63], but as an object of
study, aiming at pragmatic applications of mathematics to problems
[39]:

CT is not about the fact that we, as people, should think
like computers, but rather how we should think to for-
malize it for computers.

- Tom Nyvang, Int.
Here, the computer is seen as a tool that can provide useful automa-
tions across all disciplines:

A computational approach to science is simply the way
the world is now. Computational biology, computa-
tional approaches in physics, [...]

- Andrea DiSessa, Int.
For me, it’s a set of competencies involved in develop-
ing it-artefacts, which are those we typically mention.
But, there are a lot of these, until the point in which
we code on a computer that might as well, and most of-
ten, happen analoguely - optionally digitally supported.
But here, they are simply cognitive processes which
are being supported, akin to when I am being assisted,
when I write in Word: It simply happens faster. The
cognitive processes, until we code, happen just as well,
and sometimes better when done analoguely.

- Nina Bonderup Dohn, Int.
In general, there are a lot of ways of automating data,
which haven’t got anything to do with programming
as such.

- Matti Tedre, Int.
As these last two excerpts show, a large part of A��������� is not
dependant on the computer. However, while the computer is not
necessary for A���������, it is central in modern A���������.
As with the bike, when reaching a certain level of awareness, we
can utilize information technology as an extension of our mind and
use it to manipulate the world, which is also part of the “beauty” to
some of the interviewees:

[...] to my personal experiences, when �rst program-
ming, there’s a type of experience of awe andmagic; and
delight of constructing things, as Papert says: “Rather

Three +1 Perspectives on Computational Thinking Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

than a computer programming me, I am programming
it; the computer becomes my construction material, my
sandbox.”

- Dor Abrahamson, Int.
[...] which to me means programming, in some form
or another, in order to think and do things. It requires
a certain level of technical competence. It should be
easier than current environments, that’s why I am still
busy working on our Boxer project. But then it should
centrally, kind of, mediate thinking, and intellectual
doing for whatever purposes that you have. And it is
really important for me the “whatever purposes” you
have.

- Andrea DiSessa, Int.
While it is apparent that the computer may be human, the excerpt
above provides us with an example of pragmatic capabilities and its
in�uence on our ability of automating something. Properly using
computation, will allow us to:

[...] harness computations for doing all kinds of jobs
and tasks.

- Matti Tedre, Int.
The question then becomes if we can automate everything. Is com-
pleteA��������� possible? DoesA���������—using, e.g., AI—
remove jobs?

4.4 The E���������� Perspective
Common to the three perspectives explored, is the goal of empower-
ing society; may this be through newways of reasoning, simplifying
complex ideas, or automating tasks. While such ideas are laudable,
the perspective of empowering society stretches further than this. It
critically examines what it means to be dis-powered, commenting
on the consequence of not being able to understand and harness
computations. Already towards the end of the 1950s, Snow argued
that “Those who don’t understand algorithms, can’t understand how
decisions are made” [15]. And this perspective of CT emphasises the
governing role which digitisation is assuming:

[...] I think, when we live in a world, or anybody lives in
a world governed by algorithms and information �ows
that are processed by a computer, we will probably
bene�t from knowing how that data, those information
�ows, are being automated, and how they are being
processed.

- Matti Tedre, Int.
It is also a perspective which emphasises the need for action and
decision; contemplating about our future:

How far can automation take us? Can everything be
automated? Is there always something important left
over that cannot be automated? Will AI displace more
jobs through automation than it generates?

- P. J. Denning (2018) [27].
Consequently, CT becomes a tool to relate critically to the world.
However, while this perspective assumes a critical position, it is
also a perspective of dreams and ideas of the future. What can CT
unlock?

You multiply the quotient by the dividend, and you add
the remainder? That’s all algorithms! But our fourth
grade teacher never uses that word. And there are so
many opportunities for children to learn that what they
are doing, is following an algorithm. With that concept,
one can liberate the thinking, and I could imagine, even
a nine year old’s way of thinking of di�erent algorithms,
to solve the same problem.

- Jeannette Wing, Int.
I would say that [CT] is, ultimately, really some kind of
word for being able to be a productive participant within
the collective practice of doing Computer Science.

- Dor Abrahamson, Int.
The very idea that this may be a new literacy is central to this
perspective: A computational literacy. In this sense, CT is strongly
education-oriented and it can and should be integrated in the cur-
riculum at all levels of education. The challenge is to establish
which skills are related to each level of education.

The reason why it may make sense to take this discus-
sion, is to try to �gure out what we really know about
this complex of goals for teaching. Frommy perspective,
it would be teaching in primary school, high school, but
it could also be the university. It’s about getting people
ready for a digital society. [...] The discussion is after
all how much and how. So, should we be able—if we
point to concrete skills—to program 40 lines of code in
Python that are connected? Then there are some which
should be able to, and others who shouldn’t.

- Morten Misfeldt, Int.

5 DISCUSSION
Based on the presented results, this section proposes a qualitative
discussion focusing on two main takeaways from this research.

First, the study revealed that a spectrum of perspectives has al-
ways been present in history. In the following, we present a short
summary of how the di�erent aspects and perspectives are inter-
twined and have changed historically.

In the 1950s and through the 1970s, we see the prevalence of
a focus on A����������, which is considered at the basis of a
particular way of thinking, sometimes related to cognitive proce-
dures, sometimes to the speci�c scienti�c approach of Computer
Science. Kahn (2017) noticed that this way of thinking has been
named ’algorithmic thinking’ in the late 1950s and early 1960s, and
translated into CT by Wing’s essay in 2006 [51]. In our analysis,
it is evident that A����������—with support of A�������� and
M��������—is at the core of the perspective we named R������
���. It is also worth noticing that scholars generally associate this
perspective with a Low(er) dependency on an electronic computer.

In the 1980s, Papert raised the interest of education around pro-
gramming languages for children [72]. This historical moment,
through the 1990s, can be related to a prevalence in literature of two
aspects: A���������� andM��������. The idea of CT is grounded
here in the possibility of learning about complex systems by ex-
perimenting and simulating reality. The computer has a central
role for CT, as it allows for both designing models and applying

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Sebastian Mateos Nicolajsen, Magda Pischetola, Paweł Grabarczyk, & Claus Brabrand

modelling through I�������������. In our study, the perspec-
tive that emerges from the combination of the referred aspects -
A����������, M��������, and I������������� - is S����������
����. The speci�city of this perspective is that it does not suggest
a barrier to entry, as its goal is “simplifying” the concepts down to
a comprehensible level of the end user. The emergence of a focus
on simplifying problems reminds us of the fact that these perspec-
tives on CT are not mutually exclusive. In fact, as we mentioned
throughout the paper, S������������� can be considered as part
of the other perspectives.

In the 2000s and the 2010s, a new focus on A�������� is given
by the debate around machine learning and the possibility to substi-
tute human decisions with computerised processes, such as speech
recognition, image recognition, and ’intelligent’ robots [51]. It is
evident that the possibility to work with the internet and large
data-sets is in�uencing our way of thinking about CT gradually.
Informed by a focus on A��������, A���������� and I��������
������, CT is increasingly related to A���������. This notion of
A��������� has its roots in the Greek word automatos - "acting
of itself ".2 The name itself was coined by the automobile industry
in the 1940s and used to describe their automatic devices in pro-
duction lines. This perspective underlines the need for training, as
a fundamental barrier to the use of an electronic computer.

These results can be related to previous research which has un-
derlined the existence of a stronger focus on computational aspects
on one side, versus cognitive aspects on the other [50, 61]. TheR���
������ perspective would be closer to the former category, as it
is connected with work procedures from Computer Science, while
S������������� is closer to the latter category with Psychology-
based approaches that give attention to abstraction and problem-
solving as composing ’one way of thinking’ [7]. However, as this
study showed, a general procedure to reduce complexity supports
both concepts formalisation in R�������� and processes of A��
�������� at the other pole of the spectrum. This in-between-ness
of S�������������makes it compelling to ask a few questions: do
we always need to simplify problems in order to solve them? Can all
problems be simpli�ed? As few authors underline in their research,
a critical standpoint to CT is helpful to answer these questions and
to evaluate when and with what purpose the electronic computer is
needed. This critical thinking, in connection to CT, could help clar-
ify what could be the greatest contributions of Computer Science
in other domains.

A second element of discussion emerging from this study is
the overall interest expressed by interviewees for CT as a form of
E����������. The meaning that is given to empowerment has
di�erent nuances in each perspective, as follows.

From the point of view of R��������, there is the need to
develop a procedure that is helpful in formalising constructs and
mechanising computational processes. This entails being exposed
to training about the steps that are used in Computer Science to
solve problems. It can be inferred that the meaning of CT is thinking
logically about computer processes, which is a necessary prepara-
tion for life [68]. In this view, empowerment is the development of
such a speci�c mind-set and the focus is given to computing as a
central �eld that in�uences all other �elds.

2https://www.lexico.com/de�nition/automaton

From the point of view of S�������������, it is important to
understand how to transform reality through representation, and
what the consequences of this process are. Subjectivity comes into
play in the CT process, and E���������� is related to thinking
critically about the outcomes of a subjective representation of reality.
In this sense, CT empowers citizens for complex problem solving
[49], but also towards the understanding of values and cultures
embedded in technology [14].

Finally, from the point of view of A���������, E�������
���� means knowing how to work with electronic computers both
e�ciently and ethically. The emphasis here is not so much on spe-
ci�c computational processes, but rather on human-computer inter-
action and societal re�ections [88], participatory design [9, 52], and
prototyping as a tool to sustain and scale automated processes [46].
In recent years, it has become increasingly clear that creating and
deploying digital technology is not as innocuous as once thought.
Digital artifacts always impact the real world in intended, but also
unintended ways. People need an understanding of this; and society
needs rules for this. People need competences in order to partake
in the democratic process of negotiating the rules for our future
common digital infrastructure and technology.

Despite the di�erent takes on the conceptualisation of CT, this
additional perspective that we named E���������� seems to
be a common purpose embedded in all the other three. In many
ways, literacy could be used as a synonymous of E����������,
which can be problematic in terms of �nding a clear and generalised
de�nition of CT:

But, there is always this risk that when you try to mar-
ket CT to broader audiences, you reach a bit too far and
promising a bit too much. That is the risk; but every
description, I know, runs either on risk of being too
niche, for computing only; or, being unmarketable.

- Matti Tedre, Int.
[31] argue that what distinguishes CT from literacy is the under-
standing of ’thinking’ as merely abstract thinking, from ’thinking-
with’ objects and artefacts. This focus on the materiality of CT can
be a further step in the development of theories that consider the
interaction with speci�c computational ’objects’ to develop speci�c
skills for the twenty-�rst century.

6 CONCLUSION
Through a preliminary literature review, which was used as the
input for interviews with eight prominent scholars, this study has
revealed that theoretical perspectives on CT can be based on very
di�erent purposes and procedures, which inform both scienti�c
research and educational policies implementation. Nevertheless,
most of the retrieved publications on CT do not refer to an explicit
perspective or conceptualisation. Such a lack of theoretical ground-
ing might lead to a confusion of goals and objectives of proposals
based on the achievement of CT, and to a variety of practices that
are mainly informed by practitioners’ subjective understandings.

On the other hand, when a theoretical perspective is mentioned
in the examined literature on CT, it is often based on an argument
to prove that some emphasis should be given either to the ’compu-
tational’ element or to the ’thinking’ element. The attempt of this
study was to focus on these perspectives as complementary ways

Three +1 Perspectives on Computational Thinking Koli Calling ’21, November 18–21, 2021, Joensuu, Finland

to understand the concept of CT. In fact, a third one has emerged
from the document analysis and the interviews, one that has critical
thinking at its core, in order to evaluate when and for what purpose
it is necessary to automate human processes. Building on these
results, future research might �nd other perspectives that are related
to the ones presented in this paper.

Furthermore, this study has shown that an attention on skills
and competences related to CT is generalised by most of the exam-
ined authors, even when defending di�erent perspectives. In some
cases, E���������� was also expressed as literacy [30]. Further
research is needed in this respect, to clarify the theoretical and
practical di�erences of working with CT and/or/as computational
literacy [75].

In conclusion, we advocate for an open and interdisciplinary
dialogue between researchers championing di�erent perspectives on
CT. We suggest that this dialogue could start from the (overlapping)
aspects that compose the concept of CT and de�ne it in di�erent
ways. In fact, far from being mutually exclusive, these common
aspects balance CT goals and practices in a complementary way.
Placed on a spectrum that shows their dependency towards the
electronic computer, they o�er perspectives that can lead to di�erent
activities, learning styles, teaching methods, and policies.

It is worth further exploring what skills are related to each per-
spective, how they can be developed by youth in the twenty-�rst
century, and what is the speci�c purpose of each proposed activity.
It is our hope that this would provide a starting point for:

[...] a deep conversation, to the point where we could
make some decisions about ways to go.

- Andrea DiSessa, Int.

ACKNOWLEDGMENTS
The authors would like to thank the eight interviewees for their
time, availability, and interest in sharing their perspectives on CT.

REFERENCES
[1] Friday Joseph Agbo, Solomon Sunday Oyelere, Jarkko Suhonen, and Sunday

Adewumi. 2019. A systematic review of computational thinking approach for
programming education in higher education institutions. In Proceedings of the
19th Koli Calling International Conference on Computing Education Research. 1–10.

[2] Alfred V Aho. 2011. Ubiquity symposium: Computation and computational
thinking. Ubiquity 2011, January (2011).

[3] Juan-Francisco Alvarez-Herrero et al. 2020. Pensamiento computacional en
Educación Infantil, más allá de los robots de suelo. (2020).

[4] Charoula Angeli andMichail Giannakos. 2020. Computational thinking education:
Issues and challenges. Computers in Human Behavior 105 (2020), 106185.

[5] Charoula Angeli and Nicos Valanides. 2020. Developing young children’s compu-
tational thinking with educational robotics: An interaction e�ect between gender
and sca�olding strategy. Computers in Human Behavior 105 (2020), 105954.

[6] Ashley Ater-Kranov, Robert Bryant, Genevieve Orr, Scott Wallace, and Mo Zhang.
2010. Developing a community de�nition and teaching modules for computa-
tional thinking: accomplishments and challenges. In Proceedings of the 2010 ACM
conference on Information technology education. 143–148.

[7] Alan F Blackwell, Luke Church, and Thomas RG Green. 2008. The Abstract is an
Enemy: Alternative Perspectives to Computational Thinking.. In PPIG. 5.

[8] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and as-
sessing the development of computational thinking. In Proceedings of the 2012 an-
nual meeting of the American educational research association, Vancouver, Canada,
Vol. 1. 25.

[9] Loren Britton, Goda Klumbyte, and Claude Draude. 2019. Doing thinking: revis-
iting computing with artistic research and technofeminism. Digital Creativity 30,
4 (2019), 313–328.

[10] Francisco Buitrago Flórez, Rubby Casallas, Marcela Hernández, Alejandro Reyes,
Silvia Restrepo, and Giovanna Danies. 2017. Changing a generation’s way of

thinking: Teaching computational thinking through programming. Review of
Educational Research 87, 4 (2017), 834–860.

[11] Alan Bundy. 2007. Computational thinking is pervasive. Journal of Scienti�c and
Practical Computing 1, 2 (2007), 67–69.

[12] Elisa Nadire Caeli and Jeppe Bundsgaard. 2019. Datalogisk tænkning og teknologi-
forståelse i folkeskolen tur-retur. Tidsskriftet Læring og Medier (LOM) 11, 19
(2019), 30–30.

[13] Elisa Nadire Caeli and Martin Dybdal. 2020. Teknologiforståelse i skolens praksis.
Tidsskriftet Læring og Medier (LOM) 12, 22 (2020).

[14] Michael E Caspersen, Judith Gal-Ezer, Andrew McGettrick, and Enrico Nardelli.
2019. Informatics as a fundamental discipline for the 21st century. Commun.
ACM 62, 4 (2019), 58–58.

[15] Michael E Caspersen, Ole Sejer Iversen, Mogens Nielsen, Hermes Arthur Hjorth,
and Line Have Musaeus. 2018. Computational Thinking — hvorfor, hvad og
hvordan?: Efter opdrag fra Villum Fondens bestyrelse. (2018).

[16] Morgane Chevalier, Christian Giang, Alberto Piatti, and Francesco Mondada.
2020. Fostering computational thinking through educational robotics: Amodel for
creative computational problem solving. International Journal of STEM Education
7, 1 (2020), 1–18.

[17] Douglas E Comer, David Gries, Michael C Mulder, Allen Tucker, A Joe Turner,
and Paul R Young. 1989. Computing as a discipline. Commun. ACM 32, 1 (1989),
9–23.

[18] Computer-Science-Teachers-Association. [n. d.]. Computational Thinking opera-
tional de�nition. https://k12cs.org/computational-thinking/

[19] Miguel Á Conde, Francisco J Rodríguez-Sedano, Camino Fernández-Llamas, José
Gonçalves, José Lima, and Francisco J García-Peñalvo. 2021. Fostering STEAM
through challenge-based learning, robotics, and physical devices: A systematic
mapping literature review. Computer Applications in Engineering Education 29, 1
(2021), 46–65.

[20] Valentina Dagienė, Tatjana Jevsikova, Gabrielė Stupurienė, and Anita Juške-
vičienė. 2021. Teaching computational thinking in primary schools: Worldwide
trends and teachers’ attitudes. Computer Science and Information Systems 00
(2021), 33–33.

[21] Ole-Johan Dahl. 2004. The Birth of Object Orientation: the Simula Languages.
In From Object-Orientation to Formal Methods: Essays in Memory of Ole-Johan
Dahl, Olaf Owe, Stein Krogdahl, and Tom Lyche (Eds.). Springer, Berlin, Germany,
15–25. https://doi.org/10.1007/978-3-540-39993-3_3

[22] Imke de Jong and Johan Jeuring. 2020. Computational Thinking Interventions in
Higher Education: A Scoping Literature Review of Interventions Used to Teach
Computational Thinking. In Koli Calling’20: Proceedings of the 20th Koli Calling
International Conference on Computing Education Research. 1–10.

[23] Andreas Dengel and Ute Heuer. 2018. A curriculum of computational thinking as
a central idea of information & media literacy. In Proceedings of the 13th Workshop
in Primary and Secondary Computing Education. 1–6.

[24] Peter J Denning. 2007. Computing is a natural science. Commun. ACM 50, 7
(2007), 13–18.

[25] Peter J. Denning. 2009. The Profession of IT Beyond Computational Thinking.
Commun. ACM 52, 6 (June 2009), 28–30. https://doi.org/10.1145/1516046.1516054

[26] Peter J Denning. 2010. Ubiquity symposium’What is computation?’ Opening
statement. Ubiquity 2010, November (2010).

[27] Peter J Denning. 2018. Where to from here? ACM Inroads 9, 4 (2018), 17–21.
[28] Cambridge Dictionary. [n. d.]. Engineering. https://dictionary.cambridge.org/

dictionary/english/engineering?q=Engineering
[29] Edsger W Dijkstra. 1974. Programming as a discipline of mathematical nature.

The American Mathematical Monthly 81, 6 (1974), 608–612.
[30] Andrea A DiSessa. 2001. Changing minds: Computers, learning, and literacy. Mit

Press.
[31] Nina Bonderup Dohn, Stig Børsen Hansen, and Jens Jørgen Hansen. 2019. De-

signing for situated knowledge transformation. Routledge.
[32] Thomas A Easton. 2006. Beyond the algorithmization of the sciences. Commun.

ACM 49, 5 (2006), 31–33.
[33] W Edmonds and T Kennedy. 2017. Mixed methods. An applied guide to research

designs (2017), 177–180.
[34] AP Ershov. 1981. Programming, the second literacy. Microprocessing and Micro-

programming 8, 1 (1981), 1–9.
[35] Louis Fein. 1959. The Role of the University in Computers, Data Processing,

and Related Fields. In Papers Presented at the the March 3-5, 1959, Western Joint
Computer Conference (San Francisco, California) (IRE-AIEE-ACM ’59 (Western)).
Association for Computing Machinery, New York, NY, USA, 119–126. https:
//doi.org/10.1145/1457838.1457859

[36] Cristian Ferrada, Javier Carrillo-Rosúa, Danilo A Díaz-Levicoy, and Francisco
Silva-Díaz. 2020. La robótica desde las áreas STEM en Educación Primaria: una
revisión sistemática. (2020).

[37] José Figueiredo and Francisco J García-Peñalvo. 2017. Improving computational
thinking using follow and give instructions. In Proceedings of the 5th International
Conference on Technological Ecosystems for Enhancing Multiculturality. 1–7.

Koli Calling ’21, November 18–21, 2021, Joensuu, Finland Sebastian Mateos Nicolajsen, Magda Pischetola, Paweł Grabarczyk, & Claus Brabrand

[38] Andreas Fischer, Samuel Grei�, and Joachim Funke. 2017. The history of complex
problem solving. (2017).

[39] George E Forsythe. 1967. A university’s educational program in computer science.
Commun. ACM 10, 1 (1967), 3–11.

[40] George E Forsythe. 1968. What to do till the computer scientist comes. The
American Mathematical Monthly 75, 5 (1968), 454–462.

[41] Julian Fraillon, John Ainley, Wolfram Schulz, Daniel Duckworth, and Tim Fried-
man. 2019. IEA international computer and information literacy study 2018 assess-
ment framework. Springer Nature.

[42] Barney G Glaser and Anselm L Strauss. 1967. The discovery of grounded theory:
strategies for qualitative research: Aldine Transaction. New Brunswick, NJ (1967).

[43] Saul Gorn. 1963. The computer and information sciences: a new basic discipline.
SIAM Rev. 5, 2 (1963), 150–155.

[44] Sarah Gretter and Aman Yadav. 2016. Computational thinking and media &
information literacy: An integrated approach to teaching twenty-�rst century
skills. TechTrends 60, 5 (2016), 510–516.

[45] Mark Guzdial. 2008. Education Paving the way for computational thinking.
Commun. ACM 51, 8 (2008), 25–27.

[46] Joachim Halse, Eva Brandt, Brendon Clark, and Thomas Binder. 2010. Rehearsing
the future. The Danish Design School Press.

[47] Richard Wesley Hamming. 1969. One man’s view of computer science. Journal
of the ACM (JACM) 16, 1 (1969), 3–12.

[48] Ting-Chia Hsu, Shao-Chen Chang, and Yu-Ting Hung. 2018. How to learn and
how to teach computational thinking: Suggestions based on a review of the
literature. Computers & Education 126 (2018), 296–310.

[49] Ole Sejer Iversen, Rachel Charlotte Smith, and Christian Dindler. 2018. From
computational thinking to computational empowerment: a 21st century PD
agenda. In Proceedings of the 15th Participatory Design Conference: Full Papers-
Volume 1. 1–11.

[50] Yasmin Kafai, Chris Proctor, and Debora Lui. 2020. From theory bias to theory
dialogue: embracing cognitive, situated, and critical framings of computational
thinking in K-12 CS education. ACM Inroads 11, 1 (2020), 44–53.

[51] Ken Kahn. 2017. A half-century perspective on Computational Thinking. Tec-
nologias, sociedade e conhecimento 4, 1 (2017), 23–42.

[52] Zachary Kaiser. 2019. Creativity as Computation: Teaching Design in the Age of
Automation. Design and Culture 11, 2 (2019), 173–192.

[53] Donald L Katz. 1960. Conference report on the use of computers in engineering
classroom instruction. Commun. ACM 3, 10 (1960), 522–527.

[54] Donald E Knuth. 1974. Computer science and its relation to mathematics. The
American Mathematical Monthly 81, 4 (1974), 323–343.

[55] Donald E Knuth. 1985. Algorithmic thinking and mathematical thinking. The
American Mathematical Monthly 92, 3 (1985), 170–181.

[56] Siu-Cheung Kong and Harold Abelson. 2019. Computational thinking education.
Springer Nature.

[57] Bill Kules. 2016. Computational thinking is critical thinking: Connecting to
university discourse, goals, and learning outcomes. Proceedings of the association
for information science and technology 53, 1 (2016), 1–6.

[58] A Labusch, B Eickelmann, andMVennemann. 2019. Computational Thinking Pro-
cesses and Their Congruence with Problem-Solving and Information Processing.
In Computational Thinking Education. Springer, Singapore, 65–78.

[59] P Larsson, Mikko-Ville Apiola, and Mikko-Jussi Laakso. 2019. The uniqueness of
computational thinking. In 2019 42nd International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE,
687–692.

[60] Irene Lee, Shuchi Grover, Fred Martin, Sarita Pillai, and Joyce Malyn-Smith. 2020.
Computational thinking from a disciplinary perspective: Integrating compu-
tational thinking in K-12 science, technology, engineering, and mathematics
education. Journal of Science Education and Technology 29, 1 (2020), 1–8.

[61] Yeping Li, Alan H Schoenfeld, Andrea A diSessa, Arthur C Graesser, Lisa C
Benson, Lyn D English, and Richard A Duschl. 2020. Computational thinking is
more about thinking than computing. , 18 pages.

[62] Richard E Mayer, Jennifer L Dyck, and William Vilberg. 1986. Learning to
program and learning to think: what’s the connection? Commun. ACM 29, 7
(1986), 605–610.

[63] Patrick Mendelsohn, TRG Green, and Paul Brna. 1990. Programming languages
in education: The search for an easy start. In Psychology of programming. Elsevier,
175–200.

[64] Microsoft. 2011. The Software Crisis: A Brief Look at How Rework Shaped
the Evolution of Software Methodolgies. https://docs.microsoft.com/en-
gb/archive/blogs/karchworld_identity/the-software-crisis-a-brief-look-at-
how-rework-shaped-the-evolution-of-software-methodolgies

[65] Thilde Emilie Møller, Vibeke Schrøder, and Mads Middelboe Rehder. 2019. Lær-
erfaglig teknologiforståelse. Studier i læreruddannelse og-profession 4, 1 (2019),
125–143.

[66] Chrystalla Mouza, Yi-Cheng Pan, Hui Yang, and Lori Pollock. 2020. A multiyear
investigation of student computational thinking concepts, practices, and perspec-
tives in an after-school computing program. Journal of Educational Computing
Research 58, 5 (2020), 1029–1056.

[67] Enrico Nardelli. 2019. Do we really need computational thinking? Commun.
ACM 62, 2 (2019), 32–35.

[68] Peter Naur. 1966. Plan for et kursus i datalogi og datamatik. A/S Regnecentralen.
[69] Allen Newell, Alan J Perlis, and Herbert A Simon. 1967. Computer science. Science

157, 3795 (1967), 1373–1374.
[70] Lexico Oxford dictionary. [n. d.]. Automation. https://www.lexico.com/de�nition/

automaton
[71] Tauno Palts and Margus Pedaste. 2020. A model for developing computational

thinking skills. Informatics in Education 19, 1 (2020), 113–128.
[72] Seymour A Papert. 1980. Mindstorms: Children, computers, and powerful ideas.

Basic books.
[73] David Lorge Parnas. 1999. Software engineering programs are not computer

science programs. IEEE software 16, 6 (1999), 19–30.
[74] Arnold Pears. 2019. Developing Computational Thinking,“Fad” or “Fundamental”?

Constructivist Foundations 14, 3 (2019), 410–412.
[75] Magda Pischetola. 2021. Teacher professional development in Higher Education

and the Teknoso�kum project. LearningTech 10, 1 (2021), 46–75.
[76] Jake A Qualls and Linda B Sherrell. 2010. Why computational thinking should

be integrated into the curriculum. Journal of Computing Sciences in Colleges 25, 5
(2010), 66–71.

[77] Sharon M Ravitch and Nicole Mittenfelner Carl. 2019. Qualitative research:
Bridging the conceptual, theoretical, and methodological. Sage Publications.

[78] Emily Relkin, Laura de Ruiter, and Marina Umaschi Bers. 2020. TechCheck: De-
velopment and validation of an unplugged assessment of computational thinking
in early childhood education. Journal of Science Education and Technology 29
(2020), 482–498.

[79] Peter J Rich, Stacie L Mason, and Jared O’Leary. 2021. Measuring the e�ect of
continuous professional development on elementary teachers’ self-e�cacy to
teach coding and computational thinking. Computers & Education 168 (2021),
104196.

[80] Barbara Sabitzer, Heike Demarle-Meusel, and Maria Jarnig. 2018. Computational
thinking through modeling in language lessons. In 2018 IEEE Global Engineering
Education Conference (EDUCON). IEEE, 1913–1919.

[81] Cynthia Selby and John Woollard. 2013. Computational thinking: the developing
de�nition. (2013).

[82] Valerie J Shute, Chen Sun, and Jodi Asbell-Clarke. 2017. Demystifying computa-
tional thinking. Educational Research Review 22 (2017), 142–158.

[83] Hyo-Jeong So, Morris Siu-Yung Jong, and Chen-Chung Liu. 2020. Computational
thinking education in the Asian Paci�c region.

[84] Thomas Hvid Spangsberg and Martin Brynskov. 2017. Towards a dialectic rela-
tionship between the implicit and explicit nature of computational thinking: a
computer semiotics perspective. In Proceedings of the 17th Koli Calling Interna-
tional Conference on Computing Education Research. 197–198.

[85] Xiaodan Tang, Yue Yin, Qiao Lin, Roxana Hadad, and Xiaoming Zhai. 2020.
Assessing computational thinking: A systematic review of empirical studies.
Computers & Education 148 (2020), 103798.

[86] L Tanggaard and Svend Brinkmann. 2015. Interviewet: Samtalen som forskn-
ingsmetode, I Kvalitative Metoder. Hans Reitzels Forlag, København (2015), 29–53.

[87] Matti Tedre and Peter J. Denning. 2016. The Long Quest for Computational
Thinking. In Proceedings of the 16th Koli Calling International Conference on
Computing Education Research (Koli, Finland) (Koli Calling ’16). Association for
Computing Machinery, New York, NY, USA, 120–129. https://doi.org/10.1145/
2999541.2999542

[88] Ari Tuhkala, Marie-Louise Wagner, Ole Sejer Iversen, and Tommi Kärkkäinen.
2019. Technology Comprehension—Combining computing, design, and societal
re�ection as a national subject. International Journal of Child-Computer Interaction
20 (2019), 54–63.

[89] Annette Vee. 2013. Understanding computer programming as a literacy. Literacy
in Composition Studies 1, 2 (2013), 42–64.

[90] Xuefeng Wei, Lin Lin, Nanxi Meng, Wei Tan, Siu-Cheung Kong, et al. 2021.
The e�ectiveness of partial pair programming on elementary school students’
computational thinking skills and self-e�cacy. Computers & Education 160 (2021),
104023.

[91] Computer Science Wiki. [n. d.]. Abstraction. https://computersciencewiki.org/
index.php/Abstraction

[92] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

[93] Jeannette M Wing. 2008. Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 366, 1881 (2008), 3717–3725.

[94] Gary Ka-Wai Wong and Ho-Yin Cheung. 2020. Exploring children’s perceptions
of developing twenty-�rst century skills through computational thinking and
programming. Interactive Learning Environments 28, 4 (2020), 438–450.

[95] Osman Yaşar. 2018. A new perspective on computational thinking. Commun.
ACM 61, 7 (2018), 33–39.

[96] Osman Yasar and Rubin H Landau. 2003. Elements of computational science and
engineering education. SIAM review 45, 4 (2003), 787–805.

