Solutions of the exercises on Propositional and Predicate Logic

April 13, 2007

Exercises on slide 19

Exercise 1

Show $[p \wedge(p \rightarrow q)] \rightarrow q$ is a tautology.

Solution

Let us make a truth table for this proposition:

p	q	$p \rightarrow q$	$p \wedge(p \rightarrow q)$	$[p \wedge(p \rightarrow q)] \rightarrow q$
T	T	T	T	T
T	F	F	F	T
F	T	T	F	T
F	F	T	F	T

All truth values of $[p \wedge(p \rightarrow q)] \rightarrow q$ in the truth table are true no matter what the truth values of its simple components. So this proposition is a tautology by definition.

Exercise 2

Show $(p \rightarrow q) \leftrightarrow(\bar{q} \rightarrow \bar{p})$ is a tautology.

Solution

Let us make a truth table for this proposition:

p	q	\bar{q}	\bar{p}	$p \rightarrow q$	$\bar{q} \rightarrow \bar{p}$	$(p \rightarrow q) \leftrightarrow(\bar{q} \rightarrow \bar{p})$
T	T	F	F	T	T	T
T	F	T	F	F	F	T
F	T	F	T	T	T	T
F	F	T	T	T	T	T

All truth values of $(p \rightarrow q) \leftrightarrow(\bar{q} \rightarrow \bar{p})$ in the truth table are true no matter what the truth values of its simple components. So this proposition is a tautology by definition.

Exercise 3

Show $[\bar{q} \wedge(p \rightarrow q)] \rightarrow \bar{p}$ is a tautology.

Solution

Let us make a truth table for this proposition:

p	q	\bar{q}	\bar{p}	$p \rightarrow q$	$\bar{q} \wedge(p \rightarrow q)$	$[\bar{q} \wedge(p \rightarrow q)] \rightarrow \bar{p}$
T	T	F	F	T	F	T
T	F	T	F	F	F	T
F	T	F	T	T	F	T
F	F	T	T	T	T	T

All truth values of $[\bar{q} \wedge(p \rightarrow q)] \rightarrow \bar{p}$ in the truth table are true no matter what the truth values of its simple components. So this proposition is a tautology by definition.

Exercise 4

Why can no simple proposition be a tautology?

Solution

It is because a simple proposition is a declarative statement which is either true or false by definition, so it is not necessarily always true. For example a simple proposition Sun is shining is not always true.

Exercise on slide 25

What about the correctness of the argument $(p \rightarrow q) \wedge(r \rightarrow \bar{p}) \wedge r \vdash \bar{q}$?

Solution

Let us try to use inference rules:

1. r (premise)
2. $r \rightarrow \bar{p}$ (premise)
3. \bar{p} (from 1 and 2 using Modus Ponens)
4.?

Further application of the inference rules will not prove the correctness of the argument. So let us make a truth table for $((p \rightarrow q) \wedge(r \rightarrow \bar{p}) \wedge r) \rightarrow \bar{q}$

p	q	r	$p \rightarrow q$	\bar{p}	$r \rightarrow \bar{p}$	$(p \rightarrow q) \wedge(r \rightarrow \bar{p}) \wedge r$	\bar{q}	$((p \rightarrow r) \wedge(r \rightarrow \bar{p}) \wedge r) \rightarrow \bar{q}$
T	T	T	T	F	F	F	F	T
T	T	F	T	F	T	F	F	T
T	F	T	F	F	F	F	T	T
T	F	F	F	F	T	F	T	T
F	T	T	T	T	T	T	F	F
F	T	F	T	T	T	F	F	T
F	F	T	T	T	T	T	T	T
F	F	F	T	T	T	F	T	T

As it follows from the truth table, $((p \rightarrow q) \wedge(r \rightarrow \bar{p}) \wedge r) \rightarrow \bar{q}$ is not a tautology, so the argument $(p \rightarrow q) \wedge(r \rightarrow \bar{p}) \wedge r \vdash \bar{q}$ is not valid. In particular a counter example for it is when p, q and r are false, true and true correspondently.

Exercises on slide 34

Exercise 1

Translate the following into symbolic form:
(i) Everybody likes him
(ii) Somebody cried out for help and called the police
(iii) Nobody can ignore her

Solution

(i) $(\forall x) L(x)$, where $L(x)-x$ likes him.
(ii) $(\exists x)[H(x) \wedge P(x)]$, where $H(x)-x$ cried out for help and $P(x)-x$ called the police
(iii) $\sim(\exists x) I(x)$ or $(\forall x)[\sim I(x)]$, where $I(x)-x$ can ignore her

UoD for these examples are all human beings.

Exercise 2

Find an UoD and two unary predicates $P(x)$ and $Q(x)$ such that $(\forall x)[P(x) \rightarrow Q(x)]$ is true.

Solution

UoB - all human beings.
$P(x)-x$ is a student and $Q(x)-x$ is intelligent. Whenever a human being is a student, he or she is intelligent.

Exercise 3

Find an UoD and two unary predicates $P(x)$ and $Q(x)$ such that $(\exists x)[P(x) \wedge Q(x)]$ is false but $(\exists x) P(x) \wedge(\exists x) Q(x)$ is true.

Solutions

a) UoD - all human beings.
$P(x)-x$ has blue eyes and $Q(x)-x$ has black eyes.
There exist people with blue eyes and with black eyes, but one cannot have blue and black eyes at the same time.
b) UoD - all cars.
$P(x)-x$ has 4 wheels and $Q(x)-x$ has 6 wheels.
c) UoD - all integers.
$P(x)-x>5$ and $Q(x)-x<3$.

Exercise 4

Show that $(\forall x) P(x) \vdash(\exists x) P(x)$

Solution

1. $(\forall x) P(x)$ (premise)
2. $P(a)$ for some a from UoD (from 1 using Universal Specification)
3. $(\exists x) P(x)$ (from 2 using Existential Generalisation)

Exercise 5

Given the premises $(\exists x) P(x)$ and $(\forall x)[P(x) \rightarrow Q(x)]$ give a series of steps concluding that $(\exists x) Q(x)$

Solution

1. $(\exists x) P(x)$ (premise)
2. $P(a)$ for some a from UoD (from 1 using Existential Specification)
3. $(\forall x)[P(x) \rightarrow Q(x)]$ (premise)
4. $P(a) \rightarrow Q(a)$ for some a from UoD (from 3 using Universal Specification)
5. $Q(a)$ for some a from UoD (from 2 and 4 using Modus Ponens)
6. $(\exists x) Q(x)$ (from 5 using Existential Generalisation).

Exercise on slide 37

Show $\sim(\forall x)(\exists y) P(x, y) \vdash(\exists x)(\forall y)[\sim P(x, y)]$.

Solution

$1 \sim(\forall x)(\exists y) P(x, y)$	(premise)	
2	$\sim(\exists x) \sim(\exists y) P(x, y)$	(from 1 using $\sim(\forall x) F(x) \equiv(\exists x) \sim F(x))$
3	$\sim(\exists y) P(a, y)$ for some a in UoD	(from 2 using Existential Specification
4	$(\forall y) \sim P(a, y)$ for some a in UoD	(from 3 using $\sim(\exists x) F(x) \equiv(\forall x) \sim F(x))$
5	$(\exists x)(\forall y) \sim P(x, y)$	(from 4 using Existential Generalization)

Exercise 1.1.8 page 13

Given the tree propositions p, q and r, construct truth tables for:
(i) $(p \wedge q) \rightarrow \bar{r}$
(ii) $(p \underline{\vee} r) \wedge \bar{q}$
(iii) $p \wedge(\bar{q} \vee r)$
(iv) $p \rightarrow(\bar{q} \vee \bar{r})$
(v) $(\overline{p \vee q}) \leftrightarrow(r \vee p)$.

Solution

					(i)			(ii)		(iii)		(iv)
p	q	r	\bar{r}	$p \wedge q$	$(p \wedge q) \rightarrow \bar{r}$	$p \vee r$	\bar{q}	$(p \vee r) \wedge \bar{q}$	$\bar{q} \vee r$	$p \wedge(\bar{q} \vee r)$	$\bar{q} \vee \bar{r}$	$p \rightarrow(\bar{q} \vee \bar{r})$
T	T	T	F	T	F	F	F	F	T	T	F	F
T	T	F	T	T	T	T	F	F	F	F	T	T
T	F	T	F	F	T	F	T	F	T	T	T	T
T	F	F	T	F	T	T	T	T	T	T	T	T
F	T	T	F	F	T	T	F	F	T	F	F	T
F	T	F	T	F	T	F	F	F	F	F	T	T
F	F	T	F	F	T	T	T	T	T	F	T	T
F	F	F	T	F	T	F	T	F	T	F	T	T

						(v)
p	q	r	$p \vee q$	$\overline{p \vee q}$	$r \vee p$	$(\overline{p \vee q}) \leftrightarrow(r \vee p)$
T	T	T	T	F	T	F
T	T	F	T	F	T	F
T	F	T	T	F	T	F
T	F	F	T	F	T	F
F	T	T	T	F	T	F
F	T	F	T	F	F	T
F	F	T	F	T	T	T
F	F	F	F	T	F	F

Exercise 1.2 page 15

Determine whether each of the following is a tautology, a contradiction or neither:

1. $p \rightarrow(p \vee q)$
2. $(p \rightarrow q) \wedge(\bar{p} \vee q)$
3. $(p \vee q) \leftrightarrow(q \vee p)$
4. $(p \wedge q) \rightarrow p$
5. $(p \wedge q) \wedge(\overline{p \vee q})$
6. $(p \rightarrow q) \rightarrow(p \wedge q)$
7. $(\bar{p} \wedge q) \wedge(p \vee \bar{q})$
8. $(p \rightarrow \bar{q}) \vee(\bar{r} \rightarrow p)$

Solution

						1	2	3	4
p	q	$p \vee q$	$p \rightarrow q$	$\bar{p} \vee q$	$p \wedge q$	$p \rightarrow(p \vee q)$	$(p \rightarrow q) \wedge(\bar{p} \vee q)$	$(p \vee q) \leftrightarrow(q \vee p)$	$(p \wedge q) \rightarrow p$
T	T	T	T	T	T	T	T	T	T
T	F	T	F	F	F	T	F	T	T
F	T	T	T	T	F	T	T	T	T
F	F	F	T	T	F	T	T	T	T
						tautology	neither	tautology	tautology

				5			7		6
p	q	$p \wedge q$	$\overline{p \vee q}$	$(p \wedge q) \wedge(\overline{p \vee q})$	$\bar{p} \wedge q$	$p \vee \bar{q}$	$(\bar{p} \wedge q) \wedge(p \vee \bar{q})$	$p \rightarrow q$	$(p \rightarrow q) \rightarrow(p \wedge q)$
T	T	T	F	F	F	T	F	T	T
T	F	F	F	F	F	T	F	F	T
F	T	F	F	F	T	F	F	T	F
F	F	F	T	F	F	T	F	T	F
				contradiction			contradiction		neither

					8
p	q	r	$p \rightarrow \bar{q}$	$\bar{r} \rightarrow p$	$(p \rightarrow \bar{q}) \vee(\bar{r} \rightarrow p)$
T	T	T	F	T	T
T	T	F	F	T	T
T	F	T	T	T	T
T	F	F	T	T	T
F	T	T	T	T	T
F	T	F	T	F	T
F	F	T	T	T	T
F	F	F	T	F	T
					tautology

Exercise 1.3 page 19

1. Prove that $(p \rightarrow q) \equiv(\bar{p} \vee q)$
2. Prove that $(p \wedge q)$ and $(\bar{p} \rightarrow \bar{q})$ are logically equivalent propositions.
3. Prove that $(\overline{p \underline{V} q}) \equiv(p \underline{\vee} \bar{q})$

Solution

To prove task 1,2 and 3 we must show that $(p \rightarrow q) \leftrightarrow(\bar{p} \vee q),(p \wedge q) \leftrightarrow(\bar{p} \rightarrow \bar{q})$ and $(\overline{p \bigvee q}) \leftrightarrow(p \underline{q})$ are tautologies.

				1				2
p	q	$p \rightarrow q$	$\bar{p} \vee q$	$(p \rightarrow q) \leftrightarrow(\bar{p} \vee q)$	$p \wedge q$	$p \rightarrow \bar{q}$	$\overline{p \rightarrow \bar{q}}$	$(p \wedge q) \leftrightarrow(\overline{p \rightarrow \bar{q}})$
T	T	T	T	T	T	F	T	T
T	F	F	F	T	F	T	F	T
F	T	T	T	T	F	T	F	T
F	F	T	T	T	F	T	F	T

					3
p	q	$p \underline{\bigvee} q$	$\overline{p \underline{V} q}$	$p \underline{\vee} \bar{q}$	$\bar{p} \underline{\underline{V} q} \leftrightarrow(p \underline{\vee} \bar{q})$
T	T	F	T	T	T
T	F	T	F	F	T
F	T	T	F	F	T
F	F	F	T	T	T

As it follows from the truth tables above, $(p \rightarrow q) \leftrightarrow(\bar{p} \vee q),(p \wedge q) \leftrightarrow(\overline{p \rightarrow \bar{q}})$ and $(\overline{p \vee q}) \leftrightarrow$ ($p \vee \bar{q}$) are tautologies.

Exercise 1.4.3 page 27

Test the validity of the following arguments.
3. James is either a policeman or a footballer. If he is a policeman, then he has big feet. James has not got big feet so he is a footballer.

Solution

Let p, q and r be:
p : James is a policeman
q: James is a footballer
r: James has big feet.
Then the argument will be: $(p \underline{\vee} q) \wedge(p \rightarrow r) \wedge \bar{r} \vdash q$, where $(p \underline{\vee} q),(p \rightarrow r)$ and \bar{r} are premises and q is a conclusion.
An alternative argument will be $(p \underline{\vee} q) \wedge(p \rightarrow r) \vdash(\bar{r} \rightarrow q)$, where $(p \underline{\vee} q)$ and $(p \rightarrow r)$ are premises and $(\bar{r} \rightarrow q)$ is a conclusion. It is because $((a \wedge b) \rightarrow c) \equiv(a \rightarrow(b \rightarrow c))$ for any a, b and c. Let us check the validity of the first argument by building a truth table for $(p \underline{\vee} q) \wedge(p \rightarrow r) \wedge \bar{r} \rightarrow q$

p	q	r	$p \underline{\vee} q$	$p \rightarrow r$	\bar{r}	$(p \underline{\vee} q) \wedge(p \rightarrow r) \wedge \bar{r}$	$(p \underline{\vee} q) \wedge(p \rightarrow r) \wedge \bar{r} \rightarrow q$
T	T	T	F	T	F	F	T
T	T	F	F	F	T	F	T
T	F	T	T	T	F	F	T
T	F	F	T	F	T	F	T
F	T	T	T	T	F	F	T
F	T	F	T	T	T	T	T
F	F	T	F	T	F	F	T
F	F	F	F	T	T	F	T

As it follows from the truth table above, $(p \underline{\vee} q) \wedge(p \rightarrow r) \wedge \bar{r} \rightarrow q$ is a tautology, so the argument $(p \underline{\vee} q) \wedge(p \rightarrow r) \wedge \bar{r} \vdash q$ is valid.

Exercise 1.5.4 page 36

Consider the following predicates:
$P(x, y): x>y$
$Q(x, y): x \leq y$
$R(x): x-7=2$
$S(x): x>9$
If the universe of discourse is the real numbers, give the truth value of each of the following propositions:
(i) $(\exists x) R(x)$
(ii) $(\forall y)[\sim S(y)]$
(iii) $(\forall x)(\exists y) P(x, y)$
(iv) $(\exists y)(\forall x) Q(x, y)$
(v) $(\forall x)(\forall y)[P(x, y) \vee Q(x, y)]$
$(\mathrm{vi})(\exists x) S(x) \wedge \sim(\forall x) R(x)$
(vii) $(\exists y)(\forall x)[S(y) \wedge Q(x, y)]$
$(\mathrm{viii})(\forall x)(\forall y)[\{R(x) \wedge S(y)\} \rightarrow Q(x, y)]$

Solution

(i) T, $\exists x, x=9$, that $R(x)$ is true
(ii) F , counter example $y=10$
(iii) T , for any real number always exists another real number that is less then it.
(iv) F , there is no such real number that is grater or equal to all other real numbers.
(v) T, any two real numbers x and y are either $x>y$ or $x \leq y$.
(vi) T, there exist real numbers that are grater than 9 , and not all real numbers are equal to 9
(vii) F , there is no such real number that is grater or equal to all other real numbers, even if this number is grater than 9 .
(viii) T, this follows from the fact that $(\forall x) R(x)$ is false. Therefore $(\forall x)(\forall y)[R(x) \wedge S(y)]$ is also false, so $(\forall x)(\forall y)[\{R(x) \wedge S(y)\} \rightarrow Q(x, y)]$ is true.

