
Trust and Mobility

Marco Carbone

PhD Dissertation

Department of Computer Science

University of Aarhus

Denmark

Trust and Mobility

A Dissertation

Presented to the Faculty of Science

of the University of Aarhus

in Partial Fulfilment of the Requirements for the

PhD Degree

by

Marco Carbone

April 5, 2005

To my Mum and Dad

To my uncle Pietro

i

ii

Abstract

This PhD dissertation develops formal models for studying large scale systems which

make use of the human notion of trust. Mobility is the main formalism for such a

purpose.

We shall begin by introducing the main source of inspiration of this dissertation,

the SECURE project, funded by EU IST FET with the aim of designing a novel secu-

rity approach that addresses the challenges brought forward by trust. If successful, this

approach will significantly benefit not only future systems but also various emerging

mobile computing applications.

The first technical contribution of the dissertation is the study of trust domains,

a formal model of trust informed by the Global Computing scenario and focusing on

the aspects of trust formation, evolution, and propagation. The model is based on a

novel notion of trust structures which, building on concepts from trust management

and domain theory, feature at the same time a trust and an information partial order.

We then proceed by introducing ctm, a Calculus for Trust Management. ctm is a

powerful calculus where it is possible to model the behaviour of trust-based systems.

In ctm each principal (location) is equipped with a policy, which determines its legal

behaviour, and with a protocol, which allows interactions between principals and the

flow of information from principals to policies. We elect to formalise policies with a

general framework which embeds many existing policy languages including the one

introduced with trust domains, and to express protocols in the process algebra style.

This yields an expressive calculus very suitable for the global computing scenarios, and

provides a formalisation of notions such as trust evolution. For ctm we define barbed

equivalences and study their possible applications, and, furthermore, we provide a

proof method for such equivalences based on bisimulations.

The second part of the dissertation is about the formal study of an extension of

communication introduced together with ctm, called polyadic synchronisation, i.e. a

generalisation of the communication mechanism which allows channel names to be

composite. We show that this operator embeds nicely in the whole theory, we suggest

that it permits divergence-free encodings of distributed calculi, and we show that a

limited form of polyadic synchronisation can be encoded weakly. After showing that

matching cannot be derived in π-like calculi, we compare the expressivity of polyadic

synchronisation, mixed choice and matching. In particular we show that the degree of

synchronisation of a language increases its expressive power by means of a separation

result in the style of Palamidessi’s result for mixed choice. This part ends with an

overview of a possible type system for polyadic synchronisation.

iii

Acknowledgements

Just kidding, no hard feelings

— Frank Darwin Valencia, 2003.

I really would like to hugely thank my supervisor, Mogens Nielsen, who has al-

ways believed in me, and never given up encouraging me, even in the most difficult

moments of my PhD studies.

Another big thank you goes to Vladimiro Sassone, who has co-supervised me since

my “abroad experience” spent in Falmer, at University of Sussex, and still, never stops

giving me very useful suggestions.

I’m indebted to Sergio Maffeis, companion of many adventures, who “walked”

with me since the undergraduate studies but also co-authored some of the work that

can be found in this dissertation: thank you Sergio!

I would like to say thanks to the SECURE project and its people. The fact that

the project started in the same time I started my PhD studies has been a wonderful

opportunity for new and great ideas. I have to say that I was very lucky for that.

Huge thanks to the friends from Cambridge (Ken, Jeane, Andy, Brian, Daniel, David,

Nathan), the friends from Glasgow (Waleed, Sotirios, Colin, Paddy and Helen), the

friends from Trinity College in Dublin (Vinny, Chen, Christian, Jean-Marc and of

course Liz) and the friends from Geneva (Ciran and Giovanna). And of course the

ones from Århus, i.e. Mogens and Karl Krukow.

I can never forget the fellow PhD students at BRICS, from the old ones (Claus,

Daniele, Frank, Giuseppe, Jiri, Mikkel, Paulo and Emanuela, and Pawel) to the ones

I started with (Jesus, Kirill and Sunil), the new ones (Chris, Darok, Gabriel, Gosia,

Johann, Saurabh) and all other BRICS and visiting PhD Students. Thank you all, it’s

been great!

Thanks, for the wonderful moments spent together, to Gianga, Martin and all tha

italian speakin’ cru in Århus! Aight!

Thanks to all the BRICS/DAIMI employees, in particular Janne, Karen, Lene and

Uffe, but also Ingrid, Hanne and the new Ellen.

Well, we are almost at the end. Of course I’m going to say “GRAZIE” to my

family who has suffered with me the whole pain of 9 years at university, morally but

also economically. Grazie Mamma, Papà e Carmelo. And of course I will never stop

thanking my uncle, Pietro. It was him who pushed me into computer stuff, and that’s

why I started studying Computer Science.

Marco Carbone,

London, April 5, 2005.

v

List of Publications

1. M. Carbone and S. Maffeis. On the expressive power of polyadic synchronisa-

tion in π-calculus. In EXPRESS ’02, volume 68.2 of ENTCS. Elsevier Science

Publishers, 2002.

2. W. Wagealla, M. Carbone, C. English, S. Terzis, H. Lowe and P. Nixon. A

Formal Model for Trust Lifecycle Management. In Proc. of the 1st International

Workshop on Formal Aspect of Security and Trust (FAST), Pisa, Italy, 2003.

3. M. Carbone, M. Nielsen, and V. Sassone. A formal model for trust in dynamic

networks. In International Conference on Software Engineering and Formal

Methods (SEFM’03). IEEE, 2003.

4. M. Carbone and S. Maffeis. On the expressive power of polyadic synchroni-

sation in π-calculus. Nordic Journal of Computing (NJC), 10(2), September

2003.

5. V. Cahill, E. Gray, J.-M. Seigneur, C. Jensen, Y. Chen, B. Shand, N. Dimmock,

A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis, P. Nixon, G. Serugendo,

C. Bryce, M. Carbone, K. Krukow, and M. Nielsen. Using Trust for Secure Col-

laboration in Uncertain Environments. IEEE Pervasive Computing Magazine,

2(3):52–61, 2003.

6. M. Carbone, M. Nielsen, and V. Sassone. Trust in Global Computing. In ALP

Newsletter, Vol 17, n. 4, November 2004.

7. M. Carbone, M. Nielsen, and V. Sassone. A calculus for trust management.

In Proc. of the FST-TCS ’04, volume 3328 of LNCS, pages 161–173. Springer-

Verlag, 2004.

vii

Contents

Abstract iii

Acknowledgements v

Publications List vii

1 Introduction 1

1.1 Overview . 1

1.1.1 Concurrency . 2

1.1.2 A new approach: Trust . 6

1.2 Structure of the dissertation . 10

2 Preliminary notions 13

2.1 Partial Orders . 13

2.2 The π-calculus . 15

2.2.1 Syntax . 15

2.2.2 Binding, Substitution, α-conversion and Structural Congruence 16

2.2.3 Reduction Semantics and Barbed Congruence 17

2.2.4 Labelled Transition System 18

2.2.5 Bisimulations . 20

2.2.6 Types for π-calculus . 21

2.3 Encodings . 22

2.4 The πO p family . 24

I Trust for Global Computing 27

3 The SECURE project 29

3.1 Understanding trust . 30

3.2 Handling trusted interactions . 30

3.2.1 Risk analysis . 30

3.2.2 Building trust . 32

3.3 Software framework . 33

3.4 Applications . 34

3.4.1 Electronic purse . 35

3.4.2 Collaborative gaming . 38

ix

4 Trust Domains 41

4.1 A Model for Trust . 43

4.1.1 Modelling the Trust Box . 43

4.2 Trust Structures . 46

4.2.1 Interval Construction . 46

4.2.2 Lifting Operators . 49

4.2.3 Product and Function Constructors 50

4.3 A Language for Policies . 52

4.3.1 Syntax . 52

4.3.2 Denotational Semantics . 52

5 A Calculus for Trust Management 57

5.1 The Calculus . 58

5.1.1 Abstract Policies . 58

5.1.2 Syntax . 60

5.1.3 Reduction Semantics . 61

5.1.4 An example . 62

5.2 Barbed Equivalences . 63

5.2.1 Contexts . 63

5.2.2 Barbs . 63

5.2.3 Network Reduction Congruence 64

5.2.4 Barbed Equivalences for Principals 64

5.2.5 A Weak Reduction Congruence for Networks 67

5.3 A Characterisation of Barbed Equivalences 69

5.3.1 A labelled transition system 69

5.3.2 Network bisimulation . 75

5.3.3 Principal Bisimulation . 81

5.3.4 Protocol Bisimulation . 82

5.3.5 Weak network bisimulation 83

5.3.6 Summary of studied relations 83

5.3.7 Proof Examples . 83

5.4 On the expressive power of ctm . 85

5.5 Related Work . 87

II On Polyadic Synchronisation 89

6 Polyadic Synchronisation and its expressive power 91

6.1 Introduction . 91

6.1.1 Examples of polyadic synchronisation 91

6.1.2 Previous research related to polyadic synchronisation 94

6.2 Polyadic Synchronisation in π-calculus 94

6.2.1 Syntax and semantics of eπ 95

6.2.2 Encoding polyadic synchronisation in π-calculus 95

6.3 Expressivity of Polyadic Synchronisation 102

6.3.1 Matching . 102

6.3.2 Mixed Choice . 104

x

6.3.3 Polyadic Synchronisation 105

6.4 A hierarchy of Expressiveness . 108

6.5 Typing Polyadic Synchronisation . 110

6.5.1 Structural Types for eπ . 111

6.5.2 Nominal Types for eπ . 112

7 Conclusions 119

Bibliography 123

xi

Chapter 1

Introduction

We’ll start the war from right here

— Theodore Roosevelt, Jr., Utah Beach, June 6, 1944.

1.1 Overview

This dissertation studies the problem of introducing the notion of trust into models

for concurrency and distributed networks like process calculi. In particular, it focuses

on the foundations of formal models for trust in large scale environments, capable

of underpinning the use of trust-based security mechanisms as an alternative to the

traditional ones.

Distributed networks, such as the Internet, have become widely used nowadays,

and this has brought forward new issues and challenges in computer science and related

fields. It seems clear that this is due to the impressive way the Internet has spread out all

over the globe among all populations: it allows to connect any person from anywhere

in the world to anyone else in any other place. Besides this, it also provides the biggest

database available about anything. The Internet, like any other distributed network,

can be seen as a big collection of computers, connected together. This reflects the

topology of a global machine which does its computations in a distributed way, e.g.

an online purchase where the buyer, the seller and the credit card issuer are involved

in some computation. For this reason, a new branch of computer science, which takes

care of distributed networks, is known as Global Computing (GC).

A GC system is composed of entities which are autonomous, decentralised, mo-

bile, dynamically configurable, and capable of operating under partial information.

Such systems, as e.g. the Internet, become easily very complex, and bring forward

once again the need to guarantee security properties. Traditional security mechanisms,

however, have severe limitations in this setting, as they are often either too weak to

safeguard against the actual risks, or so stringent to impose unacceptable burdens on

the effectiveness and flexibility of the infrastructure.

In this dissertation, we investigate the possibility of giving a solution to this new

challenge. Our approach is to study the problem from a mathematical point of view by

using formal methods, so that we can guarantee certain claims. Nowadays, software

production is troubled by verification: unfortunately, verifying certain properties of

systems is not always completely achievable, sometimes impossible. The complexity

1

2 Chapter 1. Introduction

of a GC system has impressively increased with respect to traditional systems, and this

did not contribute to make things better, but actually it made things even worse. Our

approach will be using formal methods, and so a formal model for verifying these prop-

erties. A consistent part of this document refers to a particular approach to distributed

system management, which is trust management systems, whereby safety critical de-

cision are made based on trust policies and their deployment in the presence of partial

knowledge, have an important role to play in GC.

In this introduction we shall go through some history of the area and introduce the

whole topic, starting from the pioneers of concurrency and then go on to trust, and its

new applications.

1.1.1 Concurrency

The theoretical aspect of computer science has always evolved alongside the develop-

ment of technologies. In progress, the need of building new tools for improving the

quality of any kind of service, is always accompanied by the need of making theoreti-

cal studies in order to ensure consistency with the expectations and avoiding failures of

what is built. Consider, for instance, the evolution of computer machines from single

to multi threaded, and notice how new challenges have always been introduced in the-

oretical computer science. In the beginning, scientists were worried about modeling

computations of single programs, e.g. operational semantics, denotational semantics

and axiomatic semantics. But when parallelism was introduced, scientists realized

that there was need for new theories, capable of expressing new features of the new

systems.

Concurrency is a young branch of computer science which first appeared in the

early ’60s. Concurrency is concerned about the fundamental features of systems con-

sisting of multiple computing agents, also known as processes, that interact among

each other where, according to [8], a “process” is defined as something that refers to

the behaviour of a system.

These notions cover a very large variety of systems which nowadays, most people

can easily relate to, due to technological advances such as the Internet, programmable

robotic devices and mobile computing. We shortly comment some features that a

typical concurrent system may have [111], e.g. message-passing, shared-variables and

synchrony, but we also comment reactive systems, timed systems, mobile systems and

secure systems.

• Message-passing is one of the most common feature in concurrent systems that

is a mechanism allowing agents to send messages to other agents (a typical ex-

ample is email communication);

• shared variables refer to systems with a single central store which is shared by

all the agents. Note that this may also implement communication among agents,

and so message-passing through the store (an example is an Internet newsgroup);

• synchrony happens when the agents of the system are put on hold sending a

message, constrained to wait for another agent to pick the message (a typical ex-

ample is when doing a phone call). As an opposite of synchrony, in asynchrony,

1.1. Overview 3

messages are just left for other agents to be picked eventually (an example would

be communication between our email reader and the email server);

• a reactive system is any physical system that responds to external stimuli and

triggers events that may be perceived by its observer. This definition is wide

enough to encompass all physical devices that exhibit some organized behav-

ior, as well as interconnections of such devices into possibly large networks of

dynamic and interacting components. One example of such a network is a mod-

ern factory in which manufacturing equipment is interconnected and organized

around a common goal, e.g. the production of some goods;

• timed systems are systems where agents are constraint by temporal requirements

(a typical example is a timed-out transaction with online banking);

• mobile systems are those systems where agents are mobile and able to change

their communication links (an example of this could be agents moving around

on the Internet hopping in different locations);

• secure systems are those systems where it is possible to guarantee certain prop-

erties perceived as secure. These systems usually need some formal reasoning

for guaranteeing such properties (an example is again online banking).

The list above is just a subset of the numerous varieties of concurrent systems

which are around nowadays. Mind that these systems can be combined together and

result into more complicated ones, as for instance the Internet where all the examples

listed above are embedded.

Now that we have given a flavour of what concurrent system are, we move into the

theoretical aspect of these. The idea is to provide some formal methods for ensuring

certain properties of a given system. In other words, we want to use formal methods

in order to specify and prove properties about the functioning of a system. A good

advantage is when these various features are perpendicular, i.e. completely unrelated,

as this allows to study problems separately and so in a simpler way.

Taking inspiration from [111], we list some of the features a good model for con-

current systems should enjoy. A concurrent system must

• be simple, in order to provide a mean for doing clear thinking;

• be expressive, in order to capture interesting aspect of real systems;

• provide techniques, in order to do reasoning about particular properties.

Simplicity is a very important aspect that any model should have. A formal model

must be a mean for helping understanding the complexity of a real system. Dealing

with something which is not simple may complicate the way problems are approached,

and, as a consequence, the way they are understood. Hans Bekiĉ [12], on providing a

formal model for concurrent systems, states:

“Our plan to develop an algebra of processes may be viewed as a high-

level approach: we are interested in how to compose complex processes

from simpler (still arbitrarily complex) ones”.

4 Chapter 1. Introduction

There is, of course, a trade between simplicity and expressivity: the more expressive

a model is, the more things it allows to model. This trade off is one of those impor-

tant things that must be taken care of when designing an abstraction of a real system.

Besides these two aspects, the third one is also very important. A model is meant to

support formal reasoning about a system, i.e. it must provide techniques for espressing

and then proving properties. Given these three parameter it is clear that it is not a very

easy task designing a model for a concurrent system.

We now go through a short analysis of past concurrent models introduced in the

last 40 years. Concurrency theory did its first apprearance in the early ’60s with Petri

nets, conceived by Carl Adam Petri starting from his dissertation [94]. Petri nets are

a very simple yet effective model for expressing concurrent flow of information from

agents to other agents. In those years, the introduction of Petri nets raised the question

how to give semantics to programs containing a parallel operator.

Between 1973 and 1980, Robin Milner introduced a new calculus called CCS (Cal-

culus for Communicating Systems) modeling interacting processes based on pure syn-

chronisation. CCS [82] is a very simple, yet powerful model based on channels rep-

resented by names. Each process has the capability of running different children in

parallel and enjoys a sequential operator (called prefixing) and recursion. The success

of CCS lays on the development of semantics of concurrency, which went from the

traditional domain-theoretic approach to a new operational view of processes equality

based on the notion of bisimulation.

Almost at the same time, Tony Hoare developed CSP (Communicating Sequen-

tial Processes). CSP [61] is a simple and elegant language for describing parallel

computations and their interactions. It evolved from a formal notation used to discuss

communicating independent entities into a formal language for describing parallel sys-

tems, simulating them, and reasoning about them. CSP’s strength is in its support for

defining parallelism: definitions of processes and communcation buffers. The funda-

mental notion of a guarded command was introduced by CSP, and serves as a powerful

model for regulating and synchronizing concurrent processes. All of the facilities in

CSP were carefully chosen to permit formal proofs about deadlock-freedom and other

properties of CSP models.

We also mention ACP (Algebra of Communicating Processes), a work initiated by

Bergstra and Klop [15] and then taken over by Baeten [9], which had a very important

impact on concurrency theory. In general, a process algebra (including CCS and CSP)

is an algebraic approach to the study of concurrent processes. Its tools are algebraical

languages for the specification of processes and the formulation of statements about

them, together with calculi for the verification of these statements. ACP was important

because it was the first (successful) tentative of seeing all previous models within a

general picture.

CCS together with Hoare’s CSP and ACP, constituted a new mathematical ap-

proach to non-sequential interactive computing.

Later on, in the beginning of the ’90s, the π-calculus [84] has been introduced

as a new and fundamental way of thinking about mobile interactive processes. This

calculus, born as a direct continuation of CCS, comes from an idea of Uffe Engberg

and Mogens Nielsen (ECCS) who introduced the notion of name passing (mobility)

in [45]. The π-calculus enjoys an operator for creating local names which combined

with name passing results into a very powerful computational mechanism. None of

1.1. Overview 5

the predecessors of π-calculus dealt with mobility among processes, and this is done

in very simple way, i.e. by merging many notions into a single one. As Robin Milner

states in [83], “the main contribution of the π-calculus is its identification of many

apparently different things, e.g. labels, channels, pointers, variables, etc., as simply

one single thing: names”.

The π calculus has been widely studied in the recent years, but it still needs further

exploration. Together with the study of its theoretical properties, many extensions and

possible alternative have been proposed. One main problem with the upcoming need of

modeling distributed networks is the notion of location. The π-calculus, as explained

above, enjoys a flat structure of names without making distinction among different

things. Recently, an extension of it to locations has been proposed by Hennessy and

Riely [60] and Amadio, Boudol and Lhousianne [6] known as Distributed π-calculus

or just D-π. This calculus is an extension of π where there are locations which contain

π-calculus processes. These processes are enhanced with an operator for migrating

to other locations. Unfortunately when coming to locations there is, somehow, the

need of making such a distinction with other names. In this dissertation we show that,

actually adding locations to the π-calculus leads to an improvement of expressivity

with respect to certain conditions.

Another alternative to distributed π-calculus is the Ambient Calculus, introduced

by Cardelli and Gordon in [35] in the late ’90s. The Ambient Calculus is a powerful

and strong model for mobile agents based only on the notion of location. Contrary of

the π-calculus, computations are not based on communication among agents1 but on

pure migrations of nested locations into other locations. We shall see (informally) in

the last part of this dissertation, that the ambient calculus can be seen as an infinite

extension of D-π. Although, the Ambient Calculus may seem more powerful than the

π-calculus, it has not been as successful. Unfortunately, it lacks that sort of mixture

between simplicity and elegance that features π-calculus. There is a lot of theory

developed on it, but it has always led to technical problems, especially when defining

techniques for proving equivalences of processes.

One of the latest models, which also allow to embed locations are Milner’s bigraph-

ical reactive system (BRS) [68, 67]. They involve bigraphs, a categorical structure in

which the nesting of nodes represents locality. BRSs aim to provide a uniform way

to model spatially distributed systems that both compute and communicate. BRSs can

also be seen as an abstract model for process calculi.

We must mention the spi calculus [2], a calculus for cryptographic protocols. The

spi calculus is an extension of the π-calculus designed for describing and analyzing

cryptographic protocols, in particular for studying authentication protocols. Whereas

the π-calculus suffices for some abstract protocols, the spi calculus enables to consider

cryptographic issues in more detail. Again, in this dissertation, we shall briefly see

how to encode some spi calculus protocols in a minimal extension of π.

We conclude this short overview of calculi, by mentioning the fusion calculus, the

join calculus and Klaim. The fusion calculus [93] contains the polyadic pi-calculus

as a proper subcalculus and thus inherits all its expressive power. The gain is that

“fusion contains actions akin to updating a shared state, and a scoping construct for

1Some versions of the Ambient Calculus enjoy a local communication mechanism which has been

shown to be redundant in [122].

6 Chapter 1. Introduction

bounding their effects”. The authors claim that they achieve these improvements by

simplifying the pi-calculus rather than adding features to it. The fusion calculus has

only one binding operator whereas the pi-calculus has two (input and restriction). The

join calculus [48] is still π-like, but it makes use of join patterns when processes syn-

chronise and communicate. Klaim [89] is instead a kind of shared variables calculus

where there are multiple tuple spaces processes that can be moved from one computing

environment to another.

All models mentioned above provide excellent techniques for reasoning about the

modeled systems. As said, the most common techniques for reasoning about processes

have been equivalences. Certainly bisimulation is the most used, as it is also very

intuitive. Nevertheless, there have been many other equivalences introduced in the

past, like trace equivalence, testing equivalence [90] and many others.

But equivalences are not the only techniques that can be found. There are very

common static techniques where a lot of research has been done. In particular, we must

mention types for process calculi, especially for π-calculus, from ’96 [96] to new and

very interesting linear types [13, 14, 121, 64]. In this dissertation, there will be a short

treatment of types for the extension of π we have mentioned above. Moreover, there

are also other kind of static techniques for defining properties of system, e.g. logic

and control flow analysis. Hennessy and Milner have developed a very interesting

modal logic, known as Hennssy-Milner logic [58], which characterises the bimulation

equivalence for π-calculus, i.e. whenever two processes are bisimilar then they satisfy

the same set of formula and vice versa. After this, many other logics have been studied,

aiming at different properties for different calculi, e.g. a logic for π-calculus [85] and

one for the Ambient Calculus [27, 28]. We conclude with control flow analysis and

abstract interpretation. We must definitely cite the work in [18] where information

flow properties are studied, and [19] concerning non-interference. Also in [114] and

in [91, 74] the authors develop abstract interpretation techniques respectively for π-

calculus and Ambient Calculus.

1.1.2 A new approach: Trust

In the previous section we have treated concurrent systems in general, and then listed

some important model that have been milestones. In this dissertation, the aim is to

write about a particular kind of concurrent systems, and then provide a model for

reasoning about it. We aim at studying concurrent systems where the notion of human

trust is used for establishing interactions between computational entities.

What is Trust?

The variety of common terms shows that there is no precise definition and hints at the

range of views of trust. Sociologist Diego Gambetta [52] introduces trust as ’a partic-

ular level of the subjective probability with which an agent assesses that another agent

or a group of agents will perform a particular action, both before he can monitor such

action (or independently of his capacity ever to be able to monitor it) and in a context

in which it affects his own action. Social psychologist Morton Deutsch’s considers

trust when faced with an ambiguous path with beneficial or harmful results depend-

ing on another person. He identifies various types of trust, from trust as the fallback

1.1. Overview 7

when no other option is available to trust as confidence that the desired outcome will

be reached. Deutsch suggests that people take trusting actions when possible benefits

outweigh the likelihood of being let down. This implies that risk analysis forms an

important part of the trust decision. Due to these and other views, Stephen Marsh [77]

reasons that it might prove more suitable to model trust’s behavior rather than trust

itself, removing the need to adhere to specific definitions. An important observation

from all these sources is that trust one individual’s opinion of another is a subjective

notion, and every individual decides whether to trust based on the evidence available

for personal evaluation (although you might delegate this decision to a more author-

itative source in certain circumstances). Also, trust is not symmetric two individuals

do not need to have similar trust in each other. Even if two entities get the same evi-

dence, they might not necessarily interpret this information in the same way. Trust is

also situation-specific; trust in one environment does not directly transfer to another

environment. So a notion of context is necessary. Despite this situational nature, there

is some agreement on a dispositional aspect of trust as a measure of your propensity to

believe in others’ trustworthiness. Social scientists also highlight trust’s dynamic prop-

erties: It is self-preserving and self-amplifying, it increases through periodic success-

ful interactions, and it degrades through disuse or misuse. Trust is inherently linked to

risk; there is no reason to trust if there is no risk involved. This relationship implies

that cooperation is less likely with higher risk unless the benefits from cooperating are

worth the risk. So reasoning about trust lets entities accept risk when interacting with

others. [remove some of the above part and put it in the introduction]

Familiarity with trust models from the social sciences is a good starting point for

our search of a foundational, comprehensive formal model of trust. We start with a

quote taken from [77] about Deutch’s definition of trust [42]:

• the individual is confronted with an ambiguous path, a path that can lead to an

event perceived to be beneficial or to an event perceived to be harmful;

• he perceives that the occurrence of the two events above is contingent on the

behaviour of another person;

• he perceives the strength of the harmful event to be greater than the strength of

the positive one.

If he chooses to take an ambiguous path with such properties, I shall say he makes a

trusting choice; if he chooses not to take the path, he makes a distrustful choice.

We all make trusting decisions, most of us every day of our lives, and many times

per day [76]. According to Luhmann, social life is impossible without trust because

“the fear about our existence will grow without confidential communication”. Trust

describes our attitude towards events produced by human actions and which are, there-

fore, at least potentially subject to our control, to the extent that we may monitor and

influence the actions of others. The need of trust for human beings can be also thought

of as an appropriate starting point for the derivation of rules for proper behaviour or

how to act successfully in the world of complexity and uncertainty. As a matter of fact,

it is this complexity and uncertainty that creates the need for trust. The basis of this

need are two structural aspects of the modern world:

• the modern world is complex and produces uncontrolled complexity;

8 Chapter 1. Introduction

• dangers are replaced by risks.

We quote from [66]: “Where there is trust there are increased possibilities for experi-

ence and action, there is an increase in the complexity of the social system and also

in the number of possibilities which can be reconciled with its structure, because trust

constitutes a more effective form of complexity reduction”.

We also mention McKnight and Chervany [78], who provide a typology of trust

used to classify existing research on trust in domains like sociology, psychology, man-

agement, economics, and political sciences. Trust is thereby classified conceptually in

six categories: disposition, when entity a is naturally inclined to trust; situation, when

a trusts a particular scenario; structure, when a trusts impersonally the structure b is

part of; belief, when a believes b is trustworthy; intention, when a is willing to depend

on b; behaviour, when a voluntarily depends on b. Orthogonally, the notion of trustee

is classified in categories, the most relevant of which decree that b is trusted because

of its competence, benevolence, integrity, or predictability. Other characteristics (in-

cluding openness and carefulness), Other trustees (including people or institutions).

Trust-based systems

Registered parties behind firewalls in strictly controlled environments carry out most

substantial, accountable computation. However, pervasive computing foresees a mas-

sively networked infrastructure supporting a large population of diverse but cooper-

ating entities. Entities will be both autonomous and mobile and will have to handle

unforeseen circumstances, ranging from unexpected interactions with other entities to

disconnected operation. As pointed out in the introduction, this infrastructure intro-

duces new security challenges that existing security models and mechanisms do not

adequately address. Because of the infrastructure’s scale, the security policy must

encompass billions of potential collaborators. Mobile entities will often become dis-

connected from their home networks and must be able to make fully autonomous se-

curity decisions; they cannot rely on specific security infrastructures such as certificate

authorities and authorization servers. Although certificate authorities might help estab-

lishing other collaborators’ identities, in the environment envisaged, identity conveys

no a priori information about a principal’s likely behavior.

If trust is a fundamental concept in human behaviour, and has enabled collabora-

tion between humans and organisations for millennia, the ultimate aim of our research

on trust-based systems is to transfer such forms of collaboration to modern computing

scenarios. There will clearly be differences between the informal notion of trust ex-

plored in the social sciences and the kind of formality needed for computing. Mainly,

our models need in the end to be operational, so as to be implementable as part of

GC systems. Equally important is their role in providing a formal understanding of

how trust is formed from complex interactions between individuals, so as to support

reasoning about properties of trust-based systems.

We want to point out that in a trust-based setting, the system will no longer be in the

same situation as traditional ones. In the classical world there is usually a certification

about properties, which is most of the times impossible to prove. Whereas, trust-based

implies that systems will expose theirself to some risks.

1.1. Overview 9

We believe that a good mathematical model of computational trust should be ca-

pable of expressing all such aspects, as well as further notions of primary relevance

in computing, e.g. that trust information is time dependent and, in general, varies very

rapidly. Also, it should be sufficiently general to allow complex structures representing

combinations of different types of trust.

Previous work on trust

Trust is a pervasive notion, thoroughly studied in a variety of different fields, including

social sciences, economics and philosophy. Here we only survey recent work on trust

as a subject in computing; the reader is referred to [78] for a broader interpretation. A

detailed survey can be found in Grandison and Sloman’s [54].

Most of the existing relevant work concerns system building. In [100], Rivest et

al. describe SDSI, a public key infrastructure featuring a decentralised name space

which allows principals to create their own local names to refer to other principals’

keys and in general, names. Ellison et al. [44] proposed a variation of the model

which contributes flexible means to specify authorisation policies. The proposals are

now merged in a single approach, dubbed SPKI/SDSI. Other systems of practical rel-

evance include PGP [123], based on keys signed by trusted certificating authorities;

KeyNote [17], which provides a single, unified language for both local policies and

credential containing predicates to describe the trusted actions granted by (the holders

of) specific public keys; and REFEREE [39], which uses a tri-valued logic which en-

riches the booleans with a value unknown. Trust in the framework of mobile agents

is discussed e.g. in [117]. Delegation plays a relevant rôle in trust-based distributed

systems. A classification of delegation schemes is proposed by Ding et al. [43], where

they discuss implementation and analyse appropriate protocols. The ideas expressed

in [43] lie at a level different from ours, as their focus is exclusively on access control.

The theoretical work can be broadly divided in two main streams: logics, where

the trust engine is responsible for constructing [25, 24, 65, 69, 71] or checking [7] a

proof that the desired request is valid; and computational models [116, 40], like our

approach.

Burrows et al. propose the BAN logic [25], a language for expressing properties

of and reasoning about the authentication process between two entities. The language

is founded on cryptographic reasoning with logical operators dealing with notions of

shared keys, public keys, encrypted statements, secrets, nonce freshness and statement

jurisdiction. In [24], Abadi et al. enhance the language by introducing delegation and

groups of principals: each principal can have a particular role in particular actions. The

Authorisation Specification Language (ASL) by Jajodia et al. [65] separates explicitly

policies and basic mechanisms, so as to allow a more flexible approach to the spec-

ification and implementation of trust systems. ASL supports also role-based access

control.

Modal logics have a relevant place in specifying trust models, and have been used

to express possibility, necessity, belief, knowledge, temporal progression, and more.

Jones and Firozabadi [69] address the issue of reliability of agents’ transmissions using

a modal logic of actions [98] to model agents. Rangan [99] views a distributed system

as a collection of communicating agents in which an agent’s state is the history of its

messages. Rangan’s model builds on simple trust statements to define simple proper-

10 Chapter 1. Introduction

ties, which are then used to specify systems and analyse them with respect to properties

of interest. Recently, Jøsang [71] proposed a logic of uncertain probabilities, a work

which is related to our interval construction and can be recast as an instance of it in our

framework. Specifically, Jøsang considers intervals of belief and disbelief over real

numbers between 0 and 1.

Concerning computational models, Weeks [116] provides a model based on fix-

point computations which is of great relevance to our work. Winsborough and Li [118]

study automated trust negotiation, an approach to regulate the exchange of sensitive

credentials in untrusted environments. Clarke et al. [40] provide an algorithm for “cer-

tificate chain discovery” in SPKI/SDSI whereby principals build coherent chains of

certificates to request and grant trust-based access to resources.

1.2 Structure of the dissertation

This dissertation is the result of the research done during the Phd-studies. Each chap-

ter corresponds to one or more publication. Mainly, the document is divided into two

parts: one part which concerns modeling of trust-based systems and another part that

takes care of the expressive power of polyadic synchronisation in π-calculus. We have

decided to include the latter in a new fresh part, as the work can be considered as

independent from the rest of the dissertation. Nevertheless, polyadic synchronisation

is also used in the first part, where a model concerning trust-based systems is intro-

duced. Note that, studying the expressive power of polyadic synchronisation does not

influence the results given before about trust.

In details, this is the list of chapters:

• Front matter.

– Chapter 1: Introduction. This is the introduction of the dissertation and

corresponds to this chapter which is about to end. In here we have widely

introduced the area, always keeping out technical details.

– Chapter 2: Preliminaries. In Chapter 2 we provide a quick overview of

the preliminary notions we need for the rest of this document. Namely,

the chapter is divided into two main parts: the first part is about theory of

partial orders and the second is about process calculi. Concerning partial

orders we report the most known results which are going to be used in

Chapter 3. The second part concerns, in particular, the π-calculus, of which

we report the main definitions and results. The chapter concludes with a

brief introduction to encodings and a hierarchal classification of calculi.

• Part I: Trust in Global Computing.

– Chapter 3: The SECURE project. This chapter is about the SECURE

project and its main issues. The author of this dissertation has taken part

to the project, collaborating to the development of the prefixed targets. In

here, there is a full description of the project, with some explanations about

the results achieved by the different collaborators. The chapter correspond

1.2. Structure of the dissertation 11

to the publication in [26], and details about trust life-cycle can also be

found in [115].

– Chapter 4: Trust Domains. In here, we introduce a model for trust. Trust

is related to a construction of intervals which resembles previous works

done in semantics and computer arithmetics. Besides, we introduce a small

language for describing trust-based policies. The chapter corresponds to

[33].

– Chapter 5: A Calculus for Trust Management. This chapter is the core of

this dissertation, and deeply studies ctm, a calculus for trust management.

The calculus is a terse and powerful tool for modeling trust-based systems,

and provides useful techniques for comparing systems. In this chapter, we

extend what studied in [34], reporting proofs for the results claimed, and

we also provide a proof method for dealing with terms equivalences.

• Part II: On Polyadic Synchronisation.

– Chapter 6: Polyadic Synchronisation and its expressive power. In this

chapter we study an interesting extension of channel communication for

π-calculus-like calculi. This extension has been applied to ctm in the pre-

vious chapter, and now it is deeply studied in its details. This work cor-

responds to publications [31] and [30]. The chapter concludes with some

ongoing work on types for polyadic synchronisation [32].

Chapter 2

Preliminary notions

The more the preliminaries, the better

— Alexandre Ballot, Amsterdam, 2000.

In this chapter we introduce some technical preliminaries that we will be using in

the dissertation. First we will go through some theory of partial orders. We direct the

reader for further details to [56, 119]. Then we will introduce the π-calculus [84], a

formalism on which many of the results of this dissertation are based on.

2.1 Partial Orders

The theory of partial orders is widely used in computer science. Partial orders are

particulary used in semantics of programming language as domains for denotational

semantics [104, 97, 119]. In this thesis we will use some of this theory for modelling

part of trust based systems. We report some basic definitions below.

A preorder (X ,≤) is a reflexive and transitive relation ≤ on X . A preorder which

respects the antisymmetric property is called a partial order.

An element x ∈ X is said to be maximal if for all y ∈ X , x ≤ y implies x = y. An

element x ∈ X is maximum if for all y ∈ X it holds that y ≤ x. It follows that there

can be at most one maximum element. Dually we can define minimal and minimum

elements. A maximum element is also called top and is denoted by ⊤. The symbol ⊥
denotes a minimum, also called bottom.

If Y ⊆ X then an element x ∈ X is an upper bound for Y whenever for all y ∈ Y

we have that y≤ x. Moreover if the set of all upper bounds for Y has a minimum, this

is called the least upper bound (lub) and it is denoted by ⊔Y . Dually we can define

the lower bound and the greatest lower bound (glb) for Y . The greatest lower bound

is denoted by ⊓Y . When dealing with more then one ordering, we shall identify the

different operators by indicating to which one they belong, e.g. ⊔≤X stands for the

least upper bound of X wrt the ordering ≤, or we may also use ∨ for lub and ∧ for glb.

Given two partial orders (X ,≤) and (X ′,≤′), a function f from X to X ′ is mono-

tonic whenever x ≤ y implies f (x) ≤ f (y) for x,y ∈ X . The function f is called anti-

monotonic whenever x≤ y implies f (y)≤ f (x) for x,y ∈ X .

A subset Y of X is a chain if for every y, y′ in Y either y ≤ y′ or y′ ≤ y. If X is a

chain then (X ,≤) is called a total order. An ω-chain c is a monotonic function from

the set of ordered natural numbers ω to Y , i.e. c = (cn)n∈ω such that c0 ≤ c1 ≤ c2 ≤

13

14 Chapter 2. Preliminary notions

Functions from a set A to a partial order (X ,≤) are pointwise ordered by ≤A→X

where f ≤A→X g if and only if for all a ∈ A, f (a)≤ g(a).
We now give the definition of a particular kind of partial order, called complete

partial order.

Definition 2.1 (CPOs). A partial order (D,⊑) is a complete partial order (CPO) if it

has a minimum element ⊥ and each ω-chain c in D has a least upper bound
F

c.

Note that if (D,⊑) is a CPO, then the pointwise ordered function space ([A→
D],⊑A→D), for some A, is also a CPO.

Given two CPOs (D,⊑) and (D′,⊑′) we say that a function f : D→ D′ is contin-

uous if for each ω-chain c, it holds that
F

f (c) = f (
F

c). Note that continuity implies

monotonicity. Moreover given two complete partial orders ≤ and � on a set X , we say

that ≤ is continuous wrt � whenever for all ω-chain c = (cn)n∈ω wrt the ordering ≤
and for all x, we have that for all indices i, ci ≤ x implies

F

≤ ci � x.

Given a CPO (D,⊑), a function f : D→ D and d ∈ D, we say that d is a prefixed

point whenever f (d)⊑ d. Moreover we say that d is a fixed point if f (d) = d. A fixed

point d is the least fixed point if for all fixed point y it holds that d ⊑ y.

The importance of CPOs here is that every continuous function f : D→ D on a

CPO has a least fixed point fix(f) ∈ D (cf. [119]). In the following the term f k(d)
denotes k applications of the function f to d, i.e. f k(d) = f (f (... f

︸ ︷︷ ︸

k times

(d)).

Theorem 2.1 (Fixed Point Theorem). Let (D,⊑) be a CPO and f : D→ D a contin-

uous function. Then f has a least fixed point d =
F

i∈ω f i(⊥).

Proof. We have to show that the least fixed point exists and is equal to
F

i∈ω f i(⊥).

• We have to show that
F

i∈ω f i(⊥) is a fixed point. Because of continuity of f we

have that f (
F

i∈ω f i(⊥)) =
F

i∈ω f (f i(⊥)) which is equal to
F

i∈ω f i+1(⊥). By

definitions of f k and ⊥ we get
F

i∈ω f i+1(⊥))⊔{⊥}=
F

i∈ω f i(⊥)).

• Let y be a prefixed point, i.e. f (y) ⊑ y. By definition of the bottom element we

have that ⊥⊑ y and then by monotonicity f (⊥)⊑ f (y). From this we can derive

that f (⊥)⊑ y and inductively f n(⊥)⊑ y. Thus,
F

i∈ω f i(⊥)⊑ y.

✷

In the rest of this section, we shall introduce another type of partial order, a com-

plete lattice.

Definition 2.2 (Complete lattice). A partial order (D,�) is a complete lattice if every

X ⊆ D has a least upper bound.

As for CPOs, if (D,�) is a lattice, then the pointwise ordered function space ([A→
D],�A→D), for some A, is also a lattice.

An ω-cochain in a lattice (D,�) is an antimonotonic function c : ω→ D, that is

a function such that i ≤ j implies c j ≤ ci. A function f : D −→ D′ is co-continuous

iff for each ω-cochain c in D, it holds that
d

f (c) = f (
d

c); f is bi-continuous if it is

continuous and co-continuous.

A similar result on least fixed points like the previous one on CPO’s holds also for

lattices (cf. [110]).

2.2. The π-calculus 15

Theorem 2.2 (Knaster-Tarski Theorem). Let (X ,�) be a lattice and f : X → X a

monotonic function. Then f has a least fixed point and it is the minimum of the prefixed

points, i.e. f ix(f) =
d
{x ∈ X | f (x) � x}

Proof. Let Y = {x ∈ X | f (x) � x}. Certainly we have that f ix(f) � x for any x ∈ Y .

By monotonicity and definition of Y , it holds that f (f ix(f)) � f (x) � x. But then

also f (f ix(f)) �
d
{x ∈ X | f (x) � x} which shows that f ix(f) is a prefixed point

and also the least one. Moreover as f (f ix(f)) � f ix(f) we have that f (f (f ix(f))) �
f (f ix(f)), which implies that f (f ix(f)) ∈Y and so f ix(f)� f (f ix(f)). In conclusion

f (f ix(f)) = f ix(f) which means that indeed it is a fixed point. ✷

2.2 The π-calculus

As mentioned in the introduction, the π-calculus [84] is a formalism for describing

concurrent execution of communicating processes based on the idea, inherited from

CCS [82], of synchronising over named channels. For over ten years research has

been done on the π-calculus, and we consider it as an important starting point for

introducing some of the results of this dissertation.

We give a brief introduction of syntax and semantics of mixed-choice π-calculus

with matching (π for short). For a deeper treatment of the topic we recommend the

reader to [83] and [102].

2.2.1 Syntax

Given a countable set of values Val ranged over by a,b,c,x,y,z,w, the syntax of π is

defined as follows:

P,Q ::= 0 (NULL
π) | Σi αi.Pi (CHOICE

π)

| P | P (PAR
π) | (νx)P (RES

π)

| [x = y]P (MATCH
π) | !P (BANG

π)

where

α ::= τ | x(y) | x〈y〉

and represents the basic operations of the calculus: x(y) is an input, x〈y〉 is an output

and τ denotes an internal evolution step. The process Σi αi.Pi represents mixed guarded

choice, i.e. the possibity of executing non-deterministically one of the actions αi and

continuing as Pi. In the rest of this thesis we shall use the notation Π1..nPi as a short-

hand for multiple parallel composition P1|...|Pn. Sums and products are usually finite

in π-calculus. The process 0 stands for the inactive process, (νx) and ! are respectively

restriction and replication: restriction makes the name x private to a process whereas

replication !P represents infinitely many copies of P. The matching operator [x = y]P
behaves like P if x is equal to y, and behaves like the inactive process 0 otherwise.

Where necessary we will write prefixes of pure synchronisation in the style of CCS:

x.P will be a shorthand for x〈y〉.P for some y, whereas x.P will stand for x(y).P where

16 Chapter 2. Preliminary notions

y does not appear in P. In this section we shall often use letters M and N to denote

summations. We shall often omit trailing inactive processes.

The calculus above, compared with the original formulation of the calculus, drops

the full-choice construct (P + P) in favour of the more well-behaved mixed choice, as

found for example in [102].

2.2.2 Binding, Substitution, α-conversion and Structural Congruence

Binding of names is important and it must be taken care of very carefully. We now

shortly introduce binding of names within processes. In the processes z(x) .P and

(νx)P, the occurence of x in z(x) and (νx) is said to be binding in P, where P is said

to be the scope of x. In other words, we say that an occurence of x in P is bound if it

is, or it lies within the scope of, a binding occurrence of that name. An occurence of a

name is free whenever it is not bound. We can then define the functions f n(P), bn(P),
and n(P) = f n(P)∪bn(P) respectively as free names, bound names, and names of P.

For example, consider the process (νx) (x〈b〉) | x(y) .x〈y〉. We can observe that the x

is bound in x〈b〉 but it is not in x(y) .x〈y〉 and that y is bound in x〈y〉.
A substitution is a function σ : Val→ Val which is equal to the identity except on

a finite subset of Val. Given a process P, we will write Pσ for the process resulting

from the application of σ to the free names of P, i.e. for all x ∈ f n(P), every occurence

of x is syntactically replaced in P by σ(x). Given names x and y, notation P{x/y} is

equivalent to Pσ for σ different from the identity only on the single name y and such

that σ(y) = x. A change of bound names in a process Q is the replacement of a subterm

x(y) .P or (νx)P of Q respectively by x(w) .P{w/y} and (νw) P{w/x} for some name

w such that w 6∈ f n(P). We say that two processes P and Q are α-convertible (written

P =α Q) whenever Q can be obtained from P by a finite number of changes of bound

names. The notion of α-conversion, together with the one of substitution, comes from

the λ-calculus [10].

A context C [·] is a process which contains a hole. Formally contexts for the π-

calculus are given by the syntax

C [·] ::= · | α .C [·]+ M | (νn) C [·] | C [·] | P | P | C [·]

The term C [P] denotes the result of replacing the hole in the context C by process P.

An equivalence relation R on the set of processes is called a congruence whenever

PR Q implies C [P]R C [Q] for any context C[·]. The structural congruence relation ≡π
states when two processes are to be considered syntactically equivalent, and is defined

as the least congruence satisfying α-conversion, the commutative monoidal laws with

respect to both (|,0) and (+,0) and the following axioms:

(STRUCT
π
1) [x = x]P ≡π P

(STRUCT
π
2) (νx)P |Q≡π (νx)(P |Q) if x 6∈ f n(Q)

(STRUCT
π
3) (νx)0 ≡π 0

(STRUCT
π
4) (νx)(νy)P ≡π (νy)(νx)P

(STRUCT
π
5) !P≡π !P | P

The first axiom states the meaning of the matching operator, i.e. when the two ar-

guments of = are equal we can then proceed as P. The axiom (STRUCTπ
2) says that

2.2. The π-calculus 17

whenever we want to extend the scope of a restriction (binding) to a new process in

parallel, we have to take care of the fact that the restricted name (which must be private

to P) may clash with another name in Q. This two axiom are going to be important in

the definition of the reduction semantics in next section. We also add two extra axioms

which may be useful for proving some extra laws and getting rid of unwanted terms.

The axiom (STRUCTπ
3) says that restricting a name in the process 0 is equivalent to

the process 0 itself. The last but one axiom allows to interchange adjacent restrictions.

The axiom (STRUCTπ
5) expresses the semantics of replication, i.e. it is possible to get

an unbounded number of copies of P.

2.2.3 Reduction Semantics and Barbed Congruence

We now show how the parallel components of a process can react one with another.

By using the structural congruence defined in above, we define→π as the least binary

relation on processes satisfying the rules given in table 2.1.

(COMM
π) (x(y) .P+ M) | (x〈z〉 .Q + N)→π P{z/y} | Q

(TAU
π) τ .P + M→π P (RES

π)
P→π P′

(νx) P→π (νx) P′

(PAR
π)

P→π P′

P | Q→π P′ | Q
(STRUCT

π)
P≡π Q Q→π Q′ P′ ≡π Q′

P→π P′

Table 2.1: Reduction Rules for π-calculus.

The rule (COMMπ) defines communication, namely, if two processes willing to

perform respectively an output and an input action, can be put next to each other by

the parallel operator, then they can communicate. The result of the communication is

that the process performing the input action gets the outputted name z, which is going

to be substituted to the bound name y in P. The rule (PARπ) is used to implement

concurrency, i.e. the interleaving among processes. The structural congruence can be

used through rule (STRUCTπ) where reductions can be proved from structural congru-

ent processes. Rules (TAUπ) and (RESπ) are meant respectively for τ actions (silent)

and processes operating under a restriction scope.

Example 2.1. We report in here an example of reduction taken from [102]. Let P ,

(νx) (x(z) . z〈y〉 .0 | (x〈a〉 .0 | x〈b〉 .0)) and P1 , (νx) (((x〈a〉 .0+0) | x(z) . z〈y〉 .0+0) |
x〈b〉 .0). By structural congruence we have that P≡π P1. Applying the rule (COMMπ)

we have that

(x〈a〉 .0+ 0) | (x(z) . z〈y〉 .0+ 0)→π 0 | a〈y〉 .0

Now by (PARπ) and (RESπ),

P1→π P3 , (νx) ((0 | a〈y〉 .0) | x〈b〉 .0)

18 Chapter 2. Preliminary notions

and as P3 ≡
π P4 , (νx) (a〈y〉 .0 | x〈b〉 .0) we have, by rule (STRUCTπ), that also P→π

P4. Also,

P→π b〈y〉 .0 | (νx) x〈a〉 .0

It is natural to define the observables of a process P, i.e. what is visible through the

parallel operator by a context Q, in order for interaction to take place. This justifies

the following definition.

Definition 2.3 (Barbs). The main observability predicates of π-calculus are barbs

defined as:

P ↓π
x , P≡π (νx1)...(νxn)(x(y).Q + R | R′) P ⇓π

x , ∃P′.(P→π P′∧P′ ↓π
x)

P ↓π
x , P≡π (νx1)...(νxn)(x〈y〉.Q + R | R′) P ⇓π

x , ∃P′.(P→π P′∧P′ ↓π
x)

P ↓π , ∃x.(P ↓π
x ∨P ↓π

x) P ⇓π , ∃x.(P ⇓π
x ∨ P ⇓π

x)

for some name x 6∈ x1, ...,xn, and some processes Q, R, and R′.

The previous definition could suggest a possible way of comparing processes. Ba-

sically, two processes are equivalent whenever they show the same barbs.

Definition 2.4 (Barbed Bisimilarity). A barbed bisimulation is a symmetric relation

R on processes such that whenever PR Q

• P ↓π implies Q ↓π;

• P→π P′ implies Q→π Q′ and P′R Q′.

Two processes are barbed bisimilar (
•
≃π) if related by a barbed bisimulation.

Unfortunately barbed bisimilarity is not satisfactory as a process equivalence. Con-

sider for example the equivalence (νz) (z〈z〉 .y〈a〉 | z(w))
•
≃π τ .y〈b〉. The two processes

should not be considered to have the same observable behaviour, becuase they send

different names via y [102]. In fact we could write a context which is able to distigu-

ish them, e.g. − | y(x) .[x = a]τ. From this example, we can get the intuition that the

equivalence above should be closed under all possible contexts.

Definition 2.5 (Barbed Congruence). Two processes P and Q are barbed congruent,

written P≃c
π Q, whenever C[P]

•
≃π C[Q] for all contexts C[].

The relation ≃c
π is just the restriction under all possible contexts of the barbed

bisimilarity
•
≃π. If we now consider the example above we have that (νz) (z〈z〉 .y〈a〉 |

z(w)) 6≃c
π τ .y〈b〉. In fact, for C [] = [] | x(z) . z, we have C [(νz) (z〈z〉 .y〈a〉 | z(w))] 6

•
≃π

C [τ .y〈b〉] as, after two reduction, the right component would show barb b, instead the

left one would show a.

2.2.4 Labelled Transition System

Unfortunately proving that two processes are barbed congruent is very hard, as we

have to quantify all over possible context. A standard way to overcome the problem is

to define the semantics in a co-inductive way and then define a notion of bisimulation

which is equivalent to the barbed one. We now define a labeled transition system (lts

for short) for the π-calculus, i.e. a relation −→π⊆ P ×µ×P for P the set of processes.

2.2. The π-calculus 19

Namely, given two processes and an action, P
µ
−→π P′ means that process P will act

as process P′ after performing action µ. The actions of the lts are the prefixes plus the

output of a restricted name x〈νy〉, as reported below.

(ACTIONS) µ ::= α | x〈νy〉

The subject of an input or output action is the channel used for communication and

the object is the parameter. Morever we extend functions f n and bn to actions in the

following way:

µ f n(µ) bn(µ) kind

x(y) {x,y} /0 (INPUT)

x〈y〉 {x,y} /0 (FREE OUTPUT)

x〈νy〉 {x} {y} (BOUND OUTPUT)

τ /0 /0 (TAU)

As for processes, the function n (names) on labels is defined as the union of f n and bn.

We define the early labeled transition system semantics ·
·
−→π · as the least relation

satisfying α-conversion and the rules in Table 2.2. We omit the symmetric rules for

(COMM), (CLOSE) and (PAR). The semantic rules expressing interaction between

processes are (COMM) and (CLOSE), and in both cases the premise of the rule requires

that two parallel processes P and Q are able to perform two complementary actions

with the same prefix.

Note that the semantics is called early as when performing an input action, the sub-

stitution of the inputted name is done in advance (see Table 2.2). This implies that the

name is guessed by the process executing the input. On the contrary, in the late version

of the lts semantics for the π-calculus, the substitution is done in the communication

rule (see rule Comπ). There is not difference at a semantics level (it can be proved that

they are equivalent [102]), but they imply two different bisimulation.

The following theorem states the correspondence between the reduction semantics

and the early lts semantics.

Theorem 2.3. Let P be a π-calculus process, then

• if P→π P′ then there exists Q′ such that P
τ
−→π Q′ and P′ ≡π Q′

• if P
τ
−→π P′ then there exists Q′ such that P→π Q′ and Q′ ≡π P′.

Example 2.2. We now use the lts to show the example we gave for the reduction

semantics. Applying the rules from table 2.2 we get

(INPπ)

x(z) . z〈y〉 .0
x(a)
−→π a〈y〉 .0

(OUTπ)

x〈a〉 .0
x〈a〉
−→π 0

(PARπ)

x〈a〉 .0 | x〈b〉 .0
x〈a〉
−→π 0 | x〈b〉 .0

(COMπ)
x(z) . z〈y〉 .0 | x〈a〉 .0 | x〈b〉 .0

τ
−→π a〈y〉 .0 | 0 | x〈b〉 .0

(RESπ)
P

τ
−→π P4

20 Chapter 2. Preliminary notions

(INP
π)

x(z).P
x(y)
−→π P{y/z}

(OUT
π)

x〈y〉 .P
x〈y〉
−→ P

(TAU
π)

τ .P
τ
−→π P

(MAT
π)

P
µ
−→π P′

[x = x]P
µ
−→π P′

(SUM
π)

P
µ
−→π P′

P + Q
µ
−→π P′

(COM
π)

P
x〈y〉
−→π P′ Q

x(y)
−→π Q′

P |Q
τ
−→π P′ | Q′

(REP
π)

P | !P
µ
−→π P′

!P
µ
−→π P′

(CLO
π)

P
x〈νz〉
−→ P′ Q

x(z)
−→ Q′

P |Q
τ
−→ (νz) P′ | Q′

z 6∈ f n(Q)

(RES
π)

P
µ
−→π P′

(νz) P
µ
−→π (νz) P′

z 6∈ n(µ) (OPE
π)

P
x〈z〉
−→π P′

(νz) P
x〈νz〉
−→π P′

z 6= x

(PAR
π)

P
µ
−→π P′

P | Q
µ
−→π P′ | Q

bn(α)∩ f n(Q) = /0

Table 2.2: Labeled Transition System for π

2.2.5 Bisimulations

Now that we have defined the lts, we can give a definition of bisimulation based on

it. We report the definition of strong early bisimilarity, one of the basic behavioural

equivalences defined on π processes. As hinted before, this is not the only existing

bisimulation [102].

Definition 2.6 (Bisimilarity). A binary symmetric relation S on processes is an early

bisimulation if and only if PS Q and P
µ
−→ P′ implies ∃Q′ : Q

µ
−→ Q′∧P′S Q′.

P is early bisimilar to Q (P
•̇
∼π Q) if and only if PS Q for some early bisimulation S .

Note that this bisimulation is called early because of the type of semantics we have

chosen. In the case we choose a late definition we would get the late bisimulation,

resulting into a coarser equivalence.

The following expected result is well known (a proof can be found in [102])

Theorem 2.4 (Characterisation). The two equivalences ∼π and ≃c
π coincide.

The previous relations are called strong because they distinguish also processes

that differ only by internal actions. It is interesting in some cases to abstract over τ
actions and consider bisimulation with respect to visible actions only. Let =⇒ be the

2.2. The π-calculus 21

(TV-NAME)
Γ,x : T ⊢ x : T

(T-PAR)
Γ ⊢ P Γ ⊢ Q

Γ ⊢ P | Q
(T-NIL)

Γ ⊢ 0

(T-REP)
Γ ⊢ P

Γ ⊢ !P
(T-RES)

Γ,x : T ⊢ P

Γ ⊢ (νx) P

(T-INP)
Γ ⊢ z : [T̃] Γ, x̃ : T̃ ⊢ P

Γ ⊢ z(x̃).P
(T-OUT)

Γ ⊢ z : [T̃] Γ ⊢ x̃ : T̃ Γ ⊢ P

Γ ⊢ z〈x̃〉.P

Table 2.3: Structural Typing for the π-calculus.

reflexive and transitive closure of
τ
−→ and

µ
=⇒ be =⇒

µ
−→=⇒. Moreover let

µ̂
−→ be

−→ if µ = τ,
µ
−→ otherwise. The definition of weak early bisimulation (≈̇) is obtained

by replacing Q
µ
−→ Q′ with Q

µ̂
=⇒ Q′ in Definition 2.6.

2.2.6 Types for π-calculus

Structural types for the π-calculus have been proposed first by Pierce and Sangiorgi

[96] as a simplified version of Milner’s sorts [81], which are very similar to the nominal

types described below.

Structural Types

The basic structural type system for the π-calculus is based on an environment Γ, a

partial function associating an exchange type, describing the objects of the communi-

cation, to each name (and therefore, each channel). The formal definition of types and

environments is

S,T ::= [T̃] (TYPES)

Γ ::= Γ,x : T | /0 (TYPE ENV)

The typing rules are given in Table 2.3, where we use the shorthand notation x̃ : T̃ for

x1 : T1, . . . ,xn : Tn where x̃ = x1, . . . ,xn and T̃ = T1, . . .Tn.

The type system satisfies the standard property of preserving types under reduc-

tion, and guarantees that well-typed processes will not incur in communication errors.

22 Chapter 2. Preliminary notions

∆,S : T̃
 S : T̃

(T-INP)
Γ ⊢ z : S ∆
 S : T̃ Γ, x̃ : T̃ ⊢∆ P

Γ ⊢∆ z(x̃).P

(T-OUT)
Γ ⊢ z : S ∆
 S : T̃ Γ ⊢ x̃ : T̃ Γ ⊢∆ P

Γ ⊢∆ z〈x̃〉.P

Table 2.4: Structural Typing for the π-calculus.

Nominal Types

The basic nominal type system for the π-calculus is based on a set of nominal types

A,B ∈ Ns, an environment Γ associating a nominal type to each name, and a set of

type definitions ∆, containing associations between nominal types and exchange types.

Both Γ and ∆ are partial functions. The formal definition of types and environments is

S,T ::= A ∈Ns (TYPES)

Γ ::= Γ,x : T | /0 (TYPE ENV)

∆ ::= ∆,S : T̃ | /0 (TYPE DEF)

We denote the empty tuple of types by ⋄. The typing rules are a straightforward

adaptation of those for structural typing. In Table 2.4 we give the rules for definitions

and input and output, the other ones are unchanged.

Nominal types are often used for real programming languages, and we will not

discuss their advantages from a software engineering perspective here. For a discus-

sion, see [109]. From the theoretical point of view, they have the advantage of typing

terms which would require recursive type systems to type, without introducing any

additional burden. On the other hand, typability depends on the definitions ∆, and is

not only a property of a term.

The type system satisfies the standard property of preserving types under reduc-

tion, and guarantees that well-typed processes will not incur in communication errors.

2.3 Encodings

In the recent years, numerous calculi have appeared and concurrency theory has made

important the issue of exploring their expressiveness. Most of these calculi are Turing-

equivalent, i.e. they can be encoded by Turing machines. Nevertheless there are some

reasonable critiria that an encoding may not respect, e.g. preserving parallel composi-

tion.

2.3. Encodings 23

Formally, given two languages L and L ′, an encoding of L into L ′ is a function

[[·]] : L → L ′ which given a program l ∈ L returns a corresponding program l′ ∈ L ′.

According to [92], an encoding for concurrent languages is uniform, if it translates the

parallel operator homomorphically, and if it respects permutations on free names

[[P|Q]] = [[P]]|[[Q]] (2.1)

∀σ ∃θ [[Pσ]] = [[P]]θ (2.2)

Condition (2.1) states that the degree of parallelism in the system must be pre-

served by the encoding, condition (2.2) states that the structure of the encoding re-

spects permutations of free names. Since we are interested in the problem of encoding

specific constructs that may occur in π-calculus-like terms, it is sensible to strengthen

condition (2.2) to account for arbitrary substitutions. In fact, a process can be syntac-

tically placed in the scope of an input, that in π-calculus behaves like a substitution.

The following example illustrates our point.

Example 2.3 (Encoding Mismatching). Mismatch is an operator sometimes consid-

ered in the π-calculus: it consists of the production P ::= [x 6= y].P, and its semantics

can be defined both by an lts rule or by a structural congruence rule:

P
µ
−→ P′

[x 6= y]P
µ
−→ P′

x 6= y [x 6= x]P≡π 0

Consider, for instance, the homomorphic encoding of π with mismatch (π 6= for

short) in π with infinite products, where mismatching is translated as follows:

[[[x 6= y]P]] ,

{
Πw∈ N \{y}[x = w]P if x 6= y

0 otherwise

This encoding is uniform and is correct in a very strong sense: [[[x 6= y]P]]∼̇[x 6= y]P and

[[[x 6= x]P]] ≡π [x 6= x]P. Nonetheless it is not satisfactory because it does not respect

arbitrary substitutions:

(νz)(z〈a,a〉|z(x,y).[x 6= y]P)
τ
−→ 0 (2.3)

(x 6= y, for the input on z to be defined) and for the encoding to be meaningful, we

would expect an equivalent behaviour by its translation, whereas

(νz)(z〈a,a〉|z(x,y).[[[x 6= y]P]])
τ
−→ P{a/x}{a/y} (2.4)

The problem is that the term [[[x 6= y]P]] contains syntactically the term [x = x]P that is

not affected by the changes made on y after the translation: it does not respect arbitrary

substitutions.

✷

Unfortunately, all the conditions we have seen above are not enough. According

to Palamidessi [92], an encoding preserves a reasonable semantics if it

“...distinguishes two processes P and Q whenever there exists a maximal

(finite or infinite) computation of Q in which the intended observables

(some visible actions) are different from the observables in any (maximal)

computation of P.”

24 Chapter 2. Preliminary notions

In [95], Philips and Vigliotti give a formalisation of the statement above. In the fol-

lowing let a computation be a sequence of reductions P → . . . → Pi → . . . and let

Obs(C) = {x | ∃ j.Pj ↓ x}.

Definition 2.7 ([95]). Let L ,L ′ be process languages. An encoding [[·]] : L → L ′ is

observation-respecting if for any P ∈ L ,

(a) for every computation C of P there exists a maximal computation C ′ of [[P]] such

that Obs(C = Obs(C ′)

(b) for every computation C of [[P]] there exists a maximal computation C ′ of P such

that Obs(C = Obs(C ′)

where a computation C is maximal if it cannot be extended, i.e. either C is infinite, or

else it is of the form P→ P1 . . .→ Pi where Pi 6→.

Another appealing property that is not needed for the results in [92], but that is

considered for example in [41], [88], and [87], is termination invariance. We consider

a crucial property of a semantics to distinguish inactive processes (deadlocks) from

processes involved in infinite internal computations (livelocks). We call sensible an

encoding [[−]] which is (strongly) uniform, preserves a reasonable semantics, and dis-

tinguishes deadlocks from livelocks. We shall see some examples about encodings in

the further chapters of this dissertation.

We conclude this section, by also mentioning a possible alternative to studying

encodings of process calculi into others, which, somehow, is still something new which

has not been really studied. The idea is to treat the problem with category theory. If it is

possible to represent a process calculus with a category then we can see encodings like

“functions” between them which satisfy certain requirements which should exactly be

(some of) the conditions listed above.

2.4 The πO p family

We now introduce some possible variants of the π-calculus, which will be needed in

this dissertation.

The asynchronous π-calculus (aπ) proposed independently by [62], and [20], is

the sub-calculus without summations and matching, and where output can be prefixed

only to the inactive process.

P ::= x〈y〉.0 | M | P |P | (νx)P | !P

M ::= 0 | x(y).P | τ.P

Both the previous references show how to encode the synchronous output x〈y〉.P in

terms of the simpler asynchronous communication mechanism: the real difference

with π consist in the absence of matching and, more remarkably, of choice.

The separate choice π-calculus (πs) is the sub-calculus of π in which output and

input prefixes cannot be present in the same summation. This restriction is captured

by modifying the syntax of processes without affecting the semantic rules.

P ::= 0 | Σi αI
i .Pi | Σi αO

i .Pi | P |P | (νx)P | !P

2.4. The πO p family 25

αI ::= τ | x(y)

αO ::= τ | x〈y〉

In [88], Nestman and Pierce have shown how to encode input-guarded choice in aπ.

We denote with πm the calculus with mixed choice, but without matching. In [92],

Palamidessi has proved that πm is strictly more expressive than πs. Nestmann [87] ar-

gues that “there are nevertheless good encodings between these calculi”. Palamidessi’s

result is a quite important as it had been unknown for quite a few years. The gap be-

tween πm and πs is shown to exist by defininig a problem called electoral system where

a group of processes have to elect a leader by sending a vote on a designed channel.

It turns out that this leader election is not possible in πs, i.e. when mixed choice is

not available. The same result has been proved more recently in [95] for the Ambient

Calculus.

All the sub-calculi that we have seen so far can be extended with matching or mis-

matching. We will denote the extended versions by appending apices to the calculus

name. In the sequel, let πO p be defined as {aπ,πs,πm,aπ=,aπ=,6=,πs,=,π}. All the

variants of the π-calculus we shall consider are summarised in Table 2.5.

a.P = 6= +s +m

aπ – – – – –

πs X – – X –

πm X – – – X

aπ= – X – – –

aπ=,6= – X X – –

πs,= X X – X –

π X X – – X

Table 2.5: Some variants of the π-calculus.

26 Chapter 2. Preliminary notions

Part I

Trust for Global Computing

27

Chapter 3

The SECURE project

As pointed out in the introduction, because of the infrastructure’s dynamism, entities

that offer services will be confronted with requests from unknown entities, and mobile

entities will need to obtain services in unfamiliar, possibly hostile environments. A

party facing such a complex world stands to benefit from interaction, but only if it can

respond to new entities and assign meaningful privileges to them. The Secure Envi-

ronments for Collaboration among Ubiquitous Roaming Entities (SECURE) project is

designing a novel security approach that addresses these challenges. If successful, this

approach will significantly benefit not only future systems but also various emerging

mobile computing applications. It could also benefit collaborations over the Internet

where correspondents’ identities and intentions are difficult to establish with certainty.

This approach applies the human notion of trust. This naturally leads to a de-

centralized security management approach that can tolerate partial information, albeit

one that has inherent risks for the trusting entity. Fundamentally, the ability to rea-

son about trust and risk is what lets entities accept risk when interacting with other

entities. The SECURE project seeks a formal basis for reasoning about trust and risk

and for deploying verifiable security policies, embodied in a computational framework

that is adaptable to various application scenarios. For example, consider the problem

of routing messages in an ad hoc wireless network. An entity, or mobile node, with

a message to send must rely on other nodes on the path to the intended destination to

forward its message. Generally, the intermediate nodes might have no a priori relation-

ship or agreement with the sender, which they might never have encountered before.

Also, forwarding messages costs battery and processing power. Why should a sender

rely on such nodes to help it? If multiple paths exist, which path should the sender put

the most confidence in? These trusting decisions are informed by the degree to which

the sender trusts the intermediate nodes to do the right thing based on observations

of and experience with these nodes, their reputations, and possibly recommendations

from third parties. These decisions are also mediated by the risk the sender takes. The

sender probably requires less trust to send a low-importance message and more trust

for a very important message that really needs to get through.

29

30 Chapter 3. The SECURE project

3.1 Understanding trust

We have pointed out in the introduction that humans use trust daily to promote inter-

action and accept risk in situations where they have only partial information. Trust lets

one person assume that another will behave as expected. Despite the extensive study

of trust in sociology, psychology, and philosophy, it remains an elusive concept that

defies stringent definition. This is partly because trust is largely invisible and implicit

in society. We saw that various definitions of trust have been offered, many of which

depend on the author’s viewpoint or the context in which he or she examines trust.

Because of trust’s multifaceted nature, it is difficult to form a unified definition. It

is useful to examine dictionary definitions of trust to determine which are widely ac-

cepted. Common to these definitions are the notions of confidence, belief, faith, hope,

expectation, dependence, and reliance on the integrity, ability, or character of a person

or thing.

The SECURE project’s approach is based on the premise that trust and risk are

inexorably linked and must both be considered when making a decision about an am-

biguous path whose outcome depends on another entity’s actions.

3.2 Handling trusted interactions

The trust a principal needs for an interaction depends on the risk involved. This allows

for appropriate security in pervasive environments without requiring excessive trust in

straightforward cases.

When a system grants privileges to a principal, it expects the principal to use them

in a particular way, for example, to update old address book entries with accurate

information. However, the principal could deviate from this expected behavior, and

the combined likelihood and severity of this is the risk of granting them a privilege.

3.2.1 Risk analysis

In SECURE, the risks of a trust-mediated action are decomposed by possible out-

comes. Each outcome’s risk depends on the other principal’s trustworthiness (the like-

lihood) and the outcome’s intrinsic cost. For example, an address update might itself

be out-of-date or maliciously misleading. These two outcomes’ costs would reflect the

user’s wasted time, and the likelihoods would depend on trust in the other party.

An outcome’s costs could span a range of values. For example, a user might have

received a correct phone book entry. This third outcome’s cost could show a net ben-

efit to the user, as the user might successfully use it later. However, if the number

became out-ofdate by the time it was used, that would be a net loss. To reflect this

uncertainty, you might represent the distribution of costs as a cost-PDF (probability

density function).

Figure 3.1 illustrates a user contemplating a parameterized interaction with princi-

pal a. For each possible outcome, the user has a parameterized cost-PDF (a family of

cost-PDFs) that represents the range of possible costs and benefits the user might incur

should each outcome occur.

While the risk evaluator assesses the possible cost-PDFs, the trust calculator pro-

vides information t that determines the risk’s likelihood based on the principal’s iden-

3.2. Handling trusted interactions 31

Figure 3.1: Decision making using trust and risk.

tity a and other parameters of the action. The risk evaluator then uses this trust infor-

mation to select the appropriate cost-PDF.

Finally, the request analyzer combines all the outcomes’ cost-PDFs to decide if

the action should be taken or to arrange further interaction. Because any uncertainty

is preserved right up to the decision point, this allows more complex decision making

than simple thresholding, allowing responses such as not sure if there is not enough

information.

For instance, if Liz’s PDA received a phone number from Vinny’s PDA, she might

not think it was maliciously misleading based on her trust in Vinny’s honesty. She

might think it could be out-of-date, however, if Vinny had given her stale information

before, attributing a higher risk to this outcome. Finally, she would consider the poten-

tial benefit of having a correct number, again moderated by Vinny’s trustworthiness.

Liz’s PDA would do all these calculations on her behalf using its model of her trust

beliefs, as Figure 3.2 illustrates. If the benefits outweighed the other outcomes’ costs,

the PDA would then accept the information. On the other hand, if John, a colleague

from a competing research group, sent Liz an address book entry, her PDA might re-

ject it after the same analysis because she did not know him. At this point, the request

analyzer might seek out more information, maybe by discovering that John works with

32 Chapter 3. The SECURE project

Jean, who is trusted by Liz, or by interrupting Liz for confirmation.

Figure 3.2: Illustration of risk analysis.

Interconnected address book categories can give structure to information [107].

By assigning each category a risk value and explicitly costing the user’s time, sensitive

entries (such as bank phone numbers) can naturally be protected with little user effort.

So this explicit risk analysis, which differentiates the SECURE approach from

other trust-based approaches [3,120] balances the evidence that a principal is trustwor-

thy against the risks if it is not. This allows sensible behavior in the face of uncertainty,

but prevents abuse by incrementally updating trust assessments as more evidence be-

comes available.

3.2.2 Building trust

Recent work on trust management systems [16, 17, 44, 100] attempts to manage secu-

rity in large-scale distributed networks by using credentials that delegate permissions.

However, these systems focus on trust management’s static element and neglect the dy-

namic component of trust formation. What does trust really consist of? Fundamentally,

we base trusting decisions on trust information, encompassing evidence from personal

observations of previous interactions and recommendations from partly trusted third

parties. These two main sources of stored trust information let us dynamically form an

opinion about another entity.

Personal observations of the entity’s behavior, through recording outcomes of in-

teractions, are essential in subjectively evaluating trustworthiness. These observations

are evaluated against the principal’s expected behavior to produce experiences [70].

The range of experience values reflects the effect of the observed outcome relative

to the expected outcome, usually in terms of gain or loss. These values are ordered

and classified into two sets, a trust-positive set and a trust-negative set. This evidence

is aggregated with the evidence from previous interactions to give a comprehensive

summary of the principal’s interaction history.

Recommendations from trustworthy third parties can propagate trust in unknown

entities by providing supporting evidence for decisions. The recommendation process

3.3. Software framework 33

becomes more important when the trust evaluation based on observations is not precise

enough. In such cases, an entity might need more information. Also, it could discard

imprecise recommendations that provide little additional information. The decision,

however, is left to the individual entity. Upon receiving a collaboration request, we

can dynamically filter the available trust evidence to keep only what is relevant to the

requested action. If no evidence from experience or recommendation is available for

an entity, we must establish an initial trust value to encourage low-risk collaborations.

We can determine this using many strategies [46]. This collaboration will provide

further evidence on which we can base future trust formation. If enough evidence

exists to reason about the entity’s trustworthiness, then we will evaluate observations

and recommendations to yield trust information. This information might be multidi-

mensional, separate trust intervals might be formed for different aspects of trust in the

interaction. We treat recommendation evidence separately from personal experience

evidence, which has more influence on trust.

The trust model (see next chapter) operates using local trust policies. These lo-

cal policies let the system use collected evidence and dictate the conditions in which

the trust opinion, formed from the evidence, should be used. The policies also let

us conditionally delegate trust evaluation to an outside entity, an important feature of

the trust model. The difference between delegation and recommendation is that we

delegate to entities similar to ourselves, which we might consider experts for the de-

cision; in recommendation, however, we gather trust information from any principal

in the environment and can seek more than one recommendation. We can also weigh

recommendations according to our trust in the source as a recommender.

Our framework goes a step further than trust-based frameworks such as CONFI-

DANT [23] and similar approaches [4]. CONFIDANT, for instance, is designed for ad

hoc network routing. No centralized and trusted network manager exists in such a net-

work; each node must trust others to transmit its messages. Nodes can exchange rep-

utation information to detect malicious nodes. A node might send reputation records

that describe its first-hand experience with another node or trust records that encapsu-

late reputation information received from other nodes. Nodes depend on these records

to make routing decisions. In our approach, a node’s trust decision need not rely on

exchanged reputation information but can also be delegated to another node. This

leads to a more flexible range of trust policies and is more consistent with the human

approach to trust formation.

3.3 Software framework

Even if we understand how to reason about trust formation and evolution and how

to exploit trust in making access control decisions, we also need to ensure that we

can feasibly implement the necessary algorithms for these processes in heterogeneous

systems. So, the SECURE project has been developing a policy-neutral software ar-

chitecture framework encompassing algorithms for trust management usable in various

applications. Figure 3.3 illustrates the current version of our framework design.

When a principal a makes a request for interaction, the request passes through

the application programming interface into the request analyzer. The request analyzer

requests information about a from three sources: the entity recognition component,

34 Chapter 3. The SECURE project

Figure 3.3: The framework for one party to an interaction. Large arrows signify data

flows and thin arrows signify control flows.

the trust calculator, and the risk evaluator. The entity recognition component, which

is responsible for recognizing new or previously encountered entities, requests verifi-

cation that a is recognized (see [105]). Any other component can consult the entity

recognition component to obtain recognition capabilities as necessary. Additionally,

the request analyzer requests a trust calculation from the trust calculator. The trust

calculator computes the least fixed point, as we discuss in Chapter4, using information

gathered from the trust lifecycle management component and its local trust policy. As

we mentioned earlier, the system can delegate the trust level calculation for a to an-

other entity, thereby initiating synchronous communication with a remote entity. The

trust calculator’s local policies update on the basis of information fed from the trust

lifecycle management component. This component handles trust formation, evolution,

and exploitation on the basis of data drawn from the evidence store. The trust lifecycle

management policy allows trust information to be weighted according to context spe-

cific criteria. The evidence store holds all trust- and risk-related data. It is updated with

data from evidence gathering, such as recommendations and security updates collected

in an asynchronous process, and from the monitoring component. The evidence store

also responds to requests for recommendations from other entities. The monitoring

component observes actual interaction with a and conveys the results of the interac-

tion to the evidence store. The request analyzer also requests a risk assessment from

the risk evaluator, which calculates the request’s potential risk based on the local infor-

mation stored in the risk configuration component, which is updated with information

from the evidence store. The system assesses and aggregates all of the information

it obtained about a. It returns the trust calculation and risk assessment to the request

analyzer, which can then provide a decision to a regarding possible interaction.

3.4 Applications

Given the project’s exploratory nature, it is important to evaluate the proposed mech-

anisms in the context of real applications. Here are two applications on which the

3.4. Applications 35

project has been working. Each application deals with numerous interacting entities.

The entities might be strangers, and we cannot rely on the presence of a centralized

service for security. Although the two applications are very different, the project has

been developing instantiations of the framework presented earlier that will be used to

support both of them.

3.4.1 Electronic purse

An electronic purse, or e-purse, is a device that stores money in electronic form and

enables the transfer of money units to other e-purses. Mobile telephones are ideal

candidates for implementing e-purses, they have smart cards for securely storing sums

of money and are widespread enough for an epurse system to be deployed. In this

scenario, you can transfer funds from the e-purse to the bank and vice versa via a

GSM (Global System for Mobile Communications) or Internet connection; you make

bank payments offline using SMS (Short Message Service) or Bluetooth.

An e-purse’s main advantage over a traditional purse is that a person does not need

to carry real money. When a real purse is lost or stolen, the money is also lost or stolen;

with an e-purse, a thief must know the e-purse’s PIN to access its contents. Also, an

e-purse should maintain the anonymity property of payments, the buyer can pay the

vendor without revealing his or her identity. A payment protocol that is particularly

suited to the e-purse is the eCash protocol from DigiCash [37, 103]. In this protocol,

each electronic coin has a unique serial number and the bank signs it using a key for

that denomination. When a vendor who receives money cashes the e-purse contents

with the bank, the bank detects cheating by comparing these coins and their serial

numbers to those already cashed.

A principal in the e-payment system is a purse. While an e-purse typically is

owned by a person, it might also be a payment device in a coffee or chocolate vendor.

You recognize the principal through its public key, which is stored on its e-purse,

PubPurse. The Entity Recognition subsystem ensures that the principal is what it

claims to be. Both buyer and vendor principals receive a certificate containing their

respective public key PubPurse signed by the bank: {PubPurse,n}Bank. N denotes

the epurse’s serial number, which is used for principal identity information.

You can verify any request using the PubPurse of the initiator and its certificate.

Because payment happens offline, the bank cannot be contacted to check the certifi-

cate’s validity and the principal risks dealing with a principal that the bank recently

blacklisted. To reduce the risk from replay attacks, where an attacker replays mes-

sages from other principals that it has overheard, PubPurse can be used in a challenge-

response protocol relying on past interactions to increase confidence in the recognition

level. For example, the ticket vending machine sends a request encrypted with the

buyer’s PubPurse asking how many tickets have been bought so far and the buyer

should reply with the right answer encrypted with the vending machine’s PubPurse.

In this system, the vendor who accepts e-cash for goods has the biggest risk. The

vendor must wait until he or she goes online to deposit the cash to verify that it was

not forged. There are thus two outcomes for a payment transaction: it succeeds if the

bank accepts the money the vendor received, or it fails.

The first task of this application scenario’s security administrator is to propose

trust values and an ordering for them. Because you can link trust in a principal to

36 Chapter 3. The SECURE project

the number of positive experiences (the number of successful payment outcomes com-

pared to the number of outcomes where the principal cheated) you can represent trust

by a pair (m,n) of non-negative integers. Integer m represents the number of success-

ful outcomes associated with the principal; n represents the number of unsuccessful

outcomes.

The bottom, or unknown value is (0,0). A trust value (m1,n1) represents more trust

than (m2,n2) when the number of successful outcomes is superior and the number of

unsuccessful outcomes is inferior (m1 ≥m2 and n1 ≤ n2). The information ordering on

the set of values is defined by considering a trust value (m1,n1) as conveying more in-

formation than a value (m2,n2) if it is possible to start from the value (m1,n1) and then

perform some additional number of interactions, ending up with the value (m2,n2).
This intuition leads us to define the information ordering by taking (m1,n1) ⊏ (m2,n2)
if and only if (m1 ≤ m2) and (n1 ≤ n2). Figure 3.4 illustrates this partial ordering of

trust values. In next chapter, we shall treat these things more formally.

Figure 3.4: Trust ordering for an e-purse.

A principal’s trust in another is mainly based on its experience with that principal.

It can also be influenced by observations of that principal. In the e-purse system,

observations take the form of messages (principal a cheated or principal a is honest)

exchanged via principals, perhaps as an annex to payment messages. The security

administrator can write the system’s trust management policy to update the trust policy

based on these messages. Obviously, such a message from the bank is more credible

than one from another principal.

The second task for this system’s security administrator is to design the risk policy.

In this scenario, we deal with two mutually exclusive outcomes. The cost associated

with the payment action is bounded by the amount of money being exchanged. One

risk policy is to consider the probability of success to be independent of the cost (for

example, an attacker is just as likely to cheat for 5 euro as he is for 50 euro). In this

case, the cost-PDF is flat. Another possible risk policy is to consider the probability of

cheating to be proportional to the amount being transferred. In this case, the probability

of an unsuccessful outcome for an amount s of money could be defined as: a× c× s2,

where a is the trust parameter for the paying principal, calculated as n/(n+m) for the

trust values except for bottom (where n+m = 0), and a is a constant defined to scale the

3.4. Applications 37

risk value calculated to the range [0..1]. This cost-PDF models a scenario in which the

risk of cheating increases to the square of the sum of money involved in the transaction.

A third PDF shown in Figure 3.5 is a linear curve defined as amount×T , where T is

based on the average degree of cheating that occurs in the e-payment system. The risk

policy returns this function when the trust value calculated for a principal is bottom

(0,0).

Figure 3.5: Risk PDFs for the e-purse application.

The security administrator’s final task is to define the security policy. This policy

considers the calculated risk and trust values and decides whether to permit the action.

In this system, one possible policy is to print a warning message to the user’s screen if

the calculated risk value for the transaction exceeds a specified threshold. For example,

using pseudocode,

if (riskOfFailurePDF(amount)≤ ThresholdPay) return YES;

if (riskOfFailurePDF(amount)≥ ThresholdDontPay) return NO;

else return DONT-KNOW.

The riskOfFailurePDF is the PDF returned by the risk policy and amount is

the sum being paid in the transaction; ThresholdPay and ThresholdDontPay are

the thresholds below and above that the e-purse pays and does not pay, respectively.

Between these values, the user must intervene in the decision. For example, Carl might

try to buy chocolate from a vending machine. The vending machine trusts Carl, whose

trust value is (13,7). Assuming proportional risk, with c = 0.2, ThresholdPay = 0.1,

and ThresholdDontPay = 0.2, the answer would be YES for Carl to purchase 1 euro

worth of chocolate but N0 for 2 euro worth of chocolate.

38 Chapter 3. The SECURE project

3.4.2 Collaborative gaming

The demand is increasing for applications such as collaborative gaming, where play-

ers in different locations can participate in the same gaming session using portable

devices. When money is at stake in these games, security measures are necessary

because unknown and potentially untrustworthy players might enter gaming sessions.

Blackjack is a popular card game in which players gamble with a dealer over the

value of a hand. In our prototype implementation, people play blackjack over a mobile

ad hoc network using laptop computers or PDAs. For example, suppose Alice takes

the 8 a.m. commuter train into the city for work every weekday. She wants to play an

interactive game to pass the time, so she joins an ad hoc wireless network to see what

collaborative gaming applications are available. She discovers an ongoing blackjack

session in which Bob is the dealer and she requests admission to the game. Bob must

decide whether or not to admit her; he must decide if he recognizes Alice, how much he

trusts her as a gaming opponent, and how much risk is associated in playing blackjack

with her.

The entity recognition process determines whether or not Bob has interacted with

Alice before, as well as the level of confidence in recognizing her. If this is Bob’s

first time interacting with Alice, he might need to rely on trusted third-party recom-

mendations about Alice. Recommendations can be exchanged verbally, by email, by

distributed post-its, and more, and then recorded as evidence. On the basis of evidence

from his own observations, from recommendations, or both, Bob can determine a trust

level for Alice. Bob needs to trust that Alice will not cheat, spoof, or collude while he

is gaming with her.

Note that this same trust is required in the casino version of blackjack. Also,

because the dealer’s odds of winning are more favorable than the players’ odds, the

players must consider the entity in the dealer role trustworthy. So the right to assume

the advantageous dealer role can be considered a privilege earned through fair, trust-

worthy game playing. Alice must prove some level of trustworthiness if she wants to

enter a game as a dealer.

As with e-purse, trust values and an ordering for them are necessary. In black-

jack, trust is based on factors such as Alice’s typical playing strategy and whether she

pays her gambling debts. The security administrator generates an ordering similar to

that in the e-purse application that represents both positive and negative experience

results. This information could also help determine the risk of interacting with Alice.

For example, information about what players are typically playing in the same games

as Alice might enable Bob to reason about the probability that Alice will collude with

other players. Bob can monitor this information throughout the course of the interac-

tion and evaluate and store other players’ results of playing blackjack with Alice. With

his stored information, Bob might also need to respond to requests for recommenda-

tions from other players. Bob might want to delegate his trusting decision altogether.

In this case, he must begin recognition of remote entities he could interact with for the

purpose of delegation. Based on this information collection, Bob can assess whether

he recognizes Alice, to what extent he is certain of recognition, how much he trusts Al-

ice, and if that trust level is enough to interact with Alice given the overall risk inherent

in the interaction.

Initial results of testing the prototype implementation [55] show that it reacts cor-

3.4. Applications 39

rectly to changes in an entity’s interactive behavior, it adjusts trust levels and imple-

ments trust-based interaction accurately as trust rises and falls. The framework’s de-

sign is continuously being refined, in particular, the approach to trust formation and

evolution to address issues such as collusion and framing. We are also examining the

application of trust to rolebased access control.

Chapter 4

Trust Domains

...trust is a social good to be protected just as much as the air we breath or the water

we drink. When it is damaged, the community as a whole suffers; and when it is

destroyed, societies falter or collapse!

— Bok, 1978, taken from [77]

As hinted in the previous chapters, we think of the standard deployment of a trust

management system as consisting of a “trust engine” and a “risk engine” coupled

together as part of a “principal.” The trust engine is responsible for updating trust

information based on direct and indirect observations or evidence, and to provide trust

information to the risk engine as input to its procedures for handling requests. The

risk engine will feed back information on principals’ behaviours as updating input to

the trust engine. Abstracting over this point of view, we single out as central issues

for our trust model the aspects of trust formation, evolution, and propagation. The

latter is particularly important in our intended application domain, where the set of

active principals is large and open-ended, and centralised trust and ad-hoc methods of

propagation of its variations make little sense. An important propagation mechanism is

referencing, whereby principals cooperate to implement complex, intertwined “global”

trusting schemes. Just to pin down the idea, bank b may be willing to trust client c

to an overdraft limit x only if bank b′ trusts it at least up to 2x/3, and c itself does

not trust d, a crook known to b. Note that, in literature, this term is often mixed

up with delegation. In our understanding, delegation is transferring the possibility of

making a decision to another principal. On the contrary referencing is just taking into

account another principal’s trust (opinion), which does not imply that it will be fully

considered. Referencing has important consequences for trust representation, because

it brings forward the idea of trust policy, i.e. algorithmic rules – such as bank b’s above

– to evaluate trust requests. In principle, trust among principals can be represented

straightforwardly, as a function from pairs of principals to trust levels,

GTrust : Principal −→ Principal −→ TrustDegree

where GTrust(a) is a function which associates to each principal b the value of a’s

trust in b. Delegation leads to model local policies, say b’s, as functions

TrustPolicy : GTrust −→ Principal −→ TrustDegree

41

42 Chapter 4. Trust Domains

where the first argument is (a representation of) a universal trust function that b needs,

to know b′’s level of trust in c and whether or not c trusts d.

The domain of TrustPolicy makes the core of the issue clear: we are now entan-

gled in a “web of trust,” whereby each local policy makes reference to other principals’

local policies. Technically, this means that policies are defined by mutual recursion,

and global trust is the function determined collectively by the web of policies, the

function that stitches them all together. This amounts to say that GTrust is the least

fixpoint of the universal set of local policies, a fact first noticed in [116] which leads

straight to domain theory [104].

Domains are kinds of partially ordered sets which underpin the semantic theory of

programming languages and have therefore been studied extensively. Working with

domains allows us to use a rich and well-established theory of fixpoints to develop a

theory of security policies, as well as flexible constructions to build structured trust

domains out of basic ones. This is precisely the context and the specific contribution

of this chapter, which introduces a novel domain-like structure, the trust structures, to

assign meaning and compute trust functions in a GC scenario. We anticipate that, in

due time, techniques based on such theories will find their way as part of trust engines.

As domains are (complete) partial orders and trust degrees naturally come equipped

with an ordering relation, a possible way forward is to apply the fixpoint theory to

TrustDegree viewed as a domain. This is indeed the way of [116] and, as we moti-

vate below, it is not a viable route for GC. There are very many reasons in a dynamic

“web of trust” why a principal a trying to query b about c may not get the information

it needs: b may be temporarily offline, or in the process of updating its policy, or expe-

riencing a network delay, or perhaps unwilling to talk to a. Unfortunately, the fixpoint

approach would in such cases evaluate the degree of trust of a in c to be the lowest trust

level, and this decision would be wrong. It would yield the wrong semantics. Principal

a should not distrust c, but accept that it has not yet had enough information to make

a decision about c. What is worse with this confusion of “trust” with “knowledge,” is

that the information from b could then become available a few milliseconds after a’s

possibly wrong decision.

We counter this problem by maintaining two distinct order structures on trust val-

ues: a trust ordering and an information ordering. The former represents the degree of

trustworthiness, with a least element representing, say, absolute distrust, and a greatest

element representing absolute trust; the latter the degree of precision of trust informa-

tion, with a least element representing no knowledge and a greatest element represent-

ing certainty. The domain-theoretic order used to compute the global trust function is

the information order. Its key conceptual contribution is to introduce a notion of “un-

certainty” in the trust value principals obtain by evaluating their policies. Its technical

contribution is to provide for the “semantically right” fixpoint to be computed.

Following this lead, we introduce and study trust structures of the kind (D,�,⊑),
where the two order relations over the set D, carry the meaning illustrated above. We

then provide constructions on trust structures – including an “interval” construction

which endows complete lattices with a natural notion of uncertainty and lifts them to

trust structures – and use the results to interpret a toy, yet significant policy language.

We believe that introducing the information ordering alongside the trust ordering is a

significant step towards a model of trust feasible in a GC scenario; it is a major point of

departure from the work of Weeks [116], and the central contribution of this chapter.

4.1. A Model for Trust 43

4.1 A Model for Trust

The introduction has singled out the traits of trust most relevant to our computational

scenario: trust involves entities, has a degree, is based on observations and ultimately

determines the interaction among entities. Our model will target these aspects primar-

ily.

Entities will be referred to as principals. They form a set P ranged over by

a,b,c, . . . and p. We assume a set T of trust values whose elements represent de-

grees of trust. These can be simple values, such as {trusted, distrusted}, or also

structured values, e.g. pairs where the first element represents an action, say access a

file, and the second a trust level associated to that action; or perhaps vectors whose

elements represent benevolence in different situations.

As trust varies with experience, a model should be capable of dealing with obser-

vations resulting from the principal’s interaction with the environment. For clarity, let

us isolate the principal’s trust management from the rest of its behaviour, and think of

each principal as having a “trust box,” that is an “object” module containing all of its

trust management operations and data. Thinking “object-oriented,” we can envision

this as an object used by the principal for processing trust related information. Assum-

ing a set of observations Obs relevant to the concrete scenario of interest, the situation

could be depicted as below.

(request,a) +3

- updateTrust : Obs−→ void

- trustValue : P −→ T
+3 t ∈ T

The principal sends the message trustValue(a) to ascertain its trust in another prin-

cipal a, and the message updateTrust(o) to add the observation o to its trust state.

In this chapter, we only focus on the trust box and assume, without loss of general-

ity, that the remaining parts of the principal interact with it via appropriately exported

methods.

4.1.1 Modelling the Trust Box

Principals’ mutual trust can be modelled as a function which associates to each pair of

principals a trust value t in T :

m : P −→ P −→ T

Function m applied to a and then to b returns the trust value m(a)(b)∈ T expressing a’s

trust in b. This however does not mean that a single principal’s trust can be modelled

as a function from P to T , since a’s trust values may depend on other principals’

values. For instance, a may wish to enforce that its trust in c is b’s trust in c. Similarly,

we may be willing to receive a message from unknown sources, provided somebody

we know trusts the sender. This mechanism of relying on third-party assessments,

known as delegation, is fundamental in all scenarios involving cooperation, including

computational paradigms such as GC.

44 Chapter 4. Trust Domains

This leads us to a refined view of a principal’s trust as being defined by a policy.

According to such a view, each principal has a local policy π which contributes by

way of delegation to form the global trust m. A policy expresses how the principal

computes trust information given not just his own beliefs, but also other principals’

beliefs. It follows that, as anticipated in the introduction, a’s policy πa has the type

below, whose first argument represents the knowledge of third principals’ policies that

a needs to evaluate πa.

πa : (P −→ P −→ T)−→ (P −→ T)

We leave unspecified the way a policy is actually defined, as this definitely depends on

the application. We study a relevant example of policy language in 4.3.

By collecting together the individual policies, we obtain a function Π , λp : P .πp

whose type is (isomorphic to)

Π : (P −→ P −→ T)−→ (P −→ P −→ T).

To interpret this collection of mutually recursive local policies as a global trust function

m, we apply some basic domain theory, namely fixpoints and complete partial orders.

So, requiring T to be a CPO, which implies that the pointwise extension to P →
P → T is a CPO too, and taking Π to be continuous, we can define the global trust as

m , fix(Π), the least fixpoint of Π.

The question arises as to what order to take for ⊑. We maintain that it cannot be

the order which measures the degree of trust. An example is worth many words. Let

T be the CPO {low≤ medium≤ high}, where low stands for low trusted, medium for

medium trusted and high for high trusted. Consider a policy πa which delegates to b

the degree of trust to assign to c. In this setup, a will assign low trust to c when it is

not able to gather information about c from b. This however would be an erroneous

conclusion when taking a decision, as the interruption in the flow of information does

not bear any final meaning about trust, its most likely cause being a transient network

delay that will soon be resolved. The right conclusion for a to draw is not to distrust

c, but to acknowledge that it does not know (yet) whether or not to trust c. In other

words, if we want to model dynamic networks, we cannot allow confusion between

“don’t trust” and “I don’t know:” the latter only means lack of evidence for trust

or distrust, the former implies a trust-based, possibly irreversible decision.

In order to make sense of our framework in a GC scenario, we need to acknowl-

edge that principals only have a partial knowledge of their surroundings and, therefore,

of their own trust values. We thus consider approximate trust values which embody

a level of uncertainty as to which value we are actually presented with. Specifically,

beside the usual trust value ordering, we equip trust values with a trust information

ordering. While the former measures the degree of trustworthiness, the latter measures

the degree of uncertainty present in our trust information, that is its information con-

tent. We will assume that the set T of (approximations of) trust values is a CPO with

an ordering relation ⊑. Then t ⊑ t ′ means that t ′ “refines” t, by providing more infor-

mation than t about what trust value is being approximated. With this understanding

the continuity of Π is a very intuitive assumption: it asserts that the better determined

the information from the other principals, the better determined is value returned by

the policy. An example will help to fix these ideas.

4.1. A Model for Trust 45

Example 4.1. Let us refine the set of trust values T discussed previously by adding

some new intermediate values {⊥,∗,low,medium,high}, and consider the information

ordering ⊑ specified by the following Hasse diagram.

high medium

*

EEEEEE

vvvvvvv
low

⊥

IIIIIII

rrrrrrr

Note that this ordering says nothing about what is more trust. It focus only on the

quantity of information a principal has. The limit of any chain reflects the finest in-

formation. The element ∗ represents the uncertainty as to whether high or medium

holds, while ⊥ gives no hint at all about the actual trust value. Suppose we have a set

of principals P = {a,b,c} with the following policies.

a b c

a high ⊥ ask b

b ∗ high low

c ask b high high

where each row is a principal’s policy. For instance the third row gives c’s policy: c’s

trust in a is b’s trust in a; c’s trust in b is high. The computation of the least fixpoint

happens by computing successive approximations following the standard theory, as

illustrated below. We start from the least possible trust function:

a b c

a ⊥ ⊥ ⊥

b ⊥ ⊥ ⊥

c ⊥ ⊥ ⊥

where there is absolute no knowledge and so any trust value could be anything, hence

⊥. Each principal then inspects its own policy, and computes an approximated value

using the other principals’ current approximations of their values.

a b c

a high ⊥ ⊥

b ∗ high low

c ⊥ high high

Observe that here a is still totally undecided concerning the trust to assign to c, as it

knows that the value ⊥ received from b is itself uncertain. The successive iteration is

however enough to solve all solvable uncertainties, and reach the global trust function

(that is the last fixpoint) illustrated below.

46 Chapter 4. Trust Domains

a b c

a high ⊥ low

b ∗ high low

c ∗ high high

Note that the operators used for specifying policies (basically only delegation and

constants) are continuous. This guarantees the existence of the least fixedpoint.

We reiterate that, importantly, the ordering⊑ is not to be identified with the equally

essential ordering “more trust.”

Example 4.2 (Collecting Observations). In order to exemplify the idea of a trust

structure with two distinct orders, assume that each observation can be classified either

to be positive or negative. Then let T be the set of pairs {(p,n)|p,n ∈ω+{∞}, p≤ n}
where p stands for the number of positive experience and n for the total number of

experiences. A suitable information ordering here would be

(p1,n1)⊑ (p2,n2) iff n1 ≤ n2,

with (0,0) being the least element. This formalises the idea that the more experience

we make, the more knowledge we have. That is, trust information becomes more and

more precise with interactions. On the other hand, it is intuitively clear that negative

experiences cannot lead to higher trust. Therefore, a suitable trust ordering could be

(p1,n1)� (p2,n2) iff p1 ≤ p2.

4.2 Trust Structures

Having pointed out the need for order structures equipped at the same time with an

information and a trust ordering, in this section we focus on the triples (T ,�,⊑),
which we call trust structures, and study their basic properties.

When defining a trust management system, it is natural to start off with a set D of

trust values, or degrees. On top of that, we are likely to need ways to compare and

combine elements of D so as to form, say, a degree which comprehends a given set of

trust values, or represents the trust level common to several principals. This amounts

to start with a complete lattice (D,≤), where those combinators can be considered as

taking lubs or glbs of sets of values. To account for uncertainty, we define an operator

I to extend a lattice (D,≤) to a trust structure (T ,�,⊑). The set T consists of the set

of intervals over D which, besides containing a precise image of D – viz. the singletons

– represent naturally the notion of approximation, or uncertainty about elements of D.

4.2.1 Interval Construction

We define now the ordering � which has been already considered in [73].

Definition 4.1. Given a complete lattice (D,≤) and X ,Y ⊆ D nonempty subsets we

say that X � Y if and only if

⊓X ≤ ⊓Y and ⊔X ≤ ⊔Y

4.2. Trust Structures 47

Clearly, � is not a partial order on the subsets of D, as the antisymmetry law fails.

We get a partial order by considering as usual the equivalence classes of ∼ = �∩�.

It turns out that the intervals over D are a set of representatives of such classes.

Definition 4.2. For (D,≤) a complete lattice, the set I(D) = {[d0,d1] | d0,d1 ∈D, d0≤
d1}, where [d0,d1] = {d |d0 ≤ d ≤ d1} is the interval of D determined by d0 and d1.

Proposition 4.1. Let X = [d0,d1] be an interval in D. Then, ⊓X is d0 and ⊔X is d1.

Proof. It comes clearly from the definition of interval as for all d ∈ D we have that

d0 ≤ d ≤ d1. ✷

As a consequence of the proposition above we have that X ∼ [∧X ,∨X], for all

X ⊆D. Furthermore, [d0,d1]∼ [d′0,d
′
1] implies that d0 = d′0 and d1 = d′1. The following

lemma characterises � in terms of ≤.

Lemma 4.1. For [d0,d1] and [d′0,d
′
1] intervals of D, we have [d0,d1] � [d′0,d

′
1] if and

only if d0 ≤ d′0 and d1 ≤ d′1.

Proof. ⇒) If [d0,d1] � [d′0,d
′
1] then by definition of � and proposition 4.1 we have

that d0 ≤ d′0 and d1 ≤ d′1.

⇐) If d0 ≤ d′0 and d1 ≤ d′1 then, again by definition of � and proposition 4.1, it holds

that [d0,d1]� [d′0,d
′
1] ✷

We can now show that the lattice structure on (D,≤) is lifted to a lattice structure

(I(D),�) on intervals.

Theorem 4.1. (I(D),�) is a complete lattice.

Proof. Let S be a subset of I(D). We prove that its least upper bound exists. Observe

that this is enough to conclude, as
V

X is equal to
W

{y |y � x for all x ∈ X }. Let S be

{[di
0,d

i
1]| i ∈ J} for some set J. We claim that

W

S = [∨di
0,∨di

1].

As di
0 and di

1 are elements of a complete lattice ∨di
0 and ∨di

1 exist. Moreover

for each j we have d
j
0 ≤ d

j
1 ≤ ∨di

1, so ∨di
0 ≤ ∨di

1 which implies [∨di
0,∨di

1] ∈ I(D).

Also, [∨di
0,∨di

1] is an upper bound as for each j we have [d
j
0,d

j
1]� [∨di

0,∨di
1]. Finally,

[∨di
0,∨di

1] is the least upper bound: if for each j we have that [d
j
0,d

j
1] � [d0,d1] then

[∨di
0,∨di

1]� [d0,d1]. This holds since d
j
0 ≤ d0 and d

j
1 ≤ d1 which means that ∨di

0 ≤ d0

and ∨di
1 ≤ d1. ✷

We now define an ordering on intervals which reflects their information contents.

Such an ordering will be a CPO on which we base fixpoint computations. The task is

quite easy: as the interval [d0,d1] expresses a value between d0 and d1, the narrower

the interval, the lesser the uncertainty. This leads directly to the following definition.

Definition 4.3. For (D,≤) a complete lattice and X ,Y ∈ I(D), define X ⊑ Y if Y ⊆ X .

Analogously to �, we can characterise ⊑ in terms of ≤.

Lemma 4.2. For [d0,d1] and [d′0,d
′
1] intervals of D, we have that [d0,d1] ⊑ [d′0,d

′
1] if

and only if d0 ≤ d′0 and d′1 ≤ d1.

48 Chapter 4. Trust Domains

Proof. By definition [d′0,d
′
1]⊆ [d0,d1]. As they are intervals d0 and d1 are elements of

[d′0,d
′
1] and so we have d0 ≤ d′0 and d1 ≤ d′1. Conversely, if d0 ≤ d′0 and d′1 ≤ d1, then

it is clear that [d′0,d
′
1]⊆ [d0,d1], and by definition of ⊑ we have [d′0,d

′
1]⊑ [d0,d1]. ✷

Finally, as for the previous ordering, we have the following result.

Theorem 4.2. (I(D),⊑) is a CPO.

Proof. The least element of (I(D),⊑) is D = [∧D,∨D]. Let [dn
0 ,dn

1]n be an ω-chain in

(I(D),⊑). Then we claim that
F

[dn
0 ,dn

1]n = [∨dn
0 ,∧dn

1]. We need to prove that this is

well-defined and that it is the least upper bound.

As in the proof of Theorem 4.1, ∨di
0 and ∧di

1 exist. Moreover, if for all i and j

it holds that di
0 ≤ d

j
1, then for all j we have that ∨di

0 ≤ d
j
1, hence ∨di

0 ≤ ∧di
1, which

implies that [∨dn
0 ,∧dn

1] is well defined. Interval [∨dn
0 ,∧dn

1] is an upper bound as for all

j it holds that [d
j
0,d

j
1] ⊑ [∨di

0,∧di
1]. In fact for all j we have d

j
0 ≤ ∨di

0 and ∧di
1 ≤ d

j
1,

which means [∨di
0,∧di

1] ⊑ [d
j
0,d

j
1]. Finally, [∨dn

0 ,∧dn
1] is the least upper bound as

for any interval [d0,d1] if [d
j
0,d

j
1] ⊑ [d0,d1] for all j then [∨di

0,∧di
1] ⊑ [d0,d1]. In

fact d
j
0 ≤ d0 and d1 ≤ d

j
1. By definition of lub and glb we have that ∨di

0 ≤ d0 and

d1 ≤ ∧di
1. ✷

The trust structures above give a method to model trust based systems. We remark

that intervals are a natural way to express partial information: trust in a principal is

[d0,d1] when it could be any value between d0 and d1.

Example 4.3 (Intervals in [0,1]). Let R stand for the set of reals between 0 and 1,

which is a complete lattice with the usual ordering ≤, and let us consider the set I(R)
of intervals in R. It follows from the previous results that (I(R),�) is a complete lattice

and (I(R),⊑) is a complete partial order. The trust domain so obtained is particularly

interesting, as it allows us to express complex policies. In particular, it is related

to the uncertainty logic [71], where an interval [d0,d1] in I(R) is seen as a pair of

numbers where d0 is called belief and 1−d1 disbelief. Although a formal comparison

with Jøsang’s logic is beyond the scope of our presentation, in the following we shall

rework a few simple examples from [71] in the present framework.

An important property of (I(D),�,⊑) is stated below.

Theorem 4.3. Relation � is continuous with respect to ⊑ and, conversely, relation ⊑
is continuous with respect to �.

Proof. According to definition of continuity for an order respect to another, we have

to show, in the first case, that for all ω-chain c = (cn)n∈ω wrt the ordering � and for

all intervals [d0,d1], we have that for all i, ci ⊑ [d0,d1] implies
F

� ci ⊑ [d0,d1]. Let

ci = [dci

0 ,dci

1] and
F

� ci = [dc
0,d

c
1]. For all i, ci ⊑ [d0,d1] implies that [dci

0 ,dci

1]⊑ [d0,d1],
hence d

ci

0 ≤ d0 and d1 ≤ d
ci

1 . Moreover, by definition of lub, we have that [dci

0 ,dci

1] �
[dc

0,d
c
1], hence d

ci

0 ≤ dc
0 and d

ci

1 ≤ dc
1. Now, from Theorem 4.1, we have that dc

0 = ⊔d
ci

0

and then, by definition of lub, dc
0 ≤ d0 as for all i, d

ci

0 ≤ d0. We have proved that dc
0 ≤ d0

and d1 ≤ dc
1, i.e.

F

� ci ⊑ [d0,d1].

Proving that ⊑ is continuous with respect to � proceeds similarly to the proof

above.

✷

4.2. Trust Structures 49

4.2.2 Lifting Operators

The continuity of the function Π is an important requirement. This property depends

on the operators used with the policies. In the sequel we give a useful result, with

respect to our interval construction, which allows us to lift continuous operators in the

original lattice (D,≤) to continuous operators in (I(D),⊑) and (I(D),�).

Definition 4.4. For (D,≤) and (D′,≤′) complete lattices and f : D−→D′ a continuous

function, let I(f) : I(D)−→ I(D′) be the pointwise extension of f defined as

I(f)([d0,d1]) = [f (d0), f (d1)].

Note that in this definition the continuity of f ensures that I(f) is well defined.

The following proposition states that all ω-cochains in (I(D),⊑) have glbs.

Proposition 4.2. Let [dn
0 ,dn

1] be an ω-cochain in (I(D),⊑). Then ⊓[dn
0 ,dn

1] = [∧dn
0 ,∨dn

1].

Proof. Symmetric to that of Theorem 4.2. ✷

We can now give the following result about lifted functions in trust structures.

Theorem 4.4. For (D,≤) and (D′,≤′) complete lattices and f : D−→D′ a bi-continuous

function, the pointwise extension I(f) is bi-continuous with respect to both the infor-

mation and the trust orderings.

Proof. We show that I(f) is bi-continuous with respect to the information order-

ing. First we prove that I(f) is continuous, i.e.
F

I(f)([dn
0 ,dn

1]) = I(f)(
F

[dn
0 ,dn

1]) for

[dn
0 ,dn

1] an ω-chain. By definition of I(f) we have that
F

I(f)([dn
0 ,dn

1])=
F

[f (dn
0), f (dn

1)]
and from the proof of Theorem 4.2 and bi-continuity of f it follows that

G

[f (dn
0), f (dn

1)] = [∨ f (dn
0),∧ f (dn

1)] = [f (∨dn
0), f (∧dn

1)] = I(f)(
G

[dn
0 ,dn

1]).

The proof that I(f) is co-continuous follows the same patterns. Let [dn
0 ,dn

1] be an ω-

cochain. Then,
d

I(f)([dn
0 ,dn

1]) =
d

[f (dn
0), f (dn

1)] and from the proposition above and

by the bi-continuity of f it follows that

l
[f (dn

0), f (dn
1)] = [∧ f (dn

0),∨ f (dn
1)] = [f (∧dn

0), f (∨dn
1)] = I(f)(

l
[dn

0 ,dn
1]).

The proof for the trust orderings proceeds similarly. ✷

In the following examples we show how to apply the previous theorem to some

interesting operators.

Example 4.4 (Lub and glb operators). The most natural operators, regarding lattices,

are lub and glb. It is easy to see that they are bi-continuous in a complete lattice (D,≤).
Exploiting Theorem 4.4 we can now state that lub and glb with respect to � are bi-

continuous over (I(D),⊑).

Example 4.5 (Multiplication and Sum). When considering the interval construction

over R, as in Example 4.3, we can extend the operators of sum (weighted) and multi-

plication over the intervals. In fact, given two intervals [d0,d1] and [d′0,d
′
1], the product

is defined as

[d0,d1] · [d
′
0,d
′
1] = [d0 ·d

′
0,d1 ·d

′
1],

50 Chapter 4. Trust Domains

which is exactly the extension of multiplication over reals. Similarly we can define

sum as

[d0,d1]+ [d′0,d
′
1] = [d0 + d′0−d0 ·d

′
0,d1 + d′1−d1 ·d

′
1].

These operations appear in [71] under the names of conjunction and disjunction.

Example 4.6 (A non-lifted operator: Discounting). Discounting, as defined in [71],

is an operator which weighs the trust value received from a delegation according to the

trust in the delegated principal.

[d0,d1]✄ [d′0,d
′
1] = [d0 ·d

′
0,1−d0 · (1−d′1)]

This operator could be useful when referencing to other principal’s trust. The left

component can be thought of as the weight, which says how much we should consider

the value which appears on the right hand side of ✄. This operator is, obviously not

lifted from the starting lattice.

4.2.3 Product and Function Constructors

Our model should satisfy “context dependent” trust. By this we mean that trusting

a principal a to obtain information about restaurants does not mean that we trust a

about, say, sailing. We can accommodate this kind of situation using a simple property

of lattices and CPO’s. Namely, we can form products of trust structures where each

component accounts for a particular context. For instance, using a domain of the form

Restaurants× Sailing will allow us to distinguish about a’s dependability on the two

issues of our example. The next theorem shows that extending the orders pointwise to

products and function spaces gives the result we need.

Theorem 4.5. Given two complete lattices (D,≤), (D′,≤′) and a generic set X then

1. I(D×D′) is isomorphic to I(D)× I(D′);

2. X −→ I(D) is isomorphic to I(X −→ D).

Proof. In both cases we have to show that there exists a bijective correspondence H

which preserves and reflects the orderings. We use as usual (d,d) to denote pairs and

λx.t(x) to express the function which takes a value d and returns t(d).

1. Let [(d0,d
′
0),(d1,d

′
1)] and [(d2,d

′
2),(d3,d

′
3)] be in I(D×D′). We define the func-

tion H : I(D×D′)−→ I(D)× I(D′) by

H([(d0,d
′
0),(d1,d

′
1)]) = ([d0,d1], [d

′
0,d
′
1])

which is easily seen to be bijective. We first show that H is well defined, i.e. that

d0 ≤ d1 and d′0 ≤
′ d′1. This follows at once, since (d0,d

′
0)≤D×D′ (d1,d

′
1) where

≤D×D′ is the pointwise extension of ≤ and ≤′. Next we prove that H preserves

and reflects �. This amounts to prove that

[(d0,d
′
0),(d1,d

′
1)]�I(D×D′) [(d2,d

′
2),(d3,d

′
3)] (4.1)

if and only if

([d0,d1], [d
′
0,d
′
1])�I(D)×I(D′) ([d2,d3], [d

′
2,d
′
3]) (4.2)

4.2. Trust Structures 51

By Lemma 4.1, relation (4.1) above holds if and only if

(d0,d
′
0)≤D×D′ (d2,d

′
2) and (d1,d

′
1)≤D×D′ (d3,d

′
3). (4.3)

Then, by the same Lemma 4.1, property (4.3) holds if and only if

[d0,d1]�I(D) [d2,d3] and [d′0,d
′
1]�I(D′) [d′2,d

′
3],

which is the same as saying that (4.2) holds.

The proof is similar for the information ordering.

2. Let [f0, f1] and [f ′0, f ′1] be in I(X −→ D) and g in X −→ I(D). We define the

bijection H : I(X −→ D) ∼= (X −→ I(D)) by H([f0, f1]) = λx.[f0(x), f1(x)]. It

is easy to see that H([f0, f1]) is well defined. The function H−1(g) = [λx.∧
g(x),λx.∨g(x)] is the inverse of H . In fact, H−1(H([f0, f1]))= H−1(λx.[f0(x), f1(x)])
and by definition of H−1 we have that the latter coincides with

[λy.∧ (λx.[f0(x), f1(x)])(y),λy.∨ (λx.[f0(x), f1(x)])(y)],

which is [λx.∧ [f0(x), f1(x)],λx. ∨ [f0(x), f1(x)]], i.e. [f0, f1]. Conversely, we

have H(H−1(g)) = H([λx.∧g(x),λx.∨g(x)]) and, by definition of H , this is the

same as

λy.[(λx.∧g(x))(y),(λx.∨g(x))(y)] = λx.[∧g(x),∨g(x)] = g.

We now need to show that H and H−1 preserve ⊑. Regarding H we have to

prove

[f0, f1]⊑I(X−→D) [f ′0, f ′1] (4.4)

implies

λx.[f0(x), f1(x)] ⊑X−→I(D) λx.[f ′0(x), f ′1(x)] (4.5)

From Lemma 4.2 and (4.4) it follows that f0 ⊑X−→D f ′0 and f ′1 ⊑X−→D f1 and,

as the ordering is pointwise, we have that for all x, f0(x) ≤ f ′0(x) and f ′1(x) ≤
f1(x). Again by Lemma 4.2, we obtain [f0(x), f1(x)] ⊑ [f ′0(x), f ′1(x)] which, by

pointwise ordering, implies (4.5).

Regarding H−1, we show that

g⊑X−→I(D) g′ (4.6)

implies

[λx.∧g(x),λx.∨g(x)] ⊑I(X−→D) [λx.∧g′(x),λx.∨g′(x)] (4.7)

From (4.6) we have that, for any x, [∧g(x),∨g(x)] ⊑ [∧g′(x),∨g′(x)]. It then

follows that ∧g(x) ≤ ∧g′(x) and ∨g′(x) ≤ ∨g(x) which implies λx.∧ g(x) ≤
λx.∧ g′(x) and λx.∨ g′(x) ≤ λx.∨ g(x). Finally, again by Lemma 4.2, we have

that (4.7) holds.

The proof for the trust ordering is similar and, thus, omitted. ✷

Remark 4.1. Theorem 4.4 holds for any bi-continuous function f : D0× . . .×Dn −→
D. The pointwise lifting of f gives a function I(f) : I(D0× . . .×Dn) −→ I(D) and

from the result above we have that I(f) is (isomorphic to) a function F : I(D0)× . . .×
I(Dn)−→ I(D).

52 Chapter 4. Trust Domains

4.3 A Language for Policies

Following our discussion we propose to operate with a language for trust policies ca-

pable of expressing intervals, delegation, and a set of function constructions. We ex-

emplify the approach by studying the simple policy language below.

4.3.1 Syntax

The language consists of the following syntactic categories, parametric over a fixed

trust lattice (D,≤).

π ::= ppq (delegation)

| λx : P . τ (abstraction)

p ::= a ∈ P (principal)

| x : P (vars)

τ ::= [d,d] ∈ I(D) (value/var)

| π(p) (policy value)

| e 7→ τ;τ (choice)

| op(τ1 . . .τn) (lattice op)

e ::= p = p (equality)

| e bop e (boolean op)

Here op is a continuous function over (I(D),⊑), and bop is a standard boolean oper-

ator. The elements of the category p are either principals or variables. The main syn-

tactic category is π: it can be either delegation to another principal or a λ-abstraction.

An element of τ can be an interval, the application of a policy, a conditional or the ap-

plication of a continuous operator op. The elements of e are boolean functions applied

to equalities between elements of P .

It is worth noticing that such a simple language goes beyond delegation interpreted

strictly. In fact, rather that allowing principals to merely delegate somebody to decide

on their behalf, it allows them to consults with each other to form complex, informed

trust judgements. The examples to follow will clarify this concept.

4.3.2 Denotational Semantics

We provide a formal semantics for the language described above. As pointed out

before, π is a policy. Hence the semantic domain, as described in 4.1.1, will be the

codomain of the function

[[π]]σ : (P −→ P −→ T)−→ (P −→ T),

4.3. A Language for Policies 53

where σ is an assignment of values in P to variables. The semantic function [[·]]σ is

defined by structural induction on the syntax of π as follows.

[[ppq]]σm = m([p])σm;

[[λx : P. τ]]σm = λp : P .([τ])σ{p/x}m.

Here ([·])σm is a(n overloaded) function which given an assignment σ and a global trust

function m : P −→ P −→ T maps elements of p, τ, and e respectively to the semantic

domains P , I(D), and Bool as follows.

([[d0,d1]])σm = [d0,d1]

([π(p)])σm = [[π]]σm([p])σm

([e 7→ τ1;τ2])σm = if ([e])σm then ([τ1])σm else ([τ2])σm

([op(τ1 . . .τn)])σm = op(([τ1])σm, . . . ,([τn])σm)

([a])σm = a ([x])σm = σ(x)

([p1 = p2])σm = ([p1])σm = ([p2])σm

([e1 bop e2])σm = ([e1])σm bop ([e2])σm

Let {πp}p∈P be a an arbitrary collection of all policies, where πp = λx : P .⊥ for all

but a finite number of principals. The fixpoint semantics of {πp}p∈P is the global trust

function determined by the collection of individual policies, and it is readily expressed

in terms of [[·]]σ:

{[{πp}p∈P]}σ = fix(λm.λp.[[πp]]σm).

We believe that this policy language is sufficiently expressive for most application

scenarios in GC, as supported by the following examples. Note however that our

approach generalises to any choice of underlying trust structure (T ,�,⊑), provided

the operators used in the policy language are continuous with respect to the information

ordering.

Example 4.7 (Read and Write access). Let D = {N,W,R,RW} represent the access

rights to principal’s CVs. The set D is ordered by the relation ≤

∀d ∈D.N≤ d and ∀d ∈D.d ≤ RW.

Let us consider how to express some simple policies in our language. The following

policy says that LIZ’s trust in BOB is at least [W,RW] and depends on what she thinks of

CARL. Instead, LIZ’s trust in CARL will depend on her trust in BOB: if it is above [W,W]

then [R,RW] otherwise [N,RW].

πLIZ = λx : P .

x = BOB 7→ [W,RW]∨pLIZq(CARL);

x = CARL 7→

([W,W] � pLIZq(BOB) 7→ [R,RW];[N,RW]);

[N,RW]

54 Chapter 4. Trust Domains

This policy can be made dependent on someone else’s belief. For instance, the

above judgement about BOB is merged below with PAUL’s belief (weighed by discount-

ing).

πLIZ = λx : P .

x = BOB 7→ [N,W]∨pLIZq(CARL)

∨pLIZq(PAUL)✄pPAULq(x);

x = CARL 7→

([W,W] � pLIZq(BOB) 7→ [R,RW];[N,RW]);

[N,RW]

In this case LIZ’s trust in PAUL is the bottom value [N,RW] which is going to be the

left argument of the discounting operator ✄.

Example 4.8 (Spam Filter). Let R be as in Example 4.3. We illustrate some policies

modelling filters for blocking spam emails. The set of principals P is the set of Internet

domains from which we could receive emails, e.g. daimi.au.dk. A starting policy,

where we suppose that our server spam.filter.edu knows no one, could be

π1 = λx : P . x = spam.filter.edu 7→ [1,1]; [0,1],

meaning that only internal emails are trusted. It could happen that spam.filter.edu

starts interacting with other principals. A likely event is that it receives a list of other

universities’ Internet domains, and decides to trust them to a large extent, and actually

use their beliefs. We could have

π2 = λx : P . x ∈ UniList 7→ [.75,1];
_

y∈UniList

pyq(x) ∨ π1(x),

where we suppose that “∈” stands for a chain of nested conditionals for all the elements

of UniList. Let us suppose now that the filter receives emails from a certain number of

suspicious addresses, and would like to single them out and enforce a special treatment

for them. The policy could be updated as

π3 = λx : P . x ∈ BadList 7→ [0, .5]; π2(x).

The spam-filter could then decide to add a new level of badness and create the new list

VeryBadList. At the same time, it would like to change the policy for BadList putting

certain restrictions on the intervals returned as other universities’ opinions.

π4 = λx : P .

x ∈ VeryBadList 7→ [0, .2];

x ∈ BadList 7→ π2(x)∧ [0, .5];

π2(x).

As illustrated in the Spam Filter example, we see trust evolution as being mod-

elled by suitable updates of policies, as response to, e.g., observations of principal

behaviour. However, it is still not clear exactly what update primitives are required

in practice. We are currently working on developing a calculus of of trust and prin-

cipal behaviour, with features for trust policy updates We will return on this in the

concluding section.

daimi.au.dk
spam.filter.edu
spam.filter.edu
spam.filter.edu

4.3. A Language for Policies 55

Example 4.9 (Reputation Based Systems). The work [108] presents a reputation-

based model of trust, where each principal a has an associated history Ha of observa-

tions, or events. A history (e1, . . . ,en) indicates that event ei has happened after events

e1, . . . ,ei−1, for all i. A principal can provide information to the others (a.k.a. ‘recom-

mending’) based on its past history. This means that it is not trust being propagated

between principals, but observations. Reputation is then defined to be (as a formula

satisfied) when a principal has never been observed to ignore certain conditions, i.e.,

if it never misused a resource.

Our approach is flexible enough to express some of this. (A full treatment requires

the integration of policy updates in the policy language.) The idea is to make history

part of a policy π, so that a principal’s trust decision process can be defined in terms of

its own and other principals’ past observations. Let us consider the example of a peer-

to-peer file distribution system discussed in [108]. In such scenario, users are allowed

to download provided that they allows at least one upload every three downloads. Let

B be the set of ordered boolean values, with ff ≤ tt, and let N• be the set of natural

numbers completed with a top element ∞. Histories are elements of H = P →N•×N•,
i.e. functions which assign to principals the numbers of uploads and downloads they

performed in the past. Then, a’s trust function πa is of the kind

P →H→ B

where we understand that a after a history h trusts x to download if πa(x)(h) yields tt.

The SERVer’s policy can be written as follows in a suitable “sugared” version of our

language:

πSERV = λp : P .λh : H. let (u,d) = h(p) in d ≤ 3u.

If access is granted, h is updated in view of the next invocation by increasing p’s count

of downloads and, correspondingly, its peer’s count of uploads.

Chapter 5

A Calculus for Trust Management

Following up the discussion of the previous chapter, we introduce a process calculus

for modelling trust management systems (ctm). We saw that already many models

for trust based system have appeared in the literature, and most of them feature some

sort of logic to describe trust policies. However, lacking a notion of protocol, such ap-

proaches typically fall short to describe the exact behaviour of systems, which is a fun-

damental property when security concerns are present. Consider for instance a server

whose policy is to grant access only to a certain class of users, but whose (flawed) pro-

tocol of communication always allows access to a particular resource. Even though the

policy may be correct, the whole system is not. A second aspect of paramount impor-

tance here is to allow principals’ interactions to feedback to the security mechanisms

and influence future policies. For instance, access rights can change for a principal in

response to its behaviour, and how precisely this behaviour should be observed and the

variation should take place ought to be part of the model.

The aim of this chapter is to develop a coherent framework centred on these two

aspects, and establish its basic theory. In ctm, a principal is specified by a pair, a

policy α and a protocol P, which interact in precise ways, as described below. The

policy α informs the protocol P as to what actions are allowed at any given time,

and works on the basis of evidence and observations collected from past interactions.

Dually, P interacts with a network of other principals, and in doing so it produces the

observations gathered in α. The protocol P will consult α when making a decision,

e.g. whether or not to grant a specific service to a specific principal. Schematically, we

can represent the situation as in the informal picture below.

(Policy ⇐⇒ Protocol) ‖ Network

We model the “policy” side of the drawing with a decidable logic. The choice is a

Datalog-like logic: a principal’s policy will be represented as a set of formulas de-

pending on a set of past observations. On the “protocol” side, our model is based on a

process calculus in the style of the π-calculus [84]. More precisely, ctm is a calculus

with locations linked by channel names. Each location (uniquely) identifies a principal,

and the diagram above would be represented as a{ P }α |N, where a is a principal with

protocol P and policy α, in parallel with the rest of the network N. In ctm we associate

the action of sending a message to another principal as granting a particular resource

(viz. the service represented by the channel name). Outputs will then be guarded by

57

58 Chapter 5. A Calculus for Trust Management

a formula φ from the logic, as for instance φ :: b · ℓ〈m̃〉, which according to the truth

value of φ allows the protocol to send m̃ to b on channel (or method) ℓ. As a concrete

example, a protocol like Access(b,R) :: b · l〈n〉 would stand for “if my policy grants b

‘Access’ to R, then send n along l to b.” Symmetrically, inputs represent requests of

services, and form the observable basis mentioned above. For instance, if executing

an input action b ·print(y) .P, we receive a message ‘junk’ for y from b, we observe

and record that b has attempted to print a corrupted file. As mentioned above, multiple

channels at a single location allows to distinguish among different services provided

by a principal. We assume in ctm that the identity of communicating principals cannot

be corrupted (i.e. we assume implicitly that authenticity etc. is guaranteed by lower

level protocols).

In order to allow principals to offer services to generic (as opposed to named)

clients, ctm features a new form of input capability, which allows to abstract from the

communicating principal. For instance, in order to offer a printing service for all, we

would write x ·print(y) .P, where x is a variable, which at the time of interaction will

be bound to the name of the principal requesting the service. We call this operation

global input.

The calculus ctm seems a powerful tool for expressing several examples of trust-

based systems for GC. Casting these ingredients in the world of process algebras pro-

vides many interesting theoretical notions, and in particular behavioural equivalences.

The natural separation of principals in pairs of components, viz. policies and protocols,

induces new notions of equivalences. In particular, besides studying equivalences of

principals and networks, one can focus on protocols as well as policies. Technically,

the main contribution of this chapter is to introduce a theory of observational equiva-

lence for trust-based systems, which captures in a single and homogeneous framework

equivalences for protocols, policies, principals and networks.

5.1 The Calculus

Let Val be a denumerable set of values ranged over by l,m and partitioned into sets P

and N, respectively the set of principals (ranged over by a, b, c) and the set of names

(ranged over by n). Moreover Var (ranged over by x, y, z) is a set of variables such that

Var∩Val = /0. In the sequel we assume u,v in Var∪Val and p in Var∪P . The letter

Φ denotes the set of predicats ranged over by letter φ. As usual a tilde over a letter

indicates the extension to vectors.

5.1.1 Abstract Policies

As explained above, each principal acts on a body of knowledge built on the past

interactions with other principals. In this subsection, we take care of how such a

knoledge is kept, i.e. with the use of policies. In order to do so, we give a very general

definition which is somehow capable to embed numerous models that can be found in

literature. The following defintion introduces the notion of policy frame.

Definition 5.1 (Policy Frame). A policy frame over Val is a triple (Λ,upd,fn) where

5.1. The Calculus 59

• Λ is the set of abstract policies, (decidable) functions from Φ to {tt, f f} denoted

by letters α, β;

• upd is the update, a (decidable) function of type Λ×Msg→ Λ;

• fn : Λ→N is the free names function.

We write α ⊢ φ whenever α(φ) = tt.

Policies are functions which given an element of Φ (to be seen as a predicate)

return a truth value. The function upd is meant for the dynamic feature of principals.

Each principal interacts with others, and always acquires new information so that the

policy must be updated. The function fn may be thought as a more ad-hoc construct

which refers to the protocol part of a principal and is used to deal with free names.

Nevertheless a notion of free names can be surely seen as part of the likelihood of the

knowledge a policy has.

A policy frame provides a very general setting where to define policies. In a pos-

sible application this approach would be too abstract, and as consequence there is the

need of a language for writing down policies, e.g. the policy language seen in the

previous chapter. One possible alternative to that policy language can be the work

done in [72] where they give a declarative language, based on a pure-past variant of

linear temporal logic, for writing interaction policies. A typical problem for this kind

of models is how to efficiently re-evaluate a policy when new information is available.

To this purpose, they also give two efficient algorithms which provide an interesting

time/space trade-off.

Interaction Datatypes

We now introduce our suggestion for instantiating policy frames, i.e. using interaction

datatypes, that can also be found in [34].

Messages in our calculus have form a · l̃ ✄ m̃ representing a message m̃ from prin-

cipal a on channel l̃.

Definition 5.2 (Interaction Datatype). An interaction datatype M over Val is a triple

(S ,R ,upd) where S is a generic set of so-called interaction values, R is a set of

decidable subset of S ×Valk, and upd is a function which given s ∈ S and a message

a · l̃ ✄ m̃ returns an element of S .

According to the above definition, the set S is a generic set: the idea is to build

elements of S as representation of abstract information about past interactions with

other principals. The set R defines the basic predicates binding together interaction

values and elements of Val, and upd defines the effect in S by receiving a message.

Example 5.1 (Lists and Multisets). Let S be the set of lists with elements a · l̃ ✄m̃, i.e.

S = {[a1 · l̃1 ✄ m̃1, . . . ,ak · l̃k ✄ m̃k] | k≥ 0} and upd the operation of list concatenation.

The set R could contain the relation lastm̃ which holds true of lists whose last element

carries the message m̃, and the relation from≥5(a), satisfied whenever the number of

messages in the list from a is larger than 5. Another interesting example is when S is

the set of multisets over elements a · l̃ ✄ m̃ with multiset union as upd. Predicates can

express the number of message occurrences, e.g. predicate x ·−✄ y < k is satisfied by

60 Chapter 5. A Calculus for Trust Management

all elements of S such that the number of occurrences of elements x · z✄ y is less than

k.

Principals use policies to make decisions based on the information contained in an

element s ∈ S of a given interaction datatype M .

Definition 5.3 (Policy). Let M = (S ,R ,upd) be an interaction datatype, let P and PM

be disjoint signatures of predicates symbols, with PM in one-to-one correspondence

with R . A policy π is defined as a set of rules of type L(ũ)← L1(ũ1), . . .Lk(ũk) such

that L ∈ P and Li ∈ P ∪PM .

π is interpreted as a Datalog program [5] relative to an element s ∈ S . More precisely,

each rule in π is interpreted as Datalog implication, where predicate symbols in PR

take as an implicit first argument the interaction value s. Given a pair (π,s) and a

predicate A(l̃) we write (π,s) ⊢ A(l̃) meaning that A(l̃) is entailed by the Datalog

program π relative to s.

Notice that what shown in this example is just an instance of a policy frame. The

function upd is just the update function of a policy frame, whereas the set of abstract

policies Λ needs slightly more consideration. Pairs (π,s) can be seen as abstract poli-

cies α, but, obviously the function ⊢ (which is really the application of α to an element

of Φ) is slightly more restricted. Concerning the notion of free names, we just translate

it to the normal logic free names notion, e.g. the one in FOL. In the rest of this chapter

we will always use interaction datatypes for the examples, as they provide a simple

and concise language for describing policies.

5.1.2 Syntax

Let (Λ,upd,fn) be a policy frame over Val. The syntax of ctm is then featured by two

main syntactic categories: networks (N) and protocols (P,Q).

N,M ::= ε (EMPTY) P,Q ::= 0 (NULL)

| N | N (NET-PAR) | Z (SUB)

| a{ P }α (PRINCIPAL) | P | P (PAR)

| (νn) N (NEW-NET) | (νn) P (NEW)

| !P (BANG)

Z ::= p · ũ(x̃) .P (INPUT)

| φ :: p · ũ〈ṽ〉 .P (OUTPUT)

| Z + Z (SUM)

A network N is composed of principals running in parallel. Each principal is

equipped with a protocol P and a policy α. A network N is said to be consistent

whenever principals names are unique, i.e. for each a ∈ P there is at most one sub-

term of N of the kind a{ P }α for some P and α. From now on we assume to work only

with consistent networks.

A protocol P is given in the style of π-calculus [84]. The protocol 0 represents the

inactive process. Terms (input) and (output) represent the main actions, and both can

5.1. The Calculus 61

be part of the standard sum operator (guarded choice). As remarked in the introduction,

the input capability can either refer to a specific principal, or be global. The output

action sends a message on a channel and is guarded by a predicate φ in the signature

P . For generality, we allow composite channel names as in [31]. The (bang) and (par)

operators are standard. As for the π-calculus, we shall omit trailing inactive processes.

The functions for free names fn (resp. bound names bn) and free variables fv (resp.

bound variables bv) are defined as usual on networks and protocols. Closed and open

terms are defined as usual (with respect to variables). We recall from Chapter 2 that the

symbol σ denotes a substitution from variables to names. Applying a substitution σ to

a network N (or a protocol P) will be denoted by Nσ (Pσ). The global input variable

is a strong binder, e.g. in x · l(y).x · l(y) the first x binds the second, instead the first y

does not bind the second y. We omit trivial guards from outputs, i.e. tt :: b · l̃〈m̃〉 will

be written as b · l̃〈m̃〉 where tt denotes the “always” true predicate.

5.1.3 Reduction Semantics

In this section we give the formal semantics of the calculus in terms of reduction

semantics. The structural congruence relation ≡ is the least congruence relation on N

such that | and + are commutative monoids on protocols, | is a commutative monoid

on networks, and such that it satisfies alpha-conversion and the rules

(Struct1) a{ !P | Q }α ≡ a{ P | !P | Q }α

(Struct2) (νn) (νn′) W ≡ (νn′) (νn) W for W ∈ {P,N}

(Struct3) a{ (νn) P | Q }α ≡ a{ (νn) (P | Q) }α if n 6∈ f n(Q)

(Struct4) (νn) N |M ≡ (νn) (N |M) if n 6∈ f n(M)

(Struct5) a{ (νn) P }α ≡ (νn) a{ P }α if n 6∈ fn(α)

We define → as the least binary relation on N satisfying the rules given in Ta-

ble 5.1. Rule (RCOM) defines communication between two principals. The operator

⊙ is defined on tuples, as the most general unifier returning a substitution σ, whose

application in the semantics is conditioned by successful unification. The rule (RINT)

describes internal communication and is similar to (RCOM). Rules (RSTRUCT) and

(RPAR) are standard. As usual we define ⇒ as the reflexive and transitive closure of

→.

We can conclude this subsection with the following lemma which describes the

structure of processes involved in reductions.

Lemma 5.1. If N→M then one of the following results holds

• there are ñ, a, φ, b, l̃, m̃, P, P′, P′′, Q, Q′, Q′′, α, β and N ′ such that

– N ≡ (νñ) (a{ φ :: b · l̃〈m̃〉 .P+ P′′ | P′ }α | b{ p · l̃(x̃) .Q + Q′′ | Q′ }β | N
′)

– M ≡ (νñ) (a{ P | P′ }α | b{ Qσ | Q′ }β′ | N
′)

– α ⊢ φ

• there are ñ, a, φ, l̃, m̃, P, P′′, Q, Q′, Q′′, α and N ′ such that

62 Chapter 5. A Calculus for Trust Management

(RCOM)

R , p · l̃(x̃) .P

S , φ :: a · l̃〈m̃〉 .Q
β ⊢ φ α′ = upd(α,b · l̃ ✄ m̃) b : m̃⊙ p : x̃ = σ

a{R+P′ | P′′ }α | b{S+Q′ | Q′′ }β→ a{Pσ | P′′ }α′ | b{ Q | Q′′ }β

(RINT)
α ⊢ φ α′ = upd(α,a · l̃ ✄ m̃) a : m̃⊙ p : x̃ = σ

a{ p · l̃(x̃) .P+P′ | φ :: a · l̃〈m̃〉 .Q+Q′ | Q′′ }α→ a{ Pσ | Q | Q′′ }α′

(RRES)
N→ N ′

(νn) N→ (νn) N ′

(RSTRUCT)
N ≡ N ′ N ′→M′ M′ ≡M

N→M
(RPAR)

N→M

N | N ′→M | N ′

Table 5.1: Reduction Rules.

– N ≡ (νñ) a{ φ :: a · l̃〈m̃〉 .P+ P′′ | p · l̃(x̃) .Q + Q′′ | Q′ }α | N
′

– M ≡ (νñ) a{ P | Qσ | Q′ }α′ | N
′

– α ⊢ φ

Proof. It follows from the definition of the reduction relation →, by induction on the

rules in table 5.1. ✷

5.1.4 An example

Suppose a printer a has two functions: black-and-white and colour printing. The latter

service is more expensive and therefore “harder” to get access to. The system is trust-

based, meaning that according to its behaviour a principal may not be allowed to use

a printer. In ctm this corresponds to writing principal a{ P }α where the policy and

the protocol are defined as follows. Let message j represent the reception of a ‘junk

document’ and M be the interaction datatype of lists, where the predicate a ·−✄j < k

checks that messages in the list of type a · l̃ ✄j occur less than k times. We then define

the policy π as { Access(x,Colour)← x ·−✄j < 3; Access(x,BW)← x ·−✄j < 6}
where Access(x,y) is a predicate meaning that x can access y. Moreover we assume

that upd() keeps only lists of length at most n deleting the oldest messages and judging

if a message is junk. Finally protocol P is defined as

P = !x ·printC(y) .Access(x,Colour) :: printer ·printC〈y〉 |

!x ·printBW(y) .Access(x,BW) :: printer ·printBW〈y〉

In this example the action of granting access to the printer is modelled by sending a

message to printer. A user could then be modelled as principal b running the protocol

Q = a ·printC〈spam〉 .a ·printBW〈spam〉 .a ·printC〈spam〉 | a ·printC〈doc〉

5.2. Barbed Equivalences 63

Suppose that upd() will store spam as j and consider the network N = a{ P }(π, /0) |
b{ Q }α where /0 is the empty list. If a ·printC〈doc〉 is executed first, b will get the

authorisation to use the printer. But if the left component is all executed then b will no

longer be able to colour-print as he has printed too much junk. Note that as we chose

the function upd() to keep lists of length at most n, any principal can behave well for

n times and regain trust.

5.2 Barbed Equivalences

We now move to study the semantic theory of ctm. We start with the notion of context,

which is going to be used for defining equivalences for ctm.

5.2.1 Contexts

In this subsection we define the notion of context for networks, principals, protocols

and policies as done in the preliminaries for the π-calculus. We shall use them further

on for defining equivalences on ctm terms.

Definition 5.4 (Contexts).

• A network context C[·] is defined as C[·] = · | (νñ) C[·] | C[·] | N

• An a-principal context Ca[·1, ·2] is defined as Ca[·1, ·2] = a{ ·1 }·2 | N

• An a-protocol context Ca[·] is defined as Ca[·] = a{ · | R }α | N

• An a,P-policy context CP
a [·] is defined as CP

a [·] = a{ P }· | N

Given a network context C[·], we say that C[·] is consistent with respect to a net-

work N, whenever C[N] is consistent.

5.2.2 Barbs

We now discuss the notion of observation formalised in terms of the actions offered to

the environment. Formally we write N ↓ a ·b whenever one of the following conditions

is satisfied:

• N ↓ a ·b if N ≡ (νñ) a{ φ :: b · l̃〈m̃〉 .P + P′ | Q }α | N
′ and α ⊢ φ,b 6∈ P (N ′);

• N ↓ a ·b if N ≡ (νñ) a{ p · l̃(x̃) .P+ P′ | Q }α | N
′ and b 6∈ P (N ′).

where P (N ′) is the set of principals contained in N ′, l̃ ∩ ñ = /0 and if p 6∈ Var then

p = a. This definition excludes observing internal and restricted actions. Moreover we

write N ⇓ a ·b whenever there exists M such that N⇒M and M ↓ a ·b.

64 Chapter 5. A Calculus for Trust Management

5.2.3 Network Reduction Congruence

The first equivalence we introduce is on networks. We want to define a relation which

equates networks in a reasonable way. Above we have defined what is observable,

namely part of the operations that a network is able to perform in one move. This sug-

gests that if two networks are to be equivalent they must have, at least, the same barbs.

But this is not enough as it could be that they behave the same now, but completely

differently in the future moves. To this purpose we should also impose that this equiv-

alence for barbs is preserved by any reduction and any context where the two networks

could be placed. Formally, what said is expressed as follows

Definition 5.5 (Network Reduction Congruence). A network reduction congruence

is a symmetric relation R on networks such that whenever NR M

• N ↓ a ·b implies M ↓ a ·b;

• N→ N ′ implies M→M′ and N ′R M′;

• C[N]R C[M] for all network contexts C[·] consistent with respect to N and M.

Two networks are reduction congruent (≃) if related by a network reduction congru-

ence.

The definition given above differs from the one we give in [34]. Nowadays, defin-

ing barbed congruence in the style of [63] is strongly recommended as it implies many

simplifications when proving completeness of bisimulation proof methods. The defini-

tion we give in [34] takes into account only the first two points of the definition above,

and then ≃ is defined by closure under every possible context. The definition above

implies the one in [34] but the opposite is not always true. We believe that it would

hold for ctm as it does for the asynchronous π-calculus [50] but we do not consider

it in this dissertation. Note that, in Chapter 2, we gave the other definition for the

π-calculus. This was done on purpose, so to report, in this dissertation, both methods,

and make the reader aware of the two.

We now show an example of network reduction congruence.

Example 5.2. Consider the networks N = a{ a · l〈〉 | x · l′() } /0 | b{ P } /0 and M =
a{ x · l′() } /0 | b{ P } /0. It is easy to see that the two networks are network reduction

congruent: there is no context able to distinguish the two networks, as it is only possi-

ble to communicate to principal a via an output matching x · l′(). In next section, we

shall provide a method for proving these equivalences.

Remark 5.1. Note that whenever two networks are reduction congruent, then they must

have the same topology. In fact, if that was not the case, we would get a contraddiction

by finding a context which distinguishes them. Consider, for example, the networks

N = a{ P }α and M = b{ Q }β for some P,Q,α and β. If we take the context C[·] = · |
c{ y · l(x) } /0 we then have that C[N] 6↓ b ·a whereas C[M] ↓ b ·a.

5.2.4 Barbed Equivalences for Principals

We now define three different barbed equivalences for principals: one on protocols,

one on policies and one on principals.

5.2. Barbed Equivalences 65

Protocol Reduction Equivalence

Protocol reduction equivalence compares only protocols. The definition exploits net-

work reduction congruence, namely we impose that given a protocol context, we say

that two protocol are equivalent whenever given any protocol context where to be

plugged, the resulting networks will always be reduction congruent. Formally,

Definition 5.6 (Protocol Reduction Equivalence). Given a principal a, we say that

P and Q are a-reduction congruent, written P ≃a Q, if Ca[P] ≃Ca[Q] for all protocol

contexts Ca[·].

Intuitively two protocols are equivalent whenever they are able to observe the same

events, input the same data and granting access in the same way, i.e. guards are such

that there is no policy able to distinguish them. For instance, φ :: b· l〈m〉 and φ′ :: b· l〈m〉
are equated only if φ and φ′ hold true for exactly the same set of policies α.

We remark that for protocol reduction equivalence, we made a choice among many.

There are many alternatives when choosing the context where the protocol must be

plugged. The definition we gave makes protocol reduction equivalence a “non-input”

congruence, i.e. the equivalence holds for all those contexts which do not have a hole

after an input. The same matter can be discussed for the π-calculus where barbed

equivalence does not consider input contexts. From our point of view, composition of

contexts is only interesting when used with the parallel operator and not with prefix-

ing. Prefixing looks quite unnatural, but nevertheless, studying a full congruence for

protocols would not require deep treatment.

Policy Reduction Equivalence

Varying the kind of contexts we use, we can use reduction congruence to assess poli-

cies with respect to a fixed protocol P. The idea is that, given P, two policies are going

to be equivalent whenever they “control” P’s behaviour in the same way.

Definition 5.7 (Policy Reduction Equivalence). Given a principal a, we say that α
and β are a-barbed equivalent with respect to P, written α ≃P

a β, if for all policy con-

texts CP
a [·], we have CP

a [α]≃CP
a [β].

This equivalence allows, e.g., to remove formulas which P would never use.

In the following definition we introduce a notion of observation for protocols so

that we can see which guards are ever going to be used, and so interest a policy.

Definition 5.8. We write

• P ↓ φ if P≡ (νñ) (φ :: b · l̃〈m̃〉 .P+ P′ | P′′) for ñ∩ l̃ = /0;

• P ⇓ φ if there exists N and α such that a{ P }α | N→
∗ a{ P′ }α′ | N

′ and P′ ↓ φ;

• P ⇓ H if H = {φ | P ⇓ φ}.

Note that if P ⇓H and for all φ ∈H we have that (α,s) ⊢ φ if and only if (β,s) ⊢ φ
implies α≃P

a β. The opposite is of course not true, just consider the protocol P = φ ::

b · l〈m〉 | φ′ :: b · l〈m〉 and policies α and β such that α ⊢ φ, α 6⊢ φ′, β ⊢ φ′ and β 6⊢ φ. In

this case we have that α≃P
a β but the policies entail different formulas.

In the following we write α ⊢ H whenever H = {φ | α ⊢ φ}.

66 Chapter 5. A Calculus for Trust Management

Theorem 5.1. Suppose that α ⊢H and β ⊢ H ′. If α≃P
a β for all P, then H and H ′ are

equivalent, i.e. equal up to logical equivalence of the formulas they contain.

Proof. It follows from the definition. ✷

Principal Reduction Equivalence. We now introduce the last of our equivalences,

principal reduction equivalence.

Definition 5.9 (Principal Reduction Equivalence). Given a principal a, we say that

(α,P) and (β,Q) are a-barbed equivalent, written (α,P)≃P
a (β,Q), if Ca[α,P]≃Ca[β,Q]

for any a-principal context Ca[·1, ·2].

It is possible to define the previous two equivalences in terms of barbed principal

equivalence. We are now able to state the following

Proposition 5.1. P ≃a Q if and only if for all α and protocols R we have that (α,P |
R)≃P

a (α,Q | R).

Proof. Trivial. ✷

Proposition 5.2. α≃P
a β if and only if we have that (α,P)≃P

a (β,P).

Proof. Trivial. ✷

Example 5.3 (Implication). We consider a variation of the printer access control ex-

ample and apply principal reduction equivalence. Suppose that a server a manages two

printers both offering colour and b/w printing as before. The only difference between

them is that Printer 1 does not distinguish colour from b/w printing, while Printer 2

does, e.g., by granting access only for b/w printing. For z ∈ {1,2} we define the fol-

lowing protocol for a print server.

P(z) =(νn) (a ·n() | !a ·n〈〉 .x · z(y) .Access(z,x) :: x · z〈OK〉 .

(x · z · col() .Col(z,x) :: x · z · col〈OK〉 .a ·n() +

x · z ·bw() .BW (z,x) :: x · z ·bw〈OK〉 .a ·n()))

Note that the protocol first checks if it can give access to any type of printing, then

verifies which one. The bang is used for writing a recursive protocol: after finishing

dealing with a principal, the protocol will be ready once again to provide the service

for printer z. The final server protocol is P(1) | P(2); its policy is as below, where j

and doc represents respectively a junk and a proper document.

α = {Access(1,x)← x ·1✄j≤ x ·1✄ doc; Col(1,x)← Access(1,x);

Col(2,x)← x ·2✄j = 0; BW (1,x)← Access(1,x); BW (2,x)← Access(2,x);

Access(2,x)← x ·2✄j≤ 5}

Then the principal would be represented by the pair (α,P(1) | P(2)). Using the

equivalence ≃P
a we can rewrite the principal as (α,Q | P(2)) where

5.2. Barbed Equivalences 67

Q = (νn) (a ·n() | !a ·n〈〉 .x ·1(y) .Access(1,x) :: x ·1〈OK〉 .

(x ·1 · col() .x ·1 · col〈OK〉 .a ·n() + x ·1 ·bw() .x ·1 ·bw〈OK〉 .a ·n()))

In fact (α,P(1) | P(2))≃P
a (α,Q | P(2)) and this can be explained by the following

argument. In protocol P(1) | P(2) the output x · 1 ·Col〈OK〉 is guarded by Col(1,x)
instead in Q | P(2) it is unguarded. We need to show that Col(1,x) is always true at

that point of the computation. In fact in α the predicate Access(1,x) implies Col(1,x)
and the action x · 1 · bw does not change the value of Access(1,x) (Q and P(z) are

sequential) as well as the inputs executed by the branch P(2). We shall give more

formal proof in Section 5.3.7.

It is straightforward to prove that α≃Q|P(2)
a α′ where

α′ = { Access(1,x)← x ·1✄j≤ x ·1✄ doc; Col(2,x)← x ·2✄j = 0;

Access(2,x)← x ·2✄j≤ 5}.

Now by Proposition 5.2 we then have that (α,P(1) | P(2))≃P
a (α′,Q | P(2)).

5.2.5 A Weak Reduction Congruence for Networks

Above we have analysed equivalences for manipulating single principals and networks.

We now introduce a weaker kind of equivalence for networks, called weak reduction

congruence. As explained in the preliminaries in the case of π-calculus, weak equiv-

alences usually ignore silent moves, i.e. a reduction in another part of the network is

not considered. We now give the definition for ctm networks.

Definition 5.10 (Weak Network Reduction Congruence). A network reduction con-

gruence is a symmetric relation R on networks such that whenever NR M

• N ↓ a ·b implies M ⇓ a ·b;

• N→ N ′ implies M⇒M′ and N ′R M′;

• C[N]R C[M] for all network contexts C[·] consistent with respect to N and M.

Two networks are reduction congruent (∼=) if related by a network reduction congru-

ence.

From the previous definition it follows that the weak case includes the strong one.

Proposition 5.3. Weak network reduction congruence includes network reduction con-

gruence.

Proof. It is clear by the definition, that any network reduction congruence is also

weak. ✷

We now show an interesting application of such a congruence in an example where

recommendations are taken into account.

68 Chapter 5. A Calculus for Trust Management

Example 5.4 (Recommendations and Trust Security). Trusting someone may be a

consequence of observed good behaviour, but it may also be a consequence of good

recommendations from a trusted third party. In this example we show how to describe

in ctm a system where principals’ trust is based both on observations and recommen-

dations. We consider a European network of banks where each bank issues mortgages

for customers according to a policy. The policy grants a mortgage whenever the cus-

tomer has always paid back previous mortgages and, additionally, other banks’ opin-

ions about the customer are positive. In ctm, granting the mortgage is equivalent to

proving a predicate G(x) from the following policy

π1(Y) = {G(x)←Y ·−✄ (x,Bad) = 0, M(x); Good(x)← M(x), Bad(x)← NoM(x)}.

The interaction datatype is multiset. The predicates Good and Bad (which will be

used for recommendations) depend on the predicate M and NoM only (local observa-

tions), instead the predicate G depends also on the recommendations received from

Y . The predicate M(x) is assumed to check whether every mortgage granted to x is

matched by a full repayment: in order to get a mortgage, there must be no outstanding

mortgages. This is expressed by identifying messages with a fresh name w. We can

then define the following template for banks.

P1(X ,Y) = !x ·mg(w) .(νk) (Y ·rec〈k,x〉 .Y · k(x,z) .G(x) :: X ·gr〈x,w〉)

| !X ·gr(x,w) .x ·w〈〉 .x ·w()

| !Y ·rec(k,x) .(Good(x) :: Y · k〈x,Good〉+Bad(x) :: Y · k〈x,Bad〉)

Bank X has three components: one for granting mortgages, one for accounting, and

one for giving recommendations to another bank Y . When receiving a request from a

on channel mg a fresh name w reserved for the particular transaction is received. Then

X will send a request of recommendation to bank Y . At this point, if the predicate

G is provable from the policy, the protocol will transfer the request to the accounting

component (on channel gr), which will send an authorisation message to a, and will

finally be waiting for a repayment. In case G is not provable, the request will be pend-

ing. As pointed out before, the policy will take care of denying further authorisations

until repayment. The third component, which gives recommendations to bank Y , just

checks whether the predicate Good or Bad are provable, and sends a message accord-

ingly. Suppose now that BF and BI are respectively French and Italian banks. We can

define a network of banks as follows.

N1 = BF{ P1(BF ,BI) }(π1(BI), /0) | BI{ P1(BI ,BF) }(π1(BF), /0)

Suppose now that a customer a has just moved from Italy to France, and she is

asking the French bank BF for a mortgage, e.g. with the protocol (νw) BF ·mg〈w〉 .BF ·
w() .BF ·w〈〉. Let us now define a different network of banks using a third party (O)

which is going to deal with all the requests. The following policy is used by principal

O.

π2(X ,Y) = {G(X ,x)← M(Y,x),M(X ,x)}

5.3. A Characterisation of Barbed Equivalences 69

All the operations previously performed by the banks will now be performed by

this policy, and we no longer need recommendations. The following is part of the

protocol for principal O.

F(W) = W (x,w) .G(W,x) :: O ·W ·gr〈x,w〉 | !O ·W ·gr(x,w) .W ·w〈〉 .W ·w()

The banks will only forward messages from the principals to O and vice-versa.

P2 = !x ·mg(w) .O〈x,w〉 .O ·w() .x ·w〈〉 .x ·w() .O ·w〈〉

The entire new network will be

N2 = O{ !(F(BF)+ F(BI)) }(π2(BF ,BI)∪π2(BI ,BF), /0) | BF{ P2 }(/0, /0) | BI{ P2 }(/0, /0)

We then have that N1 ∼ N2 accordingly to the definition of ∼. We shall prove this

in Section 5.3.7 where we provide a proof method for this equivalence.

Note that in this example, O works as a “headquarter” which collects information

from the banks. This is a further step from the work in the previous chapter (and [33]),

where we computed principal trust policies as the least fixed point of a global function.

Such a thing, plainly unfeasible in a distributed scenario, can be implemented in ctm.

For instance, the global trust function can be expressed as the policy of a principal,

e.g. O, and the fixed point as a computation. Then, using the network equivalence, one

may be able to simplify the network and avoid the use of “headquarters,” like in this

example. This is generic technique for stating (and proving) the correctness of a “web

of trust”, with a specification in the form of a centralised “headquarter”.

5.3 A Characterisation of Barbed Equivalences

As mentioned above, the equivalences introduced lack a proof method for showing

whether two processes or two networks are in the same equivalence class. E.g., given

two networks, proving that they are network equivalent would require a quantification

over all possible contexts, and this is not what we want. In concurrency theory, it is

common to provide a proof method for this purpose. In the preliminaries we saw how

this is done for the π-calculus, and how powerful the method is.

5.3.1 A labelled transition system

We now give an alternative definition for the semantics of ctm in terms of labeled

transition system. The new semantics consists of two relations: one for protocols and

one for networks. In Table 5.2 there are the rules for the relation
µ
−→a. The semantics

(relation) deals with pairs policy-protocol and has the additional feature of showing

labels µ which are defined by the grammar:

µ ::= a · l̃?m̃ | a · l̃!νñ : m̃ | τ

70 Chapter 5. A Calculus for Trust Management

(OUT)
α ⊢ φ

(α,φ :: b · l̃〈m̃〉 .P)
b·l̃!ν/0:m̃
−→a (α,P)

(IN)
α′ = upd(α,b · l̃ ✄ m̃) b : m̃⊙ p : x̃ = σ

(α, p · l̃(x̃) .P)
b·l̃?m̃
−→a (α′,Pσ)

(COM)
(α,P)

a·l̃!νñ:m̃
−→a (α,P′) (α,Q)

a·l̃?m̃
−→a (α′,Q′)

(α,P | Q)
τ
−→a (α′,(νñ) (P′ | Q′))

(OPEN)
(α,P)

b·l̃!νñ:m̃
−→a (α′,P′) n ∈ m̃\ñ

(α,(νn) P)
b·l̃!νnñ:m̃
−→a (α′,P′)

n 6∈ l̃

(PAR)
(α,P)

µ
−→a (α′,P′)

(α,P | Q)
µ
−→a (α′,P′ | Q)

bn(µ)∩ f n(Q) = /0

(SUM)
(α,Z)

µ
−→a (α′,Z′)

(α,Z + Z”)
µ
−→a (α′,Z′)

(BANG)
(α,P | !P)

µ
−→a (α,P′)

(α, !P)
µ
−→a (α′,P′)

(RES)
(α,P)

µ
−→a (α′,P′)

(α,(νn) P)
µ
−→a (α′,(νn) P)

n 6∈ nams(µ)

Table 5.2: lts for protocols

We give a short explanation of all the rules so to clarify their meaning. The rule

(OUT) gives semantics to the output operation. Everytime that a principal is able to

perform an output, this is shown by the label b · l̃!ν/0m̃, meaning that the protocol wants

to send a message m̃ to principal b on channel l̃. The rule (IN) is the corresponding

one for the operation of input. In here the label b · l̃?m̃ is shown, where, non deter-

ministically, a substitution m̃ for the variables x̃ is chosen. As seen for the π-calculus

in Chapter 2, this identifies an early semantics. The rule (COM) takes care of inter-

nal communication, and somehow corresponds to the rule (RINT) for the reduction

semantics. By using labels, this is shown with the action τ. The rule (OPEN) is meant

to deal with restrictions and is similar to the one for the π-calculus, where we have

a polyadic communication. Namely, two kind of checks are made: one is that the

5.3. A Characterisation of Barbed Equivalences 71

(PRIN)
(α,P)

µ
−→a (α′,P′)

a{ P }α
a⋆µ
−→ a{ P′ }α′

dest(µ) 6= a,bn(µ)∩fn(α) = /0

(COMN)
N

a·b·l̃?m̃
−→ N ′ M

b·a·l̃!νñ:m̃
−→ M′

N |M
τ
−→ (νñ) (N ′ |M′)

(OPEN)
N

a·b·l̃!νñ:m̃
−→ N ′ n ∈ m̃\ñ

(νn) N
a·b·l̃!νnñ:m̃
−→ N ′

n 6∈ l̃

(RES)
N

ξ
−→ N ′

(νn) N
ξ
−→ (νn) N ′

n 6∈ nams(ξ)

(PARN)
N

ξ
−→ N ′

N |M
ξ
−→ N ′ |M

dest(ξ)∩P (M) = bn(ξ)∩ f n(N ′) = /0

Table 5.3: lts for networks

restricted name is not in the synchronisation vector l̃ in order to keep its privacy and

the second checks that the restricted name n is actually being communicated over the

channel. Rule (PAR) is used to propagate actions with parallel operator. Rules (SUM),

(BANG) and (RES) are standard and equal to the ones for the π-calculus.

We can now move to define the semantics of networks in terms of a labelled tran-

sition system, i.e. the relation ·
·
−→ · ⊆ N×ξ×N. The rules can be found in table 5.3

where ξ are the labels and are defined as

ξ ::= a ·b · l̃?m̃ | a ·b · l̃!νñ : m̃ | τ

In the following table we report the definitions for the functions on labels which

may be used in the labelled transition system.

a ·b · l̃?m̃ a ·b · l̃!νñ : m̃ τ
sndr {a} {a} {}
dest {b} {b} {}
fn {a,b, l1, . . . , lk1

,m1 . . .mk2
} {a,b, l1, . . . , lk1

,m1 . . .mk3
} {}

bn {} {n1 . . .nk} {}

The functions above they can also be applied to elements µ excluding the function

sndr.

The function nams() on labels is defined as usual as nams(ξ) = fn(ξ)∪bn(ξ)

72 Chapter 5. A Calculus for Trust Management

As done for networks, we now give a short explanation for protocols rules. The

rule (PRIN) deals with the semantics of protocols and it is the only rule where this

is done. Basically, any action µ that can be done by a protocol P under a policy α
is brought up at network level by adding to the label the principal where the action

happened. This is done by using the operator ⋆, which given a principal name a and a

protocol label µ returns a network label ξ. In case µ is a τ then ⋆ returns τ. The other

rules are very similar to the ones at protocol level. Note that the Rule (COMN) takes

care of external communication and this reflects what the Rule (RCOM) does in the

reduction semantics.

We can now state some facts about the labelled transition system we have presented

above. The following give a characterisation of the syntax based on the labels networks

and protocols expose to a possible environment.

Lemma 5.2. Given α and P such that (α,P)
µ
−→a (α′,P′) we have that

1. if µ = b · l̃?m̃ then P≡ (νñ′) (p · l̃(x̃) .P′′+ P′′′ | Q) for some P′′, P′′′ and Q such

that p ∈ Var∪{b} and l̃∩ ñ′ = ñ′∩ m̃ = /0.

2. if µ = b · l̃!νñ : m̃ then P ≡ (νñ′) (φ :: b · l̃〈m̃〉 .P′′+ P′′′ | Q) for some φ, P′′, P′′′

and Q such that α ⊢ φ, ñ⊆ ñ′ and ñ∩fn(Q) = l̃∩ ñ′ = /0.

3. If µ = τ then P≡ (νñ) (φ :: b · l̃〈m̃〉 .P′+P′′ | p · l̃(x̃) .Q′+Q′′ | R) for some φ, P′,

P′′, Q′ and Q′′ such that α ⊢ φ.

Proof.

1. We prove it by induction on the rules for the protocol lts in Table 5.2.

• Rule (OUT) is not applicable;

• if we apply rule (IN) we then have that P = p · l̃(x̃) .P′ with p ∈ Var∪{b};

• Rule (COM) is not applicable;

• Rule (OPEN) is not applicable;

• Rule (PAR) implies that P = P∗ |Q∗ with bn(µ)∩fn(Q∗)= /0 where bn(µ)=

/0. Now, by induction hypothesis, we have that (α,P∗)
µ
−→a (α′,P∗∗) im-

plies that P∗ ≡ (νñ′) (p · l̃(x̃) .P′′+ P′′′ | Q) for some P′′, P′′′ and Q such

that p ∈ Var∪{b} and l̃∩ ñ′ = ñ′∩ m̃ = /0. This implies that P≡ (νñ′) (p ·
l̃(x̃) .P′′+ P′′′ | Q) | Q∗ and we finally have P≡ (νñ′′) ((p · l̃(x̃) .P′′+ P′′′ |
Q)σ | Q∗) for fresh names ñ′′ such that ñ′′ ∩fn(Q∗) = /0 and l̃ ∩ ñ′′ = ñ′′∩
m̃ = /0 and a substitution σ for α-converting ñ′ into ñ′′ in p · l̃(x̃) .P′′+P′′′ |
Q;

• The Rule (SUM) needs little attention. In fact, we have to be careful

when dealing with sum as we might get terms which are not allowed

by the syntax. As P = Z + Z′, we have, by induction hypothesis, that

(α,Z)
µ
−→a (α′,P∗) implies that Z ≡ (νñ′) (p · l̃(x̃) .P′′ + P′′′ | Q) for

some P′′, P′′′ and Q such that p ∈ Var∪ {b} and l̃ ∩ ñ′ = ñ′ ∩ m̃ ∗ = /0.

Now, as Z is a component of a sum it can only be that Q ≡ 0, i.e. Z ≡
(νñ′) (p · l̃(x̃) .P′′+P′′′). We then get that P≡ (νñ′) (p · l̃(x̃) .P′′+P′′′)+Z′

5.3. A Characterisation of Barbed Equivalences 73

and with a renaming similar to the proof for Rule (PAR) we have P ≡
(νñ′′) ((p · l̃(x̃) .P′′)σ+(P′′′σ+ Z′));

• Rule (BANG) implies that P = !P∗. Then, by induction hypothesis, we get

that (α,P∗ | !P∗)
µ
−→a (α′,P∗∗) implies that P∗ | !P∗≡ (νñ′) (p · l̃(x̃) .P′′+

P′′′ |Q) for some P′′, P′′′ and Q such that p∈Var∪{b} and l̃∩ ñ′= ñ′∩m̃ =
/0 and as P∗ | !P∗ ≡ P∗, this holds also for P.

• When applying Rule (RES) we have that P = (νn) P∗ and then, again by

induction hypothesis, we have that (α,P∗)
µ
−→a (α′,P∗∗) implies that P∗≡

(νñ′) (p · l̃(x̃) .P′′+P′′′ |Q) for some P′′, P′′′ and Q such that p∈Var∪{b}
and l̃ ∩ ñ′ = ñ′ ∩ m̃ = /0. To the last conditions we can add the rule side-

condition, i.e. n 6∈ nams(µ).

2. As well as the previous point, we proceed by induction on the rules for the

protocol lts in Table 5.2.

• if we apply rule (OUT) we then have that P = φ :: b · l̃〈m̃〉 .P′′ with α ⊢ φ;

• Rule (IN) is not applicable;

• Rule (COM) is not applicable;

• When applying Rule (OPEN) we then have that P = (νn) P∗. By induction

hypothesis, we have that for n 6∈ l̃ and n ∈ m̃\ñ, (α,P∗)
b·l̃!νñ:m̃
−→a (α′,P∗∗)

implies that P∗ ≡ (νñ′) (φ :: b · l̃〈m̃〉 .P′′+ P′′′ | Q) for some φ, P′′, P′′′

and Q such that α ⊢ φ, ñ ⊆ ñ′ and ñ∩ fn(Q) = l̃ ∩ ñ′ = /0. It follows that

P≡ (νn∗) (νñ′) ((φ :: b · l̃〈m̃〉 .P′′+ P′′′)σ | Q) such that α ⊢ φ, ñ∪{n∗} ⊆
ñ′ ∪ {n∗}, (ñ∪{n∗})∩ fn(Q) = /0, l̃ ∩ (ñ′ ∪ {n}) = /0 (as n 6∈ l̃) and σ a

substitution for replacing n with n∗ in order to avoid clashes.

• Rule (PAR) implies that P = P∗ | Q∗ with bn(µ)∩ fn(Q∗) = /0. Now, by

induction hypothesis, we have that (α,P∗)
µ
−→a (α′,P∗∗) implies that P∗≡

(νñ′) (φ :: b · l̃〈m̃〉 .P′′+P′′′ | Q) for some φ, P′′, P′′′ and Q such that α ⊢ φ,

ñ⊆ ñ′ and ñ∩fn(Q) = l̃∩ ñ′= /0. This implies that P≡ (νñ′) (p · l̃(x̃) .P′′+
P′′′ | Q) | Q∗ and, as bn(µ) = ñ and bn(µ)∩ fn(Q∗) = /0 we can do an α-

conversion as before;

• Rule (SUM) similar to the input case;

• Rule (BANG) similar to the input case;

• Rule (RES) similar to the input case.

3. It follows from the previous two points.

✷

Lemma 5.3. The following results hold

1. If N
a·b·l̃?m̃
−→ N ′ then N ≡ (νñ′) (a{ p · l̃(x̃) .P+P′ |Q }α |M) for some P, Q, φ, M

and such that p ∈ Var∪{b}, b 6= a and l̃∩ ñ′ = ñ′∩ m̃ = /0;

74 Chapter 5. A Calculus for Trust Management

2. If N
a·b·l̃!νñ:m̃
−→ N ′ then N ≡ (νñ′) (a{ φ : b · l̃〈m̃〉 .P+P′ |Q }α |M) for some P, Q,

φ and M such that α ⊢ φ, b 6= a, ñ⊆ ñ′ and ñ∩ (fn(M)∪fn(Q)) = l̃∩ ñ′ = /0;

3. If N
τ
−→ N ′ then either

• N ≡ (νñ) (a{ φ :: b · l̃〈m̃〉 .P+P′ |Q }α | b{ p · l̃(x̃) .R+R′ |Q }β |M) such

that p ∈ Var∪{b}, α ⊢ φ and b 6∈ P (M)

or

• N ≡ (νñ) (a{ φ :: b · l̃〈m̃〉 .P + P′ | p · l̃(x̃) .R + R′ | Q }α | M) such that

p ∈ Var∪{a}, α ⊢ φ and a 6∈ P (M)

Proof.

1. By induction on the lts rules for networks from table 5.3.

• Rule (PRIN) is the base of the induction and, by using the previous lemma,

it follows what we want to prove;

• Rule (COMN) is not applicable;

• Rule (OPEN) is not applicable;

• Rule (RES) implies that N = (νn) N∗ and then we have that N∗
ξ
−→ N∗∗

witn n 6∈ nams(ξ) implies that N∗ ≡ (νñ′) (a{ p · l̃(x̃) .P | Q }α | M) for

some P, Q, φ, M and such that p∈ Var∪{b}, b 6= a and l̃∩ ñ′ = ñ′∩ m̃ = /0.

Now, with a substitution and a renaming of bound names we can get what

we want, similarly to previous lemma;

• When applying Rule (PARN) we than have something similar to previous

lemma: N ≡ N∗ |M∗ and similarly, by induction we can build the term we

need.

2. As in the previous case, consider all rules from table 5.3 such that N
a·b·l̃?m̃
−→ N ′.

• As in the previous point Rule (PRIN) is a consequence of the previous

lemma;

• The Rule (COMN) is not applicable;

• Rule (OPEN) implies that N ≡ (νn) N∗ and by induction hypothesis we

have that, for n 6∈ l̃ and n ∈ m̃\ñ, N∗
a·b·l̃!νñ:m̃
−→ N∗∗ implies that N∗ ≡

(νñ′) (a{ φ : b · l̃〈m̃〉 .P | Q }α | M) for some P, Q, φ and M such that

α ⊢ φ, b 6= a, ñ⊆ ñ′ and ñ∩ (fn(M)∪fn(Q)) = l̃∩ ñ′ = /0. It follows that

N ≡ (νn∗) (νñ′) (a{ (φ : b · l̃〈m̃〉 .P)σ |Q }α |M) with n∗ and σ for dealing

with renaming as before;

• (RES) is similar to the input case;

• (PARN) is similar to the input case.

3. It follows by the two previous points.

5.3. A Characterisation of Barbed Equivalences 75

✷

We are now able to show that the lts semantics is equivalent to the reduction seman-

tics we gave previously. The following theorem shows the correspondence between

reduction steps and τ actions.

Lemma 5.4 (Harmony Lemma). Let N be a network. Then

1. If N
τ
−→M then N→M;

2. If N→M then N
τ
−→≡M.

Proof. We prove the two points separately:

1. Suppose that N
τ
−→M. Then, by Lemma 5.3, we have that either

• N ≡ (νñ) (a{ φ :: b · l̃〈m̃〉 .P+P′ |Q }α | b{ p · l̃(x̃) .R+R′ |Q }β |M) such

that p ∈ Var∪{b}, α ⊢ φ and b 6∈ P (M)

or

• N ≡ (νñ) (a{ φ :: b · l̃〈m̃〉 .P + P′ | p · l̃(x̃) .R + R′ | Q }α | M) such that

p ∈ Var∪{a}, α ⊢ φ and a 6∈ P (M)

It follows that N→M by applying the reduction rules (COMM) and (RINT);

2. Suppose that N → M, then by Lemma 5.1, everything follows by applying the

lts for networks.

✷

Now that we have given the lts for ctm we are able to give the definitions of the

bisimulations which are going to characterise the barbed congruence which we intro-

duced in the previous section.

5.3.2 Network bisimulation

Network bisimulation is the bisimulation related to networks. It follows its definition.

Definition 5.11 (Network Bimulation). A network bisimulation is a symmetric bi-

nary relation S such that NSM and N
ξ
−→ N ′, for dest(ξ)∩P (N |M) = /0, implies

that M
ξ
−→M′ for some M′ and N ′SM′.

N and M are network bisimilar, written N ∼M, if they are related by network bisimu-

lation.

The following theorem states that the bisimulation we have defined above is a

congruence, i.e. given two networks which are bisimalar we can always plug them in

any context and they will still be related by ∼.

Theorem 5.2. Strong network bisimulation is a congruence.

Proof. We prove this theorem by showing that there exists an equivalence relation R

which is a congruence, a bisimulation and contains ∼. In other words, let R be the

least equivalence relation satisfying the following closure conditions:

76 Chapter 5. A Calculus for Trust Management

• ∼⊆ R ;

• NR M implies (N | O) R (M | O) for all networks O.

• NR M implies (νn) N R (νn) M for all names n.

The equivalence relation R is clearly a congruence by definition. If we then to prove

that R is a bisimulation it will follow that R ⊆∼ and as by definition ∼⊆ R we have

that R =∼. The proof proceeds by induction on the closure above (we implicitly

consider the cases such that dest(ξ)∩P (N |M) = /0):

• (NR M because N ∼M).

• ((N | O) R (M | O) because N ∼M). Suppose that N | O
ξ
−→ O′. By cases on

ξ and the lts rules we have 8 possibilities that we regroup in 4 cases:

– If, for any ξ, we apply the rule (PARN) for the left parallel component then,

assuming that sndr(ξ)∩prin(O) = bn(ξ)∩ f n(N ′) = /0, we have

N
ξ
−→ N ′

N | O
ξ
−→ N ′ | O

Now, as NR M, we have (by induction hypothesis) that M
ξ
−→ M′ with

N ′R M′. Applying (PARN) for the left parallel component we get M |

O
ξ
−→M′ | O and as R is closed by definition under the contexts of type

[] | O, we have N ′ | O R M′ | O.

– Applying the rule (PARN) for the right parallel component, for any ξ and

sndr(ξ)∩prin(O) = bn(ξ)∩ f n(N ′) = /0, we have

O
ξ
−→ O′′

N | O
ξ
−→ N | O′′

Reasoning similarly to the previous case, we trivially derive that M |O
ξ
−→

M | O′′ with N | O′′ R M | O′′.

– If we apply the rule (COMN), for ξ = τ and N
a·b·l̃?m̃
−→ N ′ we get

N
a·b·l̃?m̃
−→ N ′ O

b·a·l̃!νñ:m̃
−→ O′′

N | O
τ
−→ (νñ) (N ′ | O′′)

As in the previous cases, by induction hypothesis, we have that M
ξ
−→

M′ with N ′R M′. We can then build the same interaction for M and, as

expected, get M | O
τ
−→ (νñ) (M′ | O′′). Again, as we defined R as a

closure with respect to the contexts ([] | O) and (νn) [], also (νñ) (N ′ |
O′′) R (νñ) (M′ | O′′).

5.3. A Characterisation of Barbed Equivalences 77

– The last case is when swapping the actions of N and O of the previous

case, i.e. for ξ = τ and N
a·b·l̃?m̃
−→ N ′

N
b·a·l̃!νñ:m̃
−→ N ′ O

a·b·l̃?m̃
−→ O′′

N | O
τ
−→ (νn) (N ′ | O′′)

Now it all follows identically to the previous case.

• ((νn) N R (νn) M because N ∼M). Suppose that (νn) N
ξ
−→ N ′. By cases on

ξ and the lts rules we have 2 possibilities

– Applying the rule (RES) for any ξ, N ′′ = (νn) N ′ and n 6∈ nams(ξ) we have

N
ξ
−→ N ′

(νn) N
ξ
−→ N ′′

By induction hypothesis we have that M
ξ
−→M′ where N ′R M′. Applying

the same rule (RES) we prove that (νn) M
ξ
−→ (νn) M′, and by definition

of R we get that (νn) N ′ R (νn) M′.

– The second (and last) case is for rule (OPEN) with ξ = a ·b · l̃!νñ′ : m̃ where

ñ′ = ñ∪{n} and n ∈ m̃\ñ

N
a·b·l̃!νñ:m̃
−→ N ′

(νn) N
a·b·l̃!νñ′:m̃
−→ N ′

This case concludes as in the previous ones.

✷

We now prove that network bisimulation is a sound proof method for network

reduction congruence, i.e. ∼⊆≃.

Theorem 5.3 (Soundness of Network Bisimulation). Network barbed congruence

includes network bisimulation.

Proof. Soundness follows easily from the previous theorem. We have to show that

network bisimulation is a network barbed congruence, i.e. it is a congruence, pointwise

symmetric and reduction closed (by definition) and barb preserving. It only remains to

show the latter. Suppose that N ∼M and that N ↓ a ·b. By definition of ↓ we have that

either

• N ≡ (νñ) a{ φ :: b · l̃〈m̃〉 .P+ P′ | Q }α | N
′ and α ⊢ φ,b 6∈ P (N ′)

or

• N ≡ (νñ) a{ p · l̃(x̃) .P+ P′ | Q }α | N
′ and b 6∈ P (N ′).

78 Chapter 5. A Calculus for Trust Management

But then, it follows that either N
a·b·l̃!νñ:m̃
−→ N ′ or N

a·b·l̃?m̃
−→ N ′ and, as N ∼ M, we also

have that either M
a·b·l̃!νñ:m̃
−→ M′ or M

a·b·l̃?m̃
−→ M′ with N ′ ∼M′. Now, by Lemma 5.3, it

must be that either

• If N
a·b·l̃?m̃
−→ N ′ then N ≡ (νñ′) (a{ p · l̃(x̃) .P | Q }α |M) for some P, Q, φ, M and

such that p ∈ Var∪{b}, b 6= a and l̃∩ ñ′ = ñ′∩ m̃ = /0;

or

• If N
a·b·l̃!νñ:m̃
−→ N ′ then N ≡ (νñ′) (a{ φ : b · l̃〈m̃〉 .P | Q }α |M) for some P, Q, φ

and M such that α ⊢ φ, b 6= a, ñ⊆ ñ′ and ñ∩ (fn(M)∪fn(Q)) = l̃∩ ñ′ = /0;

and again, by definition of ↓, we have that M ↓ a ·b. ✷

We now move to study the opposite inclusion, namely that bisimulation is com-

plete. In order to do so, we define special contexts, a special kind of contexts which

are designed for exploring a network behaviour. Namely, when putting a network in

a special context, we are able to tell whether the network is capable of doing certain

action or not, depending on the number of reductions and what it reduces to. In the

following, the values δfail and δi
ok ∈ P are considered as special principal names, i.e.

they never occur in any other part of the network. Moreover, with an abuse of notation,

we write i ∈ m̃∩ ñ for all those indices such that mi is in ñ and i ∈ m̃\ñ for all those

indices such that mi is not in ñ.

Definition 5.12 (Special Contexts). Let a and b be two principals, l̃ and m̃ two value

vectors and N,M two networks. We define C
N,M
ξ [·] as,

• if ξ = a ·b · l̃?m̃ then C
N,M
ξ [·] = · | b{ a · l̃〈m̃〉 } /0;

• if ξ = a ·b · l̃!νñ : m̃ then C
N,M
ξ [·] =

· | (νk1,k2) b{ a · l̃(x̃) .(Πi∈m̃∩ñb · xi · k1 |Πi∈m̃\ñb · xi · k2)

|Πm∈fn(N)∪fn(M)b ·m · k1 .δfail
|Πmi∈m̃\ñb ·mi · k2 .δi

ok

} /0

for x̃ and m̃ with the same length;

We briefly explain the previous definition. In the first case, i.e. when ξ is an input,

it easy to check that the network placed in the hole is capable of performing an input

action, i.e. we shall only have to check that b does not have any barb. The output case

is slightly more complicated, as we have to deal with extruded names. In fact, when b

performs the input from a, we have to make sure that the free names received in x̃ are

exactly what we are expecting, but also that all the others names sent over l̃, are not

free names in N (and, as we shall see, also M). We now prove two properties for the

contexts above.

Lemma 5.5. Let ξ = a ·b · l̃?m̃, M a network and suppose that C
N,M
ξ [M]→M′ | b{ 0 } /0

such that C
N,M
ξ [M] is consistent. Then M

ξ
−→M′.

5.3. A Characterisation of Barbed Equivalences 79

Proof. According to the way the context is structured, we need one reduction to get

principal b in a state structurally congruent to b{ 0 } /0, i.e. the reduction must be a

communication between a term from M and principal b. Formally, from Lemma 5.1,

we have that

M ≡ (νñ′) (a{ p · l̃(x̃) .P+ P′ | Q }α | O)

for p ∈ Var∪{b}. It follows that M
ξ
−→M′. ✷

Lemma 5.6. Let ξ = a ·b · l̃!νñ : m̃, M,N two networks and suppose that, for C
N,M
ξ [M]

consistent, C
N,M
ξ [M]→ . . .→M′ | b{Πi∈m̃∩ñb ·ni · k1 |Πm∈fn(N)∪fn(M)b ·m ·k1 .δfail |

Πmi∈m̃\ñδi
ok } /0 where ni are not in fn(N)∪fn(M) and the number of reduction is

|m̃\ñ|+ 1, i.e. the number of names in m̃ which are also in ñ. Then M
ξ
−→M′.

Proof. The proof proceeds similarly to the one of previous lemma, but it is slightly

more complicated because of the number of reductions. Suppose that C
N,M
ξ [M]→

. . .→M0 with |m̃\ñ|+ 1 reductions, where

M0 ≡M′ | (νk1,k2) b{ Πi∈m̃∩ñb ·ni · k1

|Πm∈fn(N)∪fn(M)b ·m · k1 .δfail
|Πmi∈m̃\ñδi

ok

} /0

This implies that we need to go through all possible matching tests and, this is the only

possible way to do that. In fact, this configuration is only reachable when the vector m̃

is received from a and its bound names are only the ones in ñ. It follows that

M ≡ (νñ′) (a{ b · l̃〈m̃〉 .P+ P′ | Q }α | O)

and then M
ξ
−→M′. ✷

We are now able to state and prove the completeness theorem, i.e. that network

barbed congruence is included in network bisimulation.

Theorem 5.4 (Completeness of Network Bisimulation). Reduction barbed congru-

ence is included in network bisimulation.

Proof. We prove that the relation R = {(N,M) |N ≃c M} is a bisimulation. The result

will then follow by co-induction. Suppose that N
ξ
−→ N ′ for dest(ξ)∩P (N |M) = /0

and consider the following cases:

• ξ = a ·b · l̃?m̃.

By definition of context C
N,M
ξ [·], it follows that C

N,M
ξ [N]

τ
−→N0≡N ′ | b{ 0 } and

by Lemma 5.4 we have that C
N,M
ξ [N]→ N0. Moreover, as we are assuming that

N ≃c M, by definition of reduction barbed congruence, we have that C
N,M
ξ [N]≃c

C
N,M
ξ [M]. This implies that there exists M0 such that C

N,M
ξ [M]→M0 and N0 ≃

c

80 Chapter 5. A Calculus for Trust Management

M0. As, for all c ∈ P , it holds that N0 6↓ b · c, it follows that, given the way we

defined the context, M0 must have the following syntactical structure

M0 ≡M′ | b{ 0 }

Now, as ≃c is contextual, we can easily deduce that N ′ ≃c M′. By lemma 5.5,

we conclude that also M
ξ
−→M′.

• ξ = a ·b · l̃!νñ : m̃.

By definition of context C
N,M
ξ [·], it follows that C

N,M
ξ [N]

τ
−→ . . .

τ
−→

︸ ︷︷ ︸

|m̃\ñ|+1 times

N0 where

N0 ≡ N ′ | (νk1,k2) b{ Πi∈m̃∩ñb ·ni · k1

|Πm∈fn(N)∪fn(M)b ·m · k1 .δfail
|Πmi∈m̃\ñδi

ok

} /0

N0≡N ′ | (νk1,k2) b{Πi∈m̃∩ñb ·ni · k1 |Πm∈fn(N)∪fn(M)b·m ·k1 .δfail |Πmi∈m̃\ñδi
ok } /0

and, by the Harmony Lemma 5.4, we have that C
N,M
ξ [N] → . . .→

︸ ︷︷ ︸

|m̃\ñ|+1 times

N0. Further-

more, we have that N0 6→ such that principal b can change, as names ni are not in

fn(N)∪fn(M). Now, as we are assuming that N ≃c M, by definition of reduc-

tion barbed congruence, we have that C
N,M
ξ [N] ≃c C

N,M
ξ [M]. This implies that

there exists M0 such that C
N,M
ξ [M] → . . .→

︸ ︷︷ ︸

|m̃\ñ|+1 times

M0 and N0 ≃
c M0. At this point,

as N0 ↓ b · δi
ok for all i such that mi ∈ m̃\ñ and N0 6↓ b · δfail, it follows that M0

must have the following syntactical structure

M0 ≡M′ | (νk1,k2) b{ Πi∈m̃∩ñb ·ni · k1

|Πm∈fn(N)∪fn(M)b ·m · k1 .δfail
|Πmi∈m̃\ñδi

ok

} /0

Now, as ≃c is contextual, we can easily deduce that N ′ ≃c M′. By lemma 5.6,

we conclude that also M
ξ
−→M′.

• ξ = τ.

This case is trivial as the result follows just by using the harmony lemma 5.4.

✷

5.3. A Characterisation of Barbed Equivalences 81

5.3.3 Principal Bisimulation

We now move to study a proof method for principal equivalence, that we call principal

bisimulation. We start by giving the definition, based on the labelled transition system

seen above.

Definition 5.13 (Principal Bimulation). A pricipal bisimulation is a symmetric bi-

nary relation Sa on Π×P such that, for (α,P)Sa(β,Q) and sndr(µ) 6= a, (α,P)
µ
−→a

(α′,P′) implies that (β,Q)
µ
−→a (β′,Q′) and (α′,P′)S(β′,Q′).

P and Q are principal bisimilar, written P∼P
a Q, if they are related by principal bisim-

ulation.

We now give some results about principal bisimulation. The next one, states that

principal bisimulation is a congruence with respect to a-principal contexts.

Theorem 5.5. For all a-principal contexts Ca[·1, ·2] if (α,P)∼P
a (β,Q) then Ca[α,P]∼

Ca[β,Q]

Proof. We prove that {(Ca[α,P],Ca[β,Q]) | (α,P) ∼P
a (β,Q)} is a network bisimula-

tion. Suppose that Ca[α,P]
ξ
−→N for dest(ξ)∩P (Ca[α,P] |Ca[β,Q]) = /0. The proof

proceeds by cases on the label α. We only show the output case, as the others are

similar.

• If α = a ·b · l̃!νñ : m̃ then, by Lemma 5.3 and the definition of principal context

we have that Ca[α,P] ≡ (νñ′) (a{ φ : b · l̃〈m̃〉 .P′ }α | M) for some P′, φ and M

such that α ⊢ φ, b 6= a, ñ⊆ ñ′ and l̃∩ ñ′ = /0; it follows that (α,P)
b·l̃!νñ:m̃
−→a (α,P′)

and then (β,Q)
b·l̃!νñ:m̃
−→a (β,Q′). By Rule (PRIN) and putting Q and β in the

context we get Ca[β,Q]
α
−→M. It remains to prove that N∼M, i.e. we only have

to show that a{ P′ }α ∼ a{ Q′ }β. But this follows directly from the definition

of network bisimulation and by the assumption that the pairs policy-protocol are

principal bisimilar.

✷

Exploiting the previous result, we are now able to prove that principal bisimulation

is sound with respect to principal reduction equivalence.

Theorem 5.6. Principal bisimulation ∼P
a is included in principal reduction equiva-

lence ≃P
a .

Proof. As done for network bisimulation, we have to show that principal bisimulation

is a barbed principal equivalence. In order to do so, we must show that for all possi-

ble contexts Ca[·], Ca[α,P] ≃Ca[β,Q] whenever (α,P) ∼P
a (β,Q). This follows from

the previous theorem, and then what we want to prove will directly follow from the

definition of principal barbed equivalence and Theorem 5.3.

✷

As done for network bisimulation, we now show the opposite result, i.e. principal

bisimulation is complete with respect to principal barbed equivalence.

Theorem 5.7. Principal bisimulation ∼P
a includes principal reduction equivalence

≃P
a .

82 Chapter 5. A Calculus for Trust Management

Proof. We want to prove that the relation {((α,P),(β,Q)) | (α,P) ≃P
a (β,Q)} is a

principal bisimulation. In order to show this we can exploit the previous results on

network barbed bisimulation. Suppose that (α,P)
µ
−→a (α′,P′) and (α,P)≃P

a (β,Q).
By definition of ≃P

a , for any context Ca[·], it holds that Ca[α,P] ≃Ca[β,Q] and from

Theorem 5.4 also that Ca[α,P] ∼ Ca[β,Q] and, in particular, we have that a{ P }α ∼

a{ Q }β. Applying rule (PRIN) from the lts for protocols, we have that a{ P }α
a⋆µ
−→

a{ P′ }α′ and then also a{ Q }β
a⋆µ
−→ a{ Q′ }β′ . From this we have that (β,Q)

µ
−→a

(β′,Q′). Moreover by induction hypothesis we have that (α′,P′) ∼P
a (β′,Q′) and this

conlcudes the proof.

✷

5.3.4 Protocol Bisimulation

We need to define something similar to principal bisimulation in order to characterise

protocol reduction equivalence. But this can be done for free by exploiting what we

have shown above about principal bisimulation.

We first define a different version of principal bisimulation, that we call accurate

principal bisimulation. We basically need to consider also the internal actions that are

not considered in principal bisimulation.

Definition 5.14 (Accurate Principal Bimulation). An accurate pricipal bisimulation

is a symmetric binary relation Sa on Π×P such that (α,P)Sa(β,Q) and (α,P)
µ
−→a

(α′,P′) implies that (β,Q)
µ
−→a (β′,Q′) and (α′,P′)S(β′,Q′) for some β′ and Q′.

P and Q are accurate principal bisimilar, written P ∼P
a Q, if they are related by an

accurate principal bisimulation.

Definition 5.15 (Protocol Bimulation). Given a principal a, we say that P and Q are

a-protocol bisimilar, written P∼a Q, if for any α, (α,P)∼P
a (α,Q).

We report the first result on protocol bisimulation, i.e. it is a non-input congruence.

This brings up to mind some similarities with early bisimulation for the π-calculus.

We shall also see later that protocol bisimulation coincides with protocol reduction

equivalence.

Theorem 5.8. Protocol bisimulation is a non-input congruence.

Proof. We need to show that there exists a relation which includes protocol bisimula-

tion, which is a non-input congruence and is a bisimulation. The proof is similar to the

one of Theorem 5.2.

✷

We can now give the proofs of soundness and completeness for protocol bisimu-

lation with respect to protocol reduction equivalence. We do not report the proofs, as

they are very similar to the ones seen before for network bisimulation.

Theorem 5.9. Protocol bisimulation is included in protocol reduction equivalence.

Proof. It follows from previous theorems and by the definitions. ✷

Theorem 5.10. Protocol reduction equivalence is included in protocol bisimulation.

5.3. A Characterisation of Barbed Equivalences 83

Proof. It follows from previous theorems and by the definitions. ✷

5.3.5 Weak network bisimulation

We conclude this section of characterisation of reduction equivalences, with weak net-

work bisimulation. As stated before, when introducing weak network reduction con-

gruence, sometimes it is important to ignore τ moves, i.e. reductions. In other words,

we are interested in studying the behaviour of systems, but only from the outside,

where we are not interested in internal moves, as we cannot observe what they are

all about. We now give a weak network bisimulation which is sound and complete

with respect to the weak reduction congruence we introduced in the previous section.

Proofs in this section are omitted, as they follow the line of the ones for the strong

case.

In the following, we write N
µ

=⇒M whenever N⇒ N ′
µ
−→ N ′′⇒M

Definition 5.16 (Weak Network Bimulation). A weak network bisimulation is a sym-

metric binary relation S such that NSM and N
ξ
−→ N ′, for dest(ξ)∩P (N |M) = /0,

implies that M
ξ

=⇒M′ for some M′ and N ′SM′.

N and M are weak network bisimilar, written N ≈ M, if they are related by network

bisimulation.

We then get the same results we got for the strong case.

Theorem 5.11. Weak network bisimulation is a congruence.

Proof. Similar to the strong case.

✷

Theorem 5.12 (Soundness). Weak network reduction congruence includes weak net-

work bisimulation.

Proof. Similar to the strong case. ✷

Theorem 5.13 (Completeness). Weak network reduction congruence is included in

weak network bisimulation.

Proof. Similar to the strong case. ✷

5.3.6 Summary of studied relations

In table 5.4 we report all the equivalences we have studied in this chapter, also giving

the various relationships (if any) that there are among them.

5.3.7 Proof Examples

Below we report some examples of applications of the proof method we have intro-

duced. Namely, we prove some of the examples and theorems seen before.

84 Chapter 5. A Calculus for Trust Management

≃ ∼ ≃a ∼a
∼= ≈ ≃P

a ∼P
a

Network Reduction Congr. ≃ = = x x ⊂ ⊂ x x

Network Bisimulation ∼ = = x x ⊂ ⊂ x x

Protocol Reduction Equiv. ≃a x x = = x x x x

Protocol Bisimulation ∼a x x = = x x x x

Weak Network Reduction Congr. ∼= ⊃ ⊃ x x = = x x

Weak Network Bisimulation ≈ ⊃ ⊃ x x = = x x

Principal Reduction Equiv. ≃P
a x x x x x x = =

Principal Bisimulation ∼P
a x x x x x x = =

Table 5.4: Equivalences for ctm

Proof Sketch of Example 5.3

In here, we want to prove that (α,P(1) | P(2))≃P
a (α,Q | P(2)). Exploiting the theory

that we have developed in the previous section, we just need to prove that (α,P(1) |
P(2))∼P

a (α,Q | P(2)). We remind the reader that

P(z) =(νn) (a ·n() | !a ·n〈〉 .x · z(y) .Access(z,x) :: x · z〈OK〉 .

(x · z · col() .Col(z,x) :: x · z · col〈OK〉 .a ·n() +

x · z ·bw() .BW (z,x) :: x · z ·bw〈OK〉 .a ·n()))

and

Q = (νn) (a ·n() | !a ·n〈〉 .x ·1(y) .Access(1,x) :: x ·1〈OK〉 .

(x ·1 · col() .x ·1 · col〈OK〉 .a ·n() + x ·1 ·bw() .x ·1 ·bw〈OK〉 .a ·n()))

Looking at processes, we basically have to prove that the actions that P(1) can per-

form match the ones performed by Q (and vice versa). It seems clear that, given the

syntactical structure, the protocols are exactly the same until, for all principals x, they

get to the following configurations (where the policy α will become β)

(νn) (x ·1 · col .Col(1,x) :: x ·1 · col〈OK〉 .a ·n

+ x ·1 ·bw .BW (1,x) :: x ·1 ·bw〈OK〉 .a ·n)

and

(νn) (x ·1 · col() .x ·1 · col〈OK〉 .a ·n() + x ·1 ·bw() .x ·1 ·bw〈OK〉 .a ·n)

This all amounts to prove that if (β,(νn) BW (1,x) :: x · 1 · bw〈OK〉 .a ·n)
x·1·col!ν/0:OK
−→a

(α′′,a · n) then (β,x · 1 · bw〈OK〉 .a ·n)
x·1·col!ν/0:OK
−→a (α′′,a · n) and vice versa. But this

follows easily from the way we defined the starting policy α.

5.4. On the expressive power of ctm 85

Proof Sketch of Example 5.4

As in the previous example, we give a hint of the proof avoiding going into details. We

want to prove that the two networks N1 and N2 are weak network reduction congruent.

We show this by proving that N1 ≈ N2. We recall the syntax of the two networks

N1 = BF{ P1(BF ,BI) }(π1(BI), /0) | BI{ P1(BI ,BF) }(π1(BF), /0)

where

P1(X ,Y) = !x ·mg(w) .(νk) (Y ·rec〈k,x〉 .Y · k(x,z) .G(x) :: X ·gr〈x,w〉)

| !X ·gr(x,w) .x ·w〈〉 .x ·w()

| !Y ·rec(k,x) .(Good(x) :: Y · k〈x,Good〉+Bad(x) :: Y · k〈x,Bad〉)

and

N2 = O{ !(F(BF)+ F(BI)) }(π2(BF ,BI)∪π2(BI ,BF), /0) | BF{ P2 }(/0, /0) | BI{ P2 }(/0, /0)

where

F(W) = W (x,w) .G(W,x) :: O ·W ·gr〈x,w〉 | !O ·W ·gr(x,w) .W ·w〈〉 .W ·w()

Using the weak network bisimulation, it becomes easy to prove the equivalence,

as we only need to show that the two networks “weakly” perform the same actions. In

fact, principal O in network N2 is completely hidden to any context as it never interacts

with any principal but the two banks. In other words, the two networks are equal for

any external context.

5.4 On the expressive power of ctm

In this section we shall go trough some considerations on the expressivity of ctm. Our

calculus features new operations, some of them new to mobility. We want to show that

such operations, according to the criteria proposed in chapter 2, add expressive power

to the calculus.

On the “asynchronous input”. The input operator in ctm has not the same be-

haviour as in π-calculus. This could also influence the whole semantics of a prici-

pal, i.e. its behaviour. Looking at the problem more in details, we observe that every

time an input is performed, either by interacting with another principal or by doing

an internal communication, the policy of the principal is updated. In π-calculus the

input operator has a continuation where the value received might influence the future

computations of the whole process. Suppose now that we fix the input operator not to

have any continuation, i.e. we only instantiate the input as p · l̃(x̃) .0 (we shall call it

asynchronous because of the analogy with the asynchronous output). What we really

want to stress out is the fact that, just performing an input with another principal with-

out passing the inputted vector to a continuation might influence the whole principal

parallel components, instead in a π-calculus-like setting, that thing does not happen.

86 Chapter 5. A Calculus for Trust Management

Guarded input ctm. A second point about the expressivity of ctm that we want

to treat is about guards. So far we have not fully justified the fact that only inputs

are guarded. Our approach is that we see performing an output as granting another

principal with something which can be seen with the message. Another possible way

of seeing things is by guarding inputs, i.e. having something like φ :: p · l̃(x̃) .P. In this

subsection we show that this can indeed be done in ctm with a very simple encoding,

just by paying off few internal moves (τ’s).

We can now give semantics to the new input operation. In other words we have to

replace the rule (IN) in the lts with the following:

(GUARDED-IN)
α′ = upd(α,b · l̃ ✄ m̃) b : m̃⊙ p : x̃ = σ α ⊢ φ

(α,φ :: p · l̃(x̃) .P)
b·l̃?m̃
−→a (α′,Pσ)

We can then see that we can get a similar semantics (modulo internal τ moves) by just

giving the following encoding

Definition 5.17 (Encoding of guarded input). The encoding is an isomorphism with

the only exception for the production (INPUT)

[[φ :: p · l̃(x̃) .P]] , (νn) (φ :: a ·n〈〉 | a ·n() . p · l̃(x̃) .P)

It could also be argued that in the moment that the input is really performed it

could be that the φ is no longer satisfied. This is true indeed, but we suppose that once

that someone is been granted with something, i.e. a decision has been taken, there is

no point of going back and so every decision must be definitive.

Global input. Our calculus uses a new input construct: global input. In this section

we prove that such a construct adds expressiveness to the language. Let ctm−φ be the

fragment of ctm where all inputs are guarded by tt and let ctm−x;φ be the fragment of

ctm−φ without global input. Moreover let S be a list of observations a1 ·b1; . . .ak ·bk; . . .
and N ⇓ S if and only if N→∗ N1→

∗ . . .Nk→
∗ and N1 ↓ a1 ·b1,. . . , Nk ↓ ak ·bk,. . . In the

following, with abuse of notation, we will use [[−]] for both networks and protocols.

Definition 5.18. An encoding [[−]] : ctm−φ −→ ctm−x;φ is correct whenever for all

protocols P, Q and networks N, M

• [[P | Q]] = [[P]] | [[Q]]

• [[N |M]] = [[N]] | [[M]]

• [[a{ P }α]] = a{ [[P]] }α

• for any N, a{ P }α | N ⇓ S if and only if [[a{ P }α | N]] ⇓ S

The first three rules represent the notion of uniform encoding, while the last one

corresponds to the notion of reasonable encoding we saw in the preliminaries chapter.

Theorem 5.14. There is no correct encoding [[−]] from ctm
−φ
P into ctm

−x;φ
P .

5.5. Related Work 87

Proof. [Sketch] Suppose there exists such an encoding and consider a{ x · l(y) }α.

Principal a is such that a{ x · l(y) }α ↓ a ·b for any b. Now we have that a{ [[x · l(y)]] }α 6⇓

a ·b for all b. In fact we can prove by induction on the protocols of ctm
−x;φ
P that such

a protocol does not exists. ✷

5.5 Related Work

To the best of our knowledge, the notion of trust has never been fully treated in pro-

cess calculi. In Dπ [6, 60] policies are statically specified, not allowing dynamic up-

dates; [57] considers a formalism for cryptographic protocols, similar to ours: com-

munications are guarded by logical formulas meant for proving correctness, whereas

protocols are expressed with strand-spaces. Concerning policies for access control,

there are many works on logics, where a trust engine is responsible for construct-

ing [24, 65, 69] or checking [7] a proof that a desired request is valid. In [75] and [11]

authors provide a decidable logic for policies, proposing variants of Datalog. In partic-

ular, Cassandra, provides a formalism for expressing policies in a GC scenario, where,

as in our case, each principal has its own policy. They also allow references to other

principals’ polices and delegation, using fixed-point computations as in [33].

88 Chapter 5. A Calculus for Trust Management

Part II

On Polyadic Synchronisation

89

Chapter 6

Polyadic Synchronisation and its expressive power

6.1 Introduction

In the previous chapters, we stressed the fact that process calculi provide a useful

framework in which to reason about the theory of concurrent and distributed systems.

They are praised both for great simplicity and expressiveness. The π-calculus is a

terse and powerful language which describes the behaviour of concurrent systems, and

is endowed with a rich body of theoretical results. However, evidence has been accu-

mulated which suggests that it is inadequate to express certain aspects of distributed

systems. In fact, the literature is rich with extensions of the π-calculus explicitly de-

signed for modeling such systems.

Following Occam’s razor principle1 , we study a minimal extension of the π-calculus

in which to express concepts relevant to distributed systems such as localities and en-

cryption. We propose eπ: the π-calculus with polyadic synchronisation, a generalisa-

tion of the synchronisation mechanism which allows channel names to be composite.

The idea is that the subject of an input or output action is no longer restricted to be

a single name, but is now a vector of names. For example we allow prefixes such as

a ·b(x) and a ·b〈v〉, where the channel is identified by vector a ·b. It turns out that this

construct cannot be encoded in π-calculus without introducing divergence.

6.1.1 Examples of polyadic synchronisation

To justify our proposal, we introduce concrete scenarios and theoretical issues where

polyadic synchronisation turns out to be helpful.

1Occam’s razor is a logical principle attributed to the medieval philosopher William of Occam (or

Ockham). The principle states that one should not make more assumptions than the minimum needed.

This principle is often called the principle of parsimony. It underlies all scientific modeling and theory

building. It admonishes us to choose from a set of otherwise equivalent models of a given phenomenon

the simplest one. In any given model, Occam’s razor helps us to ”shave off” those concepts, variables or

constructs that are not really needed to explain the phenomenon. By doing that, developing the model

will become much easier, and there is less chance of introducing inconsistencies, ambiguities and redun-

dancies.(F. Heylighen).

91

92 Chapter 6. Polyadic Synchronisation and its expressive power

Two practical problems

The first example is EDπ [29], where we use a construct which represents atomic trans-

actions as a means to model e-services. Interaction between a client and a server takes

place only if both parties agree on a set of service parameters. The second example is

the calculus of objects (CO) of [113], upon which the TyCO programming language

is based [112]. It models distributed object systems where messages are dispatched

to a certain object if and only if it provides the method invoked in the request, and

it is ready to execute it. Its semantics requires agreement on both object identity and

method name, in order for a call to be dispatched.

Both these examples can be generalised as instances of the problem of matching

atomically vectors of values among different processes (the matching problem). The

solution consists in bringing the values to be matched directly in the interface of each

process towards the system, and providing semantic rules that allow interaction if and

only if those interfaces are compatible.

Modeling locations

The ability of synchronising on many names at the same time, allows for localities to

be represented in eπ. Many distributed calculi refer to an explicit notion of location,

intended as a unit of distribution where computation takes place. Some of them are

presented as extensions of the π-calculus, and are based on the idea that processes

running in parallel inside some location can independently migrate or communicate

with other processes, locally or remotely. Examples of languages of such kind are to

be found in [59], [6], [35], [106], and [48]. From a pragmatic point of view, it emerged

clearly that these models were to some extent more appropriate than the π-calculus to

describe physical distribution. From a theoretical point of view, the necessity of these

variants has not been fully explored. Take the Distributed π-calculus of [59] (where

π-like processes are explicitly enclosed in locations), as a paradigmatic example. Its

main reduction rule states that communication among two processes can take place

only when they are in the same location:

(RCOMM) l[a〈v〉.P] | l[a(x).Q] 7→ l[P] | l[Q{v/x}]

Our point is that a location can be seen as a name characterising all the interactions in

which a process participates: hence it can be modeled as an additional synchronisation

parameter in all the communications of a located process. Migration is simply the

dynamic (re)binding of the location component of each prefix. For example the result

of encoding the Dπ network

l[a〈m〉.P | a(x).go x.b〈v〉.Q] | m[b(y).R]

is a process in this extension of π-calculus (eπ), where the migration construct go x

disappears and the three threads of execution are run in parallel:

l ·a〈m〉.P | l ·a(x).x ·b〈v〉.Q | m ·b(y).R.

Note that rule (RCOMM) reported above, stating that two processes are allowed to

react if and only if they share two values (location and channel) at the same time, is

6.1. Introduction 93

another instance of the matching problem. Another example of how localities can be

expressed in terms of polyadic synchronisation is in [30], where we give a divergence-

free encoding of the Local Area π-calculus of [38] in eπ.

Partial restriction and matching

Polyadic synchronisation also enhances the π-calculus in that it allows for partial re-

striction; that is, it gives the ability to restrict only some of the names taking part in a

communication. It turns out that thanks to this feature, matching can be expressed as

a special form of communication, and therefore is not given as primitive in eπ. Partial

restriction allows us also to model cryptographic protocols, as explained below.

Modeling cryptography

We claim that eπ can express an interesting class of security protocols. In fact, it is

possible to use polyadic synchronisation to encode secure channels: the sending along

public channel a of datum m encrypted under key k is expressed as a · k〈m〉.P, imply-

ing that m can be received only by an agent knowing the secret password k, beside

the public name a. With respect to the Spi-calculus of [2], this first solution lacks

for example the power of expressing keys obtained by hashing data. Consider now a

different, more expressive way to represent encryption in eπ. We propose constructs

for encrypting and decrypting data, such that encrypted messages are represented as

names (therefore can still be encrypted, sent, or used as keys), and encryption is nonde-

terministic (encrypting the same message under the same key two times yields different

results). These constructs are:

[[encrypt m#

k
x in P]] = (νx) (!x · k〈m〉 | P)

[[decrypt x#

k
m in P]] = x · k(m).P

The first construct encrypts data m under key k and returns the encrypted message

as the fresh name x, to be used in all the scope embraced by P. Decryption of message

x through key k binds name m in the continuation P to the original message provided

that the key is the same as the one used to encrypt it. Note how x, the result of the en-

cryption, is a restricted name whose scope is process P. This is not a limitation because

the scope of x can be extended in the standard way using extrusion, allowing modu-

larity in the definition of processes. For example, the proces System below evolves to

a state where R and S share the classified data m, and that A cannot compromise the

security of the protocol.

Receiver : (ν k) secure〈k〉.public(y).decrypt y#

k
w in R

Sender : (ν m) secure(z).encrypt m#
z

x in public〈x〉.S

System : (ν secure) (Sender | Receiver) | A

In this chapter we stress the fact that the notion of sensible encoding as a subset of

the requirements that the encoding of an operator in a language should satisfy in order

to be considered meaningful.

94 Chapter 6. Polyadic Synchronisation and its expressive power

We introduce eπ in Section 6.2, and in Section 6.2.2 we show how a restricted form

of polyadic synchronisation can be encoded in π-calculus, at the price of introducing

divergence.

Section 6.3 starts with the answer to an open question: we show that matching

enhances the expressive power of the π-calculus (Although its usefulness has been

challenged in the literature, for example by [79].). In eπ, matching can be encoded

up-to strong bisimulation congruence. Also mixed choice is known to increase the

expressiveness of π-calculus: we extend the results of [92] to eπ, showing that polyadic

synchronisation does not have the power to encode mixed choice. In Section 6.3.3

we show that polyadic synchronisation cannot be encoded in the full π-calculus (and

therefore it is orthogonal to mixed choice) without introducing divergence, and we

generalise the result to higher degrees of synchronisation.

In Section 6.4 we show how the π-calculi that we have considered are partially

ordered by expressivity, and constitute a complete lattice. The chapter concludes with

a suggestion for typing polyadic synchronisation.

6.1.2 Previous research related to polyadic synchronisation

In [47], they extend CCS with composite prefixes in order to model transactions, us-

ing a mixed form of polyadic synchronisation and synchronisation between multiple

parties. Boudol and Castellani [21] have studied the impact of considering finite com-

putations as atomic steps on concurrent languages semantics, yet it seems that polyadic

synchronisation is not expressible in their framework. Nestmann [86] has studied the

expressive power of the joint input, a liberalisation of the join patterns of [49], in the

π-calculus framework: it can be seen as a form of bi-adic synchronisation for input

processes only. The main reduction rule for joint input is

a〈c〉 | b〈d〉 | {a(x)|b(y)}.Pց P{c/x}{d/y}

where {a(x)|b(y)}.P could be seen as similar to the eπ process a · b(x,y).P. As this

example shows, there is a fundamental difference in the way of expressing outputs

in the two languages: where the joint input requires multi-way synchronisation, eπ
mantains the interaction confined to two processes. For this reason, joint input does

not provide a solution to the matching problem.

Appendix A of [2] mentions synchronisation on tuples to point out that π-calculus

could be made more resistant to security attacks, but the subject is not developed any

further. In [80], they considered a form of multi-way synchronisation, superseding

both polyadic synchronisation and joint input, that raised many interesting but non

trivial questions on the theory. Our independent development is strongly biased to-

wards enhancing the expressive power of π-calculus without introducing significant

changes in the underlying equational theory.

6.2 Polyadic Synchronisation in π-calculus

Our proposal is to extend the synchronisation mechanism of π-calculus to the case

where channels are denoted by vectors of names, allowing interaction to happen only

6.2. Polyadic Synchronisation in π-calculus 95

when such vectors match element-wise. Synchronisation remains atomic: we enforce

an all-or-nothing behaviour. A typical reduction might look like

x · y(z).P|x · y〈w〉.Q
τ
−→ P{w/z}|Q

6.2.1 Syntax and semantics of eπ

To define eπ we need to generalise the syntax for prefixes given in precedence to the

one given below, where k and j are any two natural numbers.

(PREFIXES) α ::= τ | x1 · ... · xk(y) | x1 · ... · x j〈y〉

A channel is now a vector of names, the synchronisation vector: π-calculus is the

instance where only vectors of length one are allowed. Synchronisation vectors will

be denoted by letters u and v. The syntax of processes is the same as the one for πm,

and all the definitions given in Chapter 2 are straightforwardly adapted to the case

where a vector substitutes a single name in the subjects of actions. As an example, we

report two specific reduction rules where vector u has replaced name x.

P
u〈νy〉
−→ P′, Q

u(y)
−→ Q′

P |Q
τ
−→ (νy) (P′ | Q′)

(CLOSE)
P

u〈y〉
−→ P′

(νy) P
u〈νy〉
−→ P′

y 6∈ u (OPEN)

The only exception regards matching: as we will show in Lemma 6.8, matching can be

derived in eπ and therefore we exclude both the syntactic production and the semantic

rule (MATCH) from the definition of eπ. As a consequence, Observation 6.2 holds also

for eπ.

It is worth noting that since restriction is defined on names rather than on channels

as a whole, process P , x ·y(z).Q is such that P ↓x·y, but R , (νx)x · y(z).Q is such that

R 6↓, even if y ∈ f n(R).

The πN family

We denote with πk the sub-language where the length of synchronisation vectors is at

most k. A degenerate case is π0, where channels are nameless and processes interact

through a global ether (It is essentially the local communication mechanism of the

Ambient Calculus of [35].): 〈y〉.P | (x).Q −→ P | Q{y/x}. The sub-calculi defined in

Chapter 2 can be analogously extended to polyadic synchronisation. In particular, πm

is π1 where prefixes with vectors of length 0 are ruled out, and eπ =
S

n πn. The family

of calculi {aπ0,π0,aπ1,π1,aπ2,π2, ...} will be denoted by πN (see also Table 6.1).

6.2.2 Encoding polyadic synchronisation in π-calculus

It is possible to define a strongly uniform encoding of bi-adic synchronisation in

polyadic aπ=,6=, where we use the conditional construct [a = b]P,Q as an abbrevia-

tion for [a = b]P|[a 6= b]Q. By transitivity, the same idea can be used to encode higher

degrees of synchronisation. The encoding is a homomorphism, except for the follow-

ing cases (w,x,z 6∈ f n(P)):

96 Chapter 6. Polyadic Synchronisation and its expressive power

Variants of π-calculus: The πN family:

a.P = 6= +s +m

aπ – – – – –

πs X – – X –

πm X – – – X

aπ= – X – – –

aπ=,6= – X X – –

πs,= X X – X –

π X X – – X

a.P +m a1 · ... ·an

aπ0 – – 0

aπn – – ≤ n

π0 X X 0

πn X X ≤ n
eπ X X < ω

Table 6.1: Some variants of the π-calculus.

[[b ·a〈c〉]] , (νz)(b〈a,c,z〉 |z)

[[b ·a(y).P]] , (νw)(w | !w.b(x,y,z).[x = a](z | [[P]]),(b〈x,y,z〉 |w))

In the encoding of the input we simulate the prefix b ·a(y).P in two steps: an input on b

and a matching on a, introducing the need to backtrack in case of failure. The param-

eter z added to the communication distinguishes the behaviour of the two branches of

the conditional, and is needed to preserve the soundness of the translation. Note that if

matching fails, the original state is restored, introducing the possibility of divergence.

[[b ·a〈c〉]] , b〈a,c,νz〉 [[b ·a〈νc〉]] , b〈a,νc,νz〉

[[b ·a(y)]] , b(x,y,z) [[τ]] , τ

Table 6.2: Translation of actions

In Table 6.2 we define the correspondence among the actions of the source terms

and those of the target terms. Note that the correspondence in the observables is not

very strong, in particular the translation of an input action replaces a free name with a

bound name (in [[b · a(y)]] , b(x,y,z), x replaces a). We look now at the properties of

the encoding.

Proposition 6.1. The encoding of aπ2 in aπ=,6= is strongly uniform.

Proof. The encoding is homomorphic with respect to parallel composition. By noting

that the encoding preserves free names, and by a straightforward induction, follows

that for all substitutions σ, [[P]]σ = [[Pσ]]. ✷

The encoding is sound with respect to ≈̇, whereas it is not complete, as it can be

seen from the following example.

Example 6.1. Let P , (νa)(b ·a) and Q , (νa)(c ·a). We have that P≈̇0≈̇Q whereas

[[P]] 6 ≈̇π[[Q]] since [[P]] ↓b and [[P]] 6↓c, but [[Q]] ↓c and [[Q]] 6↓b.

6.2. Polyadic Synchronisation in π-calculus 97

Theorem 6.1. For all processes P and Q in aπ2:

1. If P
τ
−→ Q then [[P]]

τ
−→

τ
−→

τ
−→∼ [[Q]].

2. If [[P]]−→ Q′ then there exists Q such that P−→ Q and Q′ ≈ [[Q]].

3. If [[P]]≈̇[[Q]] then P≈̇Q.

The existence of the encoding shows that it is possible, to some extent, to achieve

the effects of polyadic synchronisation in π, as long as one is not concerned with

termination properties.

Proof.

In the following we will distinguish between a relation (e.g. structural congruence)

in aπ=,6= and the corresponding notion in aπ2, by labeling the former with the symbol

π (e.g. ≡π). We report below the lemmata used in the proof of Theorem 6.1.

We start with a simple property based on the definition of barbs.

Observation 6.1. For any process P in aπ2\aπ1:

1. if P
b·a〈c〉
−→ Q then P≡ b ·a〈c〉 |Q;

2. if P
b·a〈νc〉
−→ Q then P≡ (νc)(b ·a〈c〉 |Q);

3. if P
b·a(x)
−→ Q then for some P1, P2, and some ñ such that a,b 6∈ ñ, P ≡ (νñ)(b ·

a(x).P1 |P2) and Q≡ (νñ)(P1 |P2).

Proof. Follow directly adapting Definition 2.3 to eπ. ✷

We now establish a strong operational correspondence between the actions of a

term and the actions of its encoding.

Lemma 6.1. For any process P in aπ2\aπ1, if P
µ
−→ Q then:

1. if µ ∈ {b ·a〈c〉, b ·a〈νc〉} then, for any z 6∈ f n(P), [[P]]
[[µ]]
−→π z | [[Q]];

2. if µ = b ·a(y) then ∃Q′.[[P]]
τ
−→π

b(x,y,z)
−→ π Q′ and for any σ : {x,y,z} →N ,

• if σ(x) = a, Q′σ∼π zσ|[[Q]]σ;

• if σ(x) 6= a, Q′σ∼π b〈x,y,z〉σ|[[P]]σ;

3. if µ = τ then [[P]]
τ
−→π

τ
−→π

τ
−→π ∼π [[Q]].

Proof. 1. If µ = b ·a〈c〉, by Observation 6.1 we have that P ≡ b ·a〈c〉 |Q
b·a〈c〉
−→ Q.

By definition of the encoding and lts, follows

[[P]]≡π (νz)(b〈a,c,z〉 |z) | [[Q]]
b〈a,c,νz〉
−→π z | [[Q]]

Note that using alpha conversion on z before applying the (OPEN) rule, it is

possible to derive an analogous transition for any z′ 6∈ f n(P).

The case for µ = b ·a〈νy〉 is analogous to the previous case.

98 Chapter 6. Polyadic Synchronisation and its expressive power

2. If P
b·a(y)
−→ Q then by Observation 6.1 we have that P ≡ (νñ)(b · a(y).P1 |P2) and

Q ≡ (νñ)(P1 |P2). Consequently, by definition of encoding and lts, [[P]]
τ
−→π

b(x,y,z)
−→ πQ′ where

Q′ ≡π (νñ)((νw)([x = a](z|[[P1]]),(b〈x,y,z〉 |w) |

!w.b(x,y,z).[x = a](z | [[P1]]),(b〈x,y,z〉 |w)) |
[[P2]])

Now for all σ, if σ(x) = a then Q′σ≡π
(νñ)(zσ|[[P1]]σ|(νw)(!w.b(x,y,z).[x = a](z | [[P1]]),(b〈x,y,z〉 |w))σ | [[P2]]σ)
≡π zσ|(νñ)([[P1]] | [[P2]]|(νw)(!w.b(x,y,z).[x = a](z | [[P1]]),(b〈x,y,z〉 |w)))σ
∼π zσ|[[Q]]σ;

on the other hand, if σ(x) 6= a then,

Q′σ≡π
(νñ)([σ(x) = a](zσ|[[P1]]σ) |(νw)([σ(x) 6= a](b〈x,y,z〉σ |w)
| !w.b(x,y,z).[x = a](z | [[P1]]),(b〈x,y,z〉 |w))σ | [[P2]]σ)
∼π b〈x,y,z〉σ|[[P]]σ.

Note that in both cases the restrictions on ñ and w do not interfere with the names

substituted by σ, because of the latter being capture-avoiding.

3. µ = τ. A τ action could be achieved by the rules (COM), (PAR), (CLOSE),

(BANG) and (RES). We just show the (COM) case as the other ones are sim-

ilar. Applying rule (COM) we have that P = P1 |P2 for some P1, P2, and

P1
b·a(y)
−→ Q1, P2

b·a〈c〉
−→ Q2

P1 |P2
τ
−→ Q1{c/y}|Q2

By point (2) there exists Q′, Q′′ and Q′′′ such that

• [[P1]]
τ
−→πQ′′,

• Q′′
b(x,y,z)
−→ πQ′,

• and if σ(x) = a, Q′σ∼π zσ|[[Q1]]σ.

By point (1) and rule (CLOSE)

Q′′
b(x,y,z)
−→ πQ′, [[P2]]

b〈a,c,νz〉
−→ πz | [[Q2]], σ = {a,c,z/x,y,z}

Q′′ | [[P2]]
τ
−→π(νz)(Q′σ |z | [[Q2]])

where σ(a) = x and again by (COM) and (RES)

Q′σ z
−→πQ′′′, z | [[Q2]]

z
−→π[[Q2]]

(νz)(Q′σ |(z | [[P2]]))
τ
−→π(νz)(Q′′′ | [[Q2]])

Note that z is not free in Q′′′ or [[Q2]], giving us (νz)(Q′′′ | [[Q2]]) ≡π Q′′′ | [[Q2]],
which allows us to conclude, again by point (2), Q′′′ | [[Q2]]∼π [[Q1]] | [[Q2]].

✷

6.2. Polyadic Synchronisation in π-calculus 99

The following lemma explores the relation between weak actions, from a term to

its encoding.

Lemma 6.2. For any process P in aπ2\aπ1

1. if P
τ
−→ Q then [[P]]=⇒π

τ
−→π

τ
−→π

τ
−→π=⇒π∼π [[Q]];

2. if P
µ
−→ Q, where µ ∈ {b ·a〈c〉, b ·a〈νy〉}, then for any z 6∈ f n(P), [[P]]

[[µ]]
=⇒π ∼π

z | [[Q]];

3. if P −→ R
b·a(y)
−→−→ Q then ∃R′,Q′.[[P]]=⇒πR′

τ
−→π

b(x,y,z)
−→ π=⇒πQ′, and for any

σ : {x,y,z} →N ,

• if σ(x) = a, Q′σ∼π zσ|[[Q]]σ;

• if σ(x) 6= a, Q′σ∼π b〈x,y,z〉σ|R′σ and R′ ∼π [[R]].

Proof. 1. By point (3) of Lemma 6.1 and by transitivity of ∼π.

2. By points (1) above and (1) of Lemma 6.1.

3. By points (1) above and (2) of Lemma 6.1.

✷

We now establish a limited form of correspondence between strong actions in en-

coded terms and actions in the original terms. This lemma will be useful to establish

the weak correspondence needed to prove soundness.

Lemma 6.3. For any process P in aπ2\aπ1:

1. If [[P]]
µ
−→π Q′, where µ ∈ {b〈a,c,νz〉,b〈a,νc,νz〉}, then there exists Q such that

P
b·a〈c〉
−→ Q (respectively b ·a〈νc〉), Q′ ≡π z | [[Q]] and z 6∈ f n(Q).

2. If [[P]]
τ
−→π

b(x,y,z)
−→π Q′ then there exists a,Q such that for any σ : {x,y,z} →N ,

• if σ(x) = a, Q′σ∼π zσ | [[Q]]σ;

• if σ(x) 6= a, Q′σ∼π b〈x,y,z〉σ | [[P]]σ;

and, if a ∈ f n(P) then P
b·a(y)
−→ Q;

Proof. 1. By Definition 2.3, if [[P]]
b〈a,c,νz〉
−→π Q′ then by the presence of a bound

name as third parameter in the output action and by definition of encoding, P≡

b ·a〈c〉|Q and [[P]]≡π (νz)(b〈a,c,z〉 |z) | [[Q]]. By rule (OPEN) [[P]]
b〈a,c,νz〉
−→ z | [[Q]]

and by construction z 6∈ f n(Q).

The case with
b·a〈νc〉
−→ is analogous.

2. Analogous to point (1), reasoning similarly to point (2) of Lemma 6.1.

✷

100 Chapter 6. Polyadic Synchronisation and its expressive power

The next two lemmata are technical lemmata needed to prove the weak operational

correspondence between tau actions.

Lemma 6.4. If [[P]]≈̇πP′ and P′
τ
−→πQ′ then ∃Q.[[P]]=⇒π[[Q]] and [[Q]]≈̇πQ′.

Proof. If [[P]]≈̇πQ′ we are done taking Q ≡ P. If [[P]]6 ≈̇πQ′, then by the hypothesis

[[P]]≈̇πP′ we have that it must be the case that ∃R.[[P]]=⇒πR, and R≈̇πQ′ but R 6 ≈̇π[[P]].
By definition of encoding, the only actions that [[P]] can perform without preserv-

ing weak bisimulation, come from the translation of a communication in eπ. We

can chose a trace of actions, originating from [[P]] such that for each such reduction

there is one and only one step of initialisation and termination of the protocol. Since

all those additional steps preserve weak bisimilarity, we have that [[P]]=⇒πR implies

∃Q.[[P]]=⇒π[[Q]] where R≈̇π[[Q]]. By transitivity of ≈̇π, we conclude. ✷

Lemma 6.5. If [[P]]=⇒π[[Q]] then P−→ Q.

Proof. Follows by definition of encoding and by induction on the number of reduction

steps. ✷

We can now state the weak operational correspondence between actions in encoded

terms and actions in source terms.

Lemma 6.6. For any process P in aπ2\aπ1:

1. If [[P]]
τ

=⇒πQ′ then there exists Q such that P−→ Q and [[Q]]≈π Q′.

2. If [[P]]
µ

=⇒πQ′ where µ ∈ {b〈a,c,νz〉,b〈a,νc,νz〉} then there exists Q such that

P
b·a〈c〉
−→ Q (respectively b ·a〈νc〉) and Q′ ≈π z|[[Q]] and z 6∈ f n(Q).

3. If [[P]]=⇒πR′
τ
−→π

b(x,y,z)
−→ π=⇒πQ′ then there exists a,Q,R such that P−→ R and,

for any σ : {x,y,z} →N ,

• if σ(x) = a, Q′σ≈π zσ | [[Q]]σ;

• if σ(x) 6= a, Q′σ≈π b〈x,y,z〉σ |R′σ and R′ ≈π [[R]];

and if a ∈ f n(P) then R
b·a(y)
−→−→ Q.

Proof. 1. Follows from the preceding two lemmata.

2. Follows by point (1) above and by point (1) in Lemma 6.3.

3. Follows by point (1) above and by point (2) in Lemma 6.3.

4. Follows by point (1) above and by point (5) in Lemma 6.3.

✷

The following lemma states the soundness of the encoding.

Lemma 6.7. If [[P]]≈̇π[[Q]] then P≈̇Q.

6.2. Polyadic Synchronisation in π-calculus 101

Proof. In the proof we reason up to weak bisimilarity, following a remark of [101]:

the technique is sound because we are considering weak actions both for the player

and for the adversary in the bisimulation game. We split the proof in four cases.

• P
b·a〈y〉
−→ P1: by point (2) of Lemma 6.2 [[P]]

b〈a,y,νz〉
=⇒ π ∼ z | [[P1]], for any z 6∈ f n(P);

by the hypothesis [[P]]≈̇π[[Q]], [[Q]]
b〈a,y,νz〉
=⇒ πQ′≈̇πz | [[P1]]; by point (2) of Lemma 6.6

we have that ∃Q1. Q
b·a〈y〉
−→ Q1 and Q′≈̇πz|[[Q1]]; by transitivity of ≈̇π we have that

z | [[P1]]≈̇πz|[[Q1]]; by definition of ≈̇π, noting that z is fresh, we have [[P1]]≈̇π[[Q1]];
inductively, P1≈̇Q1.

• P
b·a〈νy〉
−→ P1: similar to the previous case.

• P
b·a(y)
−→ P1: by point (3) of Lemma 6.2, there exists P′ such that [[P]]

b(x,y,z)
=⇒ πP′

and for any σ : {x,y,z} → N , if σ(x) = a, P′σ∼π zσ|[[P1]]σ, where z 6∈ f n(P),
by definition of encoding. By the hypothesis [[P]]≈̇π[[Q]] and by definition of

≈̇π, it must be the case that [[Q]]
b(x,y,z)
=⇒ πQ′σ≈̇πP′σ. By point (4) of Lemma 6.6,

we have that there exist a′,Q1 such that, for any σ : {x,y,z} →N , if σ(x) = a′,

then Q′σ≈π zσ | [[Q1]]σ, and if a′ ∈ f n(Q) then Q
b·a(y)
−→ Q1. Considering all the

substitutions σ such that σ(x) = a and σ(z) = w for some fresh name w, from

the hypothesis Q′σ≈̇πP′σ we have that a = a′, obtaining w|[[P1]]σ≈̇πw | [[Q1]]σ.

From the freshness of w follows that [[P1]]σ≈̇π[[Q1]]σ, whence by uniformity of

the encoding, follows inductively ∀σ.P1σ≈̇πQ1σ.

• P
τ
−→ P1: by point (1) of Lemma 6.2, there exists P’ such that [[P]]

τ
−→ P′ ∼π

[[P1]]; by the hypothesis [[P]]≈̇π[[Q]] and by definition of ≈̇π, ∃Q′. [[Q]]
τ

=⇒πQ′,

and P′≈̇πQ′; by transitivity of ≈̇π and by point (1) of Lemma 6.6 we have that

∃Q1.Q−→ Q1 and Q′ ≈π [[Q1]]≈̇π[[P1]]; inductively, P1≈̇Q1.

✷

Resuming, we report the statement of Theorem 6.1 below.

Theorem 6.1. For all processes P and Q in aπ2:

1. If P
τ
−→ Q then [[P]]

τ
−→

τ
−→

τ
−→∼ [[Q]].

2. If [[P]]=⇒πQ′ then there exists Q such that P−→ Q and Q′ ≈ [[Q]].

3. If [[P]]≈̇[[Q]] then P≈̇Q.

Proof. 1. Point (3) of Lemma 6.1.

2. Point (1) of Lemma 6.6.

3. Lemma 6.7.

✷

102 Chapter 6. Polyadic Synchronisation and its expressive power

6.3 Expressivity of Polyadic Synchronisation

6.3.1 Matching

The π-calculus Rule (MATCH) seems to contradict the intuition that barbs (i.e. observ-

ability) should depend on the structure of a process, regardless of the actual value of

its state (the set of bindings between names and channels). In fact πm, the sub-calculus

without matching, enjoys the following property.

Observation 6.2. For any process P in πm, for any name x, and for any substitution σ,

P ↓x if and only if Pσ ↓σ(x), and P ↓x if and only if Pσ ↓σ(x).

Proof. By cases on the syntax and by definition of barbs. ✷

Conversely, this property does not hold in π: given M , [x = y]x, σ1 = {z/x}{w/y}
(where z 6= w), and σ2 = {z/x}{z/y} we have that Mσ1 6↓ but Mσ2 ↓z.

Remark 6.1. In the light of what we have just said, we advocate a different definition

of matching in π:

Syntax : P ::= ... | [x = y]τ.P Semantics : [x = x]τ.P τ
−→ P (MATCH)

This rule would allow Observation 6.2 to be extended to the whole language, support-

ing the intuition that the difference introduced in the observability of the process is due

to an internal reduction: matching becomes an operation, like in most other languages.

We will see in Section 6.3.1 how this definition is supported by a correspondence with

the derivation of matching in eπ.

We now show that the matching operator cannot be derived in π-calculus, and

therefore needs to be taken as primitive. In eπ instead it is possible to define match-

ing as a derived operator. This fact constitutes a first separation result between the

expressivity of the two languages. For example, in πm it is not possible to write a

tester process able to tell wether or not two arbitrary names denote the same channel,

without disturbing the communications on the channel (or channels) denoted by those

names. The peculiarity of matching is in fact to allow a process to evolve if and only if

two names denote the same observable. Consequently the intended observables to be

preserved by a reasonable semantics of matching are all the visible actions performed

on the channel names that can be tested for equality, and therefore are all the barbs.

The negative result

We start noting some properties of processes in π and πm.

Observation 6.3. For any processes P,Q in π or πm, if P
τ
−→ Q then, for any substitu-

tion σ, Pσ τ
−→ Qσ.

Proof. By cases on the syntax the reduction must be defined on two input and output

prefixes with the same syntactical subject, and therefore remains executable under any

substitution on P. ✷

The crucial property that characterises the absence of matching in πm is that if a

substitution does not affect the barbs of a process, then it does not increase its ability

to reduce.

6.3. Expressivity of Polyadic Synchronisation 103

Proposition 6.2. For any process in πm, for any substitution σ with domain Dσ, if

(∀x ∈Dσ. P 6↓x ∧P 6↓x) holds and Pσ τ
−→ Qσ, then P

τ
−→ Q.

Proof. Similarly to the proof of Observation 6.3, if P 6↓x and P 6↓x for every x∈Dσ, then

the reduction Pσ τ
−→ Qσ cannot be obtained by prefixes whose subjects are syntacti-

cally different, and therefore the reduction remains executable also without applying

the substitution. ✷

This law does not hold both in π and in eπ. Consider the substitution σ = {x/y}, the

π process Pπ , [x = y]τ.Q, and the eπ process Peπ , (νz)(z · x|z · y.Q): both Pπ 6↓ and

Peπ 6↓, but both Pπσ and Peπσ can reduce whereas Pπ and Peπ cannot. From Proposition

6.2 and Observation 6.3 follows this useful corollary.

Corollary 6.1. Let σ range over arbitrary substitutions. For any πm process P, if P 6↓
then (∃σ.Pσ τ

−→ Qσ)⇒ (∀σ.Pσ τ
−→ Qσ).

Theorem 6.2 (Matching). There exists no sensible encoding of aπ= in πm.

Proof. Suppose that [[−]] is such an encoding: we have noted that a reasonable se-

mantics of matching must preserve observations on barbs (The result holds also for a

weaker notion of observation preservance: replacing (6.1) with P ⇓ ⇔ [[P]] ⇓.), and

therefore

∀x. P ⇓x⇔ [[P]] ⇓x; ∀x. P ⇓x⇔ [[P]] ⇓x (6.1)

which implies in particular that P 6⇓ ⇔ [[P]] 6⇓. Considering M , [x = y]x we have that,

by definition of matching and by (6.1),

∀σ. Mσ ⇓σ(x)⇔ [[Mσ]] ⇓σ(x)⇔ σ(x) = σ(y) (6.2)

where σ is an arbitrary substitution. By strong uniformity the previous condition be-

comes

∀σ∃θ. [[M]]θ ⇓σ(x)⇔ σ(x) = σ(y) (6.3)

Consider now two substitutions σ1 and σ2 such that σ1(x) = σ1(y) and σ2(x) 6= σ2(y).
By (6.2) we have that Mσ1 ⇓σ1(x) and Mσ2 6⇓, and by (6.3) follows that

∃θ1,θ2. [[M]]θ1 ⇓σ1(x) ∧ [[M]]θ2 6⇓ (6.4)

Expanding the definition of 6⇓ we have that

[[M]]θ2 6⇓ , ∀M′.[[M]]θ2 −→M′ ∧ M′ 6↓ (6.5)

By reflexivity and transitivity of−→, applying at each step Observation 6.2 and Corol-

lary 6.1, we can conclude that

∀θ. [[M]]θ 6⇓ (6.6)

contradicts (6.4), therefore a sensible encoding of matching in πm cannot exist. ✷

Remark 6.2. In the proof we have used process [x = y]x as a counterexample for gen-

erality: it belongs both to the syntax of [84] and of [102]. This term doesn’t enjoy

Observation 6.2, but the proof holds also for process [x = y]τ.x, which conforms to our

definition of matching (Remark 6.1), clarifying that the key property characterising the

non-encodability of matching is Proposition 6.2.

104 Chapter 6. Polyadic Synchronisation and its expressive power

The positive result

We show that the encoding of matching in eπ preserves strong full bisimilarity. Our en-

coding confirms the intuition that matching requires both input and output capabilities

on a channel.

Lemma 6.8 (Encoding of Matching in eπ). Let P be any process in eπ= such that

z 6∈ f n(P), and let [[[x = y]τ.P]] , (νz) (z · x | z · y.P). Then [x = y]τ.P and [[[x = y]τ.P]]
are strongly full bisimilar (∼).

Proof. By definition of ∼, given P and Q, P∼ Q if and only if for all σ, Pσ∼̇Qσ. We

split the proof according to the behaviour of σ on x and y:

- σ(x) 6= σ(y): both processes [σ(x)= σ(y)]τ.(Pσ) and (νz)(z ·σ(x) | z ·σ(y).(Pσ))
cannot reduce and cannot perform any barb, therefore they are bisimilar;

- σ(x) = σ(y): again both processes cannot perform any barb, and both reduce to

the same process

[σ(x) = σ(y)]τ.(Pσ)
τ
−→ Pσ (6.7)

(νz)(z ·σ(x) | z ·σ(y).(Pσ))
τ
−→ Pσ (6.8)

By reflexivity of ∼̇, Pσ∼̇Pσ.

✷

6.3.2 Mixed Choice

We consider now the expressive power of the mixed choice construct. Palamidessi’s

result, separating πm from πs, holds analogously in our setting. The key point is that

the impossibility to break the symmetry between identical processes that constitutes

the core of the negative result, is not influenced by the ability to synchronise on more

than one channel name. In fact, we can show that Lemma 4.1 of [92] generalises to

our setting.

Lemma 6.9. Let β be u〈x〉 or u〈νx〉, and let P be a process of πs
n for some n. Assume

that P can make two transitions P
β
−→ Q and P

v(y)
−→ R. Then there exists S such that

Q
v(y)
−→ S and R

β
−→ S.

Proof. Consider the syntactical definition of summations and prefixes in πs
n, where

k, j ≤ n

P ::= ... | Σi αI
i .Pi | Σi αO

i .Pi | ... (6.9)

αI ::= τ | x1 · ... · xk(y); αO ::= τ | x1 · ... · x j〈y〉 (6.10)

and recall the syntactical characterisation of barbs given in Definition 2.3

∃y,Q.P
x(y)
−→ Q⇔ P≡ (νx1)...(νxn)(x(y).Q + M|N) (6.11)

∃y,Q.(P
x〈y〉
−→ Q∨P

x〈νy〉
−→ Q)⇔ P≡ (νx1)...(νxn)(x〈y〉.Q + M|N) (6.12)

6.3. Expressivity of Polyadic Synchronisation 105

where x is different from each x1, ...,xn. We have that

P
v(y)
−→ R⇔ P≡ (νx1)...(νxn)(v(y).Q1 + M1|N1) (6.13)

P
β
−→ Q⇔ P≡ (νx1)...(νxn)(u〈x〉.Q2 + M2|N2) (6.14)

where the names in u and v are all different from x1, ...,xn. By (6.9) and (6.10) we

have that M1 cannot contain an output at the top level, and M2 cannot contain an input.

Therefore

N1 ≡ N|u〈x〉.Q2 + M2 (6.15)

N2 ≡ N ′|v(y).Q1 + M1 (6.16)

that allows us to conclude that N ≡ N ′ and

P≡ (νx1)...(νxn)(u〈x〉.Q1 + M1|N|v(y).Q1 + M2) (6.17)

By applications of rules (RES), (OPEN), (PAR) and (PREFIX) follows the thesis. ✷

Remark 6.3. Technically speaking our Theorem 6.2, which shows that πs is less ex-

pressive than πs,=, restricts the generality of the separation result given by [92], be-

cause Lemma 4.1 shown in that reference is proved only for processes of πs. Nonethe-

less it is an easy exercise to adapt the proof of the cited lemma to processes in πs,=,

restoring the full generality of Palamidessi’s result.

Given the confluence property shown in Lemma 6.9, we can claim that an analo-

gous of Palamidessi’s separation result holds also in our setting.

Proposition 6.3 (Mixed Choice). For any n,m, there exist no uniform encoding of πn

into aπm which preserves a reasonable semantics.

Proof. By inspection of the cases in the proof of Theorem 4.2 of [92], replacing

Lemma 4.1 of the reference with Lemma 6.9, we have that a symmetric electoral sys-

tem cannot be encoded in aπm, for any m. On the other hand, Claim 1 of the reference

stating the existence of symmetric electoral systems in πm, holds also for πn with n > 0,

noting that πm is a sub-calculus of π1. In the degenerate case of π0 we have that for

example

(〈y〉+(x).o〈y〉) | (〈z〉+(x).o〈z〉)

is a simple symmetric electoral system with two components. ✷

6.3.3 Polyadic Synchronisation

We show our main expressivity result: the expressive power of calculi in πN depends

on the degree of synchronisation. In particular, we show that there exists a separation

problem: it is not possible to write two non-divergent processes in πn to detect whether

two vectors of n+ 1 identifiers are equal, whereas it is possible in πn+1.

106 Chapter 6. Polyadic Synchronisation and its expressive power

Matching Systems

We define a family of binary relations on processes called Matching Systems. In the

following, let a server template of degree n be a process whose free names (the process

identifiers) are x1, ...,xn, and let a client template be defined as a server template with an

additional free name y (the process index). In a matching system, copies of a template

of each kind (say S and C) are instantiated in parallel as in C1σ1|..|Chσh|!S1θ1|...|!Skθk,

where a substitution is applied to each process in order to “personalise” its identifiers.

If the same substitution is applied to an instance of a client Ci and to one of a server S j,

the two instances are meant to recognise each other and perform some kind of mean-

ingful behaviour. Therefore, a natural requirement is that the recognition process shall

be finite. The process index constitutes the unique identity of a client. To represent the

end of a (successful) recognition process between Ci and S j, we require S j to notify the

index i of Ci on an additional global channel o that must be used only for this purpose

(Without invalidating the result, we allow this special channel also in π0, that normally

cannot have channels.). We allow special observations on o, of the form P ↓o〈i〉, in

order to note the object of the communication as well as the subject. The Matching

Problem MPn consists in finding two processes that constitute a matching system of

degree n, according to the following definition.

Definition 6.1. (Matching System) A client template C and a server template S of

degree n constitute a Matching System MSn(C,S) of degree n if and only if

- for all finite set of server indexes J,

- for all finite sets of fresh client indexes I ⊂ (N \{x1, ...,xn,o}),

- for any set of substitutions {σi}I and {θ j}J with domain {x1, ...,xn} (the process

identifiers) and codomain N \ (I∪{o}),

- for all the processes P of the form Πi∈I Ci{i/y}σi | Π j∈J !S jθ j

the following properties hold:

1. there is no infinite sequence of reductions starting from process P;

2. an output o〈i〉 is observable if and only if there are a client i and a server j with

the same identifiers: ∀i ∈ I. (P ⇓o〈i〉⇔∃ j ∈ J. σi = θ j).

Note that the only condition on the server indexes is that J is finite. In fact the

server indexes play a role only at the meta-level, and are not needed operationally.

Example 6.2. The π0 processes C′ = 〈y〉 and S′ = (w).o〈w〉 constitute a matching

system MS0(C
′,S′): C′ and S′ have no identifiers, and therefore every exchange of

indices is legal. For example:

〈i1〉|〈i2〉|〈i3〉|!(w).o〈w〉
τ
−→

τ
−→

τ
−→ o〈i1〉|o〈i2〉|o〈i3〉|!(w).o〈w〉 (6.18)

and the conditions of Definition 6.1 are trivially satisfied.

6.3. Expressivity of Polyadic Synchronisation 107

Example 6.3. The aπ processes C = x〈y〉 and S = x(w).o〈w〉 constitute a matching sys-

tem MS1(C,S). It is easy to verify that for any possible substitution parallel instances

of the processes interact if and only if the channels resulting from a substitution on x

are equal, and in that case the identifier of the client is correctly forwarded on channel

o by a server.

A crucial property of matching systems is to be open, in the sense that a process

cannot make assumptions on the parallel context where it is executed. In fact, matching

systems are closed under parallel instantiation: given MSm(C,S) and two instances

I,J, Σ , {σi}I , Θ , {θ j}J, P , Πi∈I Ci{i/y}σi | Π j∈J !S jθ j (6.19)

I′,J′, Γ , {γi}I′ , ∆ , {δ j}J′ , P′ , Πi∈I′ Ci{i/y}γi | Π j∈J′ !S jδ j (6.20)

also the parallel instance

I∪ I′, J∪ J′, Σ∪Γ, Θ∪∆, P′′ , P|P′ (6.21)

is a legal instance of the same matching system, provided that I∩ I′ = /0.

The πN Hierarchy

Theorem 6.3 (Expressivity). For all non-negative integer numbers n and m, the prob-

lem MPm has a solution in πn if and only if n≥ m.

Proof. (⇐) We give a process in aπm (therefore also in πn) providing a solution to

MPm:

C , x1 · ... · xm〈y〉; S , x1 · ... · xm(w).o〈w〉 (6.22)

The degenerate case for m = 0 is reported in Example 6.2. As required by Definition

6.1, every instance of MSm(C,S) terminates: there are only a finite number of output

prefixes at the top level, and the only outputs in the continuations of the servers are on

channel o, but no input on o is allowed in the system. The only eventuality in which an

output o〈i〉 may be observed is when communication happens between two instances

of C and S subject to the same substitution.

(⇒) Consider the minimal case where m = n + 1 and assume that MPn+1 has a

solution in πn. We show that this hypothesis leads to a contradiction. Let C,S be those

two πn process templates of degree n+1 such that MSn+1(C,S). They must necessarily

satisfy conditions (1) and (2) of Definition 6.1 for all the well-formed instantiations

of their parameters. In particular, we recall that matching systems are closed under

parallel instantiations. With a slight abuse of notation, let Ci stand in the sequel for

Ci{i/y}. Consider the instance

P , Ciσi | !S jθ j (6.23)

where σi = θ j: by condition (2) we have that P ⇓ o〈i〉. It must be the case that neither

Ciσi ⇓o〈i〉 nor S jθ j ⇓o〈i〉, otherwise the well-formed instances P1 , Ciσi and P2 ,!S jθ j

would not respect condition (2). Similarly, o〈i〉 cannot be made observable by an

interaction of Ciσi with a context not containing !S jθ j. We conclude that at least a

synchronisation must take place between a client and the corresponding server in order

to verify the compatibility of the identifiers.

108 Chapter 6. Polyadic Synchronisation and its expressive power

Since the identifiers to be tested are n + 1 and both C and S by hypothesis are πn

processes, a barb presented by a client can contain at most n free names. Without loss

of generality, suppose that Ciσi ↓u, and u = σi(x1) · ... ·σi(xn). For interaction to take

place, it must be the case that S jθ j ↓u. Considering θk such that θk = θ j on the first

n identifiers but θk(xn+1) 6= θi(xn+1), we have from Observation 6.2 that Skθk ↓u, and

consequently process

P3 , Ciσi | !Skθk (6.24)

is such that both P3 ↓u and P3 ↓u. This shows that in principle Ci can communicate with

a process that is not its right partner. Considering now

P4 , Ciσi | !Skθk|!S jθ j (6.25)

it may be the case that P4
τ
−→ P′4|!S jθ j and consequently P′4 must eventually attempt

a synchronisation with S j in order to satisfy condition (2). We have shown that Ciσi

must continue to attempt synchronisation until eventually identifies S j, since it cannot

make assumptions on the parallel context.

Noting that the set J↓ = {u|S jθ j ↓u} is finite (the free names of S jθ j are its n + 1

identifiers, and channel o) we can build a finite instance of MSn(C,S) that contains an

infinite loop, contradicting condition (1)

Pω , Ciσi|Πh∈H!Shθh (6.26)

where ∀u ∈ J↓.∃h ∈ H.θh(x1) · ... ·θh(xn) = u∧θh(xn+1) 6= σi(xn+1). ✷

Remark 6.4. Observation 6.2 holds also for π and eπ=, provided that σ is injective.

Therefore direction (⇒) of the proof holds also if matching is allowed as a primitive

operator in C and S, taking care to chose in the counterexample an injective substitution

θ j.

We now look at the separation result from the perspective of encodings.

Proposition 6.4 (Polyadic Synchronisation). There exists no sensible encoding of

aπn+1 in πn, for any n.

Proof. Supposing that [[−]] is such an encoding, we derive a contradiction. By part

(⇐) of the proof of Theorem 6.3, there are two aπn+1 processes C and S providing a

solution for MPn+1. A sensible encoding preserves the properties of a matching system

and therefore we would have that the two πn processes [[C]] and [[S]] provide a solution

for MPn+1, contradicting part (⇒) of Theorem 6.3. ✷

6.4 A hierarchy of Expressiveness

To conclude we compare the dialects of π-calculus that we have considered so far by

means of a lattice of expressivity induced by the notion of sensible encoding.

Definition 6.2. Given two process calculi P and Q in a set of calculi S , we write:

- P � Q if there exists a sensible encoding of P in Q ;

- P ≃ Q if both P � Q and Q � P ;

6.4. A hierarchy of Expressiveness 109

- P � Q if it is not the case that P � Q ;

- P ≺ Q if P � Q and Q � P ;

- P 6≃ Q if both P � Q and Q � P .

Lemma 6.10. Let S = πN∪πO p, let S/≃ be S quotiented by≃, and for each [P]≃, [Q]≃ ∈
S/≃, let [P]≃ �/≃ [Q]≃ if and only if P � Q . Then (S/≃,�/≃) is a complete lattice

with bottom element aπ0 and top element eπ, corresponding to the diagram reported

in Table 6.3 (where P −→ Q means P ≻ Q).

Proof. Noticing that� is a preorder, and ≃ is the equivalence relation induced on S by

�, follows immediately that (S/≃,�/≃) is a partial order. We now exhaustively check

all the significative relations implied by the diagram.

- aπ≃ πs, aπ= ≃ πs,=: in both cases � is an embedding and � follows from [87],

noticing in the formulation of [102] that the encoding behaves well with respect

to arbitrary substitutions.

- aπ≺ aπ=, πm ≺ π: in both cases � is an embedding and 6� follows from Theo-

rem 6.2, in the second case noticing that aπ= � π.

- aπ ≺ πm, aπ= ≺ π, aπn ≺ πn: � is an embedding, 6� follows respectively from

[92], Remark 6.3, and Proposition 6.3.

- (a) aπn ≺ aπn+1, πn ≺ πn+1: in both cases � is an embedding and 6� follows

from Proposition 6.4;

(b) aπ0 ≺ aπ, π0 ≺ π: in both cases � is a simple encoding where anony-

mous communication is translated by communicating on the same unre-

stricted channel, and � follows from Proposition 6.4 noticing that the pro-

cess given in part (⇐) of the proof of Theorem 6.3 for n = 1 belongs to

aπ;

(c) aπ= ≺ aπ2, π≺ π2: in both cases � is a simple encoding where matching

is translated according to Lemma 6.8, and � follows from Proposition 6.4

and Remark 6.4.

- πn 6≃ aπn+1: � from Proposition 6.3 and 6� from Proposition 6.4.

- aπ= 6≃ πm: � from Proposition 6.4 by noticing that in part (⇐) of the proof of

Theorem 6.2, M belongs to aπ, and 6� from Remark 6.3.

According to the ordering�, the results above establish that aπ0 is the bottom element,
eπ is the top element and each subset X of S/≃ has limits in S/≃. ✷

From Table 6.3 emerges that the two constructs of polyadic synchronisation and

mixed choice can be considered orthogonal. On the other hand, in the light of the

results presented in Section 6.3.1, matching introduces a difference only when binary

synchronisation is not available.

110 Chapter 6. Polyadic Synchronisation and its expressive power

π2

π

πm

...
aeπ

aπ2

aπ= ≃ πs,=

aπ≃ πs

...

π0
aπ0

eπ

Table 6.3: Expressivity Lattice

Remark 6.5. If a comparison operator and a total order on names were provided, the

leader election problem could be easily solved in the π-calculus without mixed choice,

using for example the LCR algorithm of [36]. Analogously, if a composition operator

on names was provided as primitive, also the Matching Problem would be solvable in

π-calculus: the process identifiers could be composed together to constitute a single

channel name.

6.5 Typing Polyadic Synchronisation

Below we extend the structural and nominal typing approach for the π-calculus to eπ,

and in both cases we obtain proper extensions of the typing discipline, in the sense that

the restriction of the system to eπ1 gives exactly the corresponding type system for the

π-calculus.

A naive extension of the π-calculus type systems would be unsound. For example

the term

z(x,y).(x · y〈5〉 | x · y〈true〉)

leads to the derivation

z : [T,S],x : T,y : S ⊢ x · y〈5〉 z : [T,S],x : T,y : S ⊢ x · y〈true〉

z : [T,S] ⊢ z(x,y).(x · y〈5〉 | x · y〈true〉)

where we fall short of a way to relate T and S to the type of channel x · y. We will

consider below various way to relate the type of each name constituting a channel with

6.5. Typing Polyadic Synchronisation 111

the type of the channel itself.

Subtyping does not help in this case, because the problem is not one of containment

of values, but of compatibility of the communication structure.

6.5.1 Structural Types for eπ

Uniform typing

The simplest extension of structural types for the π-calculus that we consider uses the

same definitions of Section 2.2.6, and modifies the typing rules for input and output to

require the same exchange type [T̃] for each name zi in a synchronisation vector:

(T-INP)
Γ ⊢ zi : [T̃] Γ, x̃ : T̃ ⊢ P

Γ ⊢ z1 · . . . · zn(x̃).P
(T-OUT)

Γ ⊢ zi : [T̃] Γ ⊢ x̃ : T̃ Γ ⊢ P

Γ ⊢ z1 · . . . · zn〈x̃〉.P

This choice, forcing each name in a synchronisation vector to have the same type,

limits drastically the set of well-typed eπ-terms, and coincides with the π-calculus

structural typing in the case of eπ1.

The type system satisfies the standard property of preserving types under reduc-

tion, and guarantees that well-typed processes will not incur in communication errors.

Example 6.4. As a positive point, the encoding of matching (of names of type [])

[x = y].P , (νc)(c · x〈〉 | c · y().P)

is typable following this approach:

· · · · · ·

Γ,x : [],y : [],c : [] ⊢ c · x〈〉 | c · y().P

Γ,x : [],y : [] ⊢ [x = y].P

Type concatenation

We now consider an alternative choice, where each name is treated as a monadic chan-

nel, and the type of a synchronisation vector is the tuple obtained by concatenation.

(T-INP)
Γ ⊢ zi : [Ti] Γ, x̃ : T1, . . . ,Tn ⊢ P

Γ ⊢ z1 · . . . · zn(x̃n).P

(T-OUT)
Γ ⊢ zi : [Ti] Γ ⊢ x̃ : T1, . . . ,Tn Γ ⊢ P

Γ ⊢ z1 · . . . · zn〈x̃n〉.P

In absence of base types, it is possible to omit all types from the rules above, and a

simple syntactic checking that synchronisation vectors are always the same length as

the tuples they exchange, suffices to guarantee the absence of run time errors.

It follows that there exists no computable encoding of the polyadic π-calculus into

this language, as communication errors are undecidable in that setting.

112 Chapter 6. Polyadic Synchronisation and its expressive power

(TYPES) S,T ::= A ∈Ns A is a symbolic name type

(TYPE ENV) Γ ::= Γ,x : T | /0 x has symbolic name type T

(EXCHANGE POL) ∆ ::= ∆,(S̃) : T̃ | /0 channels of subject S̃ have object T̃

Table 6.4: Syntax for Types and Environments

Other approaches

We might consider the alternative choices given below

1. the type of a channel is the one of the first (or last) element of a synchronisa-

tion vector: this approach allows to type either different channels at the same

location, or different locations having the same channel, e.g. the term below is

typable if a vector takes the time of the last name

l ·a〈5〉 | l ·b〈“Hi!′′〉;

2. similar to the type concatenation approach, but this time each name is treated as

a polyadic channel: this system does not have principal types, because it is not

possible to decide univocally where to split the object vector in corresponding

of each name in a synchronisation vector;

3. the type of a name is a bidimensional infinite matrix where one coordinate rep-

resents the length of a vector, the other the position of the name in the assumed

vector, and the value is again a structural exchange type (i.e. a tuple of matrixes).

6.5.2 Nominal Types for eπ

The nominal typing system for eπ is a straightforward adaptation of the one for the

π-calculus, where the only change is that the set of type definitions ∆, now called an

exchange policy, contain associations between vectors of symbolic name types (corre-

sponding to the concept of synchronisation vectors) and exchange types.

Let Ns be a denumerable set of symbolic name types disjoint from N , ranged

over by A,B,C. Our type system is based on two components: an environment Γ,

associating each name to a symbolic name type, and an exchange policy ∆, assigning

exchange types to vectors of symbolic name types. For example, given a term x ·z(ỹ).P,

Γ will record symbolic name types for x,z (say A,B), and ∆ will prescribe for the vector

A ·B exchanges compatible with the type given by Γ to ỹ. Both Γ and ∆ are functions,

no multiple definitions are allowed. The formal definition for types and environments

is given in Table 6.4.

The rule for typing values, vectors of symbolic name types and processes are given

in Table 6.5, where we use the shorthand notation x̃ : T̃ for x1 : T1, . . . ,xn : Tn where

x̃ = x1, . . . ,xn and T̃ = T1, . . .Tn.

6.5. Typing Polyadic Synchronisation 113

(TV-NAME)
Γ,x : T ⊢ x : T

(T-POL)
∆,(Ñ) : T̃
 (Ñ) : T̃

(T-PAR)
Γ ⊢∆ P Γ ⊢∆ Q

Γ ⊢∆ P | Q
(T-NIL)

Γ ⊢∆ 0

(T-REP)
Γ ⊢∆ P

Γ ⊢∆ !P
(T-RES)

Γ,x : C ⊢∆ P

Γ ⊢∆ (νx) P

(T-INP)
Γ ⊢ zi : Si ∆
 (S̃) : T̃ Γ, x̃ : T̃ ⊢∆ P

Γ ⊢∆ z1 · . . . · zn(x̃).P

(T-OUT)
Γ ⊢ zi : Si ∆
 (S̃) : T̃ Γ ⊢ ỹ : T̃ Γ ⊢∆ P

Γ ⊢∆ z1 · . . . · zn〈ỹ〉.P

Table 6.5: Nominal types for eπ.

Results

Our type system satisfies the standard property of preserving types under reduction,

and guarantees that well-typed processes will not incur in communication errors, as

stated by the theorems below.

Lemma 6.11 (Strengthening). If Γ,x : C ⊢∆ P and x is not free in P then Γ ⊢∆ P.

Proof. By induction on the typing rules.

• Induction Base.

(T-NIL). Trivial.

• Inductive Cases.

– (T-PAR). For P = P′ |Q, we have that Γ,x : C ⊢∆ P′ : ⋄ and Γ,x : C ⊢∆ Q : ⋄
as Γ,x : C ⊢∆ P′ | Q : ⋄. By induction hypothesis and rule (T-PAR) again

we have Γ ⊢∆ P′ | Q.

– (T-REP). Trivial.

– (T-RES). Trivial.

– (T-INP). By applying this rule, as P = a1 · . . . · an(x1, . . . ,xm).P′ we have

that

Γ,x : C ⊢∆ ai : Ni

Γ,x : C,x1 : V1, . . . ,xm : Vm ⊢∆ P′ : ⋄

114 Chapter 6. Polyadic Synchronisation and its expressive power

As we know that x is not in the free names of P we then have that Γ ⊢∆ ai :

Ni, and by induction hypothesis we have that Γ,x1 : V1, . . . ,xm : Vm ⊢∆ P′ : ⋄
and so by rule (T-INP) again we get Γ ⊢∆ P.

– (T-OUT). Similar to previous case.

✷

Lemma 6.12 (Weakening). If Γ ⊢∆ P then Γ,x : C ⊢∆ P for any type C and any x not

defined in Γ.

Proof. Similar to proof of Lemma 6.11. ✷

Lemma 6.13 (Substitution Lemma). If Γ,x : C ⊢∆ P and Γ ⊢∆ v : C then Γ,x : C ⊢∆
P{v/x}.

Proof. By induction on the derivation of Γ,x : C ⊢∆ P.

• Induction Base.

(T-NIL). Trivial.

• Inductive Cases.

– (T-PAR). For P = P′ |Q, we have that Γ,x : C ⊢∆ P′ : ⋄ and Γ,x : C ⊢∆ Q : ⋄
as Γ,x : C ⊢∆ P′ | Q : ⋄. By induction hypothesis and rule (T-PAR) again

we have Γ,x : C ⊢∆ (P′ | Q){v/x}.

– (T-REP). Trivial.

– (T-RES). Trivial.

– (T-INP). By applying this rule, as P = a1 · . . . · an(x1, . . . ,xm).P′ we have

that

Γ,x : C ⊢∆ ai : Ni

Γ,x : C,x1 : V1, . . . ,xm : Vm ⊢∆ P′ : ⋄

By induction hypothesis we get that Γ,x :C,x1 :V1, . . . ,xm :Vm ⊢∆ P′{v/x} :

⋄. If x is not an element in a1 · . . . ·an then this case is proved. If there exists

an i such that x = ai then we have by rule (TV-NAME) that Γ,x : C ⊢ x : C.

– (T-OUT). Similar to previous case.

✷

Lemma 6.14 (Subject Congruence). Assume that Γ ⊢∆ P and P ≡ Q. Then we have

that Γ ⊢∆ Q.

Proof. We prove it by induction on the definition of ≡.

• Monoidal conditions. Trivial.

• (STRUCTπ
1), (STRUCTπ

3) and (STRUCTπ
4). Trivial.

• (STRUCTπ
2). Under the assumption that z 6∈ f n(Q) we have that:

6.5. Typing Polyadic Synchronisation 115

– if Γ ⊢∆ (νz) (P | Q) then by rule (T-RES) we have that Γ,z : C ⊢∆ P | Q : ⋄
and by (T-PAR) we have tha Γ,z : C ⊢∆ P : ⋄ and Γ,z : C ⊢∆ Q : ⋄. Now,

applying strengthening (Lemma 6.11) we have that Γ ⊢∆ Q : ⋄. It follows

by (T-RES) and (T-PAR) again that Γ ⊢∆ (νx) P | Q.

– if Γ ⊢∆ (νx) P | Q then, similarly to the previous case we can prove Γ ⊢∆
(νz) (P | Q) by using Lemma 6.12 (weakening).

• (STRUCTπ
5). Trivial.

Theorem 6.4 (Subject Reduction). Assume that Γ ⊢∆ P and P−→ Q. Then we have

that Γ ⊢∆ Q.

Proof. By induction on the depth of the derivation of P
α
−→ Q. We consider only the

most interesting cases.

• Induction Base.

This is the case when we consider the reduction rule (COMMπ). By assumption

we have

Γ ⊢∆ u(x̃).P′ | u〈ỹ〉.Q′ (6.27)

u(x̃).P′ | u〈ỹ〉.Q′ −→ P′{ỹ/x̃} | Q′ (6.28)

If we now assume that u = a1 · . . . ·an, by rule (T-PAR), and then by rules (T-INP)
and (T-OUT) we have the following conditions. By applying the rule (T-INP)
we have that

Γ,x1 : V1, . . . ,xm : Vm ⊢∆ P′ : ⋄ (6.29)

By applying the rule (T-OUT) we have that

Γ ⊢∆ y j : Vj (6.30)

Γ ⊢∆ Q′ : ⋄ (6.31)

Now by (6.29), (6.30) and applying m times Lemma 6.13 we have hat

Γ ⊢∆ P′ : ⋄ (6.32)

Hence by (6.31), (6.32) and the rule (T-PAR) we have that Γ ⊢∆ P.

• Inductive Cases.

We have to prove the inductive cases which include rules (RESπ), (PARπ) and

(STRUCTπ).

116 Chapter 6. Polyadic Synchronisation and its expressive power

– Applying rule (RESπ) we have, by assumption, that

P−→ Q (6.33)

Γ ⊢∆ (νx) P (6.34)

Applying rule (T-RES) to (6.34) we have that

Γ,x : C ⊢∆ P : ⋄ (6.35)

Now by (6.33), (6.35) and induction hypothesis it follows Γ,x : C ⊢∆ Q : ⋄
and by rule (RESπ) we have that Γ ⊢∆ (νx) Q.

– The case of rule (PARπ) is similar to the previous one.

– Concerning rule (STRUCTπ) it follows from Lemma 6.14, as in the previ-

ous cases.

Theorem 6.5 (Type Safety). If Γ ⊢∆ P then P 6 †.

Proof. (Sketch) We show that for all Γ,∆,P, if P† then Γ 6⊢∆ P. By definition of −†

we have that P ≡ (νz̃) (P1 | u(x̃n).R | u〈ỹm〉.Q) where m 6= n, and by Lemma 6.14 we

need to show that Γ 6⊢∆ (νz̃) (P1 | u(x̃n).R | u〈ỹm〉.Q). Repeatedly using (T-RES) and

(T-PAR) we will reach the two sub-derivations for rules (T-INP) and (T-OUT) with

conclusion, respectively Γ ⊢∆ u(x̃n).R and Γ ⊢∆ u〈ỹm〉.Q, with premises necessarily

incompatible. ✷

Examples

Despite its simplicity, combining named types together with polyadic synchronisation,

yields great expressive power to our basic type system.

In the examples below, for the purpose of readability, we will use arbitrary identi-

fiers to range over both names, synchronisation vectors, and symbolic name types.

Example 6.5. The generic encoding of matching as presented in above

[x = y].P , (νc)(c · x〈〉 | c · y().P)

is typable with the nominal discipline:

· · · · · ·

Γ,x : A,y : A,c : B ⊢∆ c · x〈〉 | c · y().P

Γ,x : A,y : A ⊢∆ [x = y].P

where B can be any symbolic name type such that ∆ contains (B,A) : ⋄.

Example 6.6. In the structural approach a channel cannot send its own name, unless

including the apparatus of recursive types in the system. In the nominal approach this

expressiveness comes for free: the example below is well-typed.

Γ = a : FW, ∆ = (FW) : FW, INT, Γ ⊢∆!a(x,y).a〈x,y〉 | a〈a,5〉

6.5. Typing Polyadic Synchronisation 117

Example 6.7. As another example we show how we can encode a limited form of

polymorphism (generic operations) in our typed calculus. Let the identity function

(with the corresponding invocation) as proposed for example in [53] be

!Id(x,y).y〈x〉 (νz) Id〈v〉.z(w).P

Clearly, channel Id should be typable for all types T such that x : T and y : A with A : T

in ∆. Without explicitly introducing polymorphism, this generality is not achievable,

but we can limit ourselves to a bounded quantification on T and encode polymorphism

in our typed calculus. Suppose that T can be either STRING or BOOL. The new identity

function becomes

!Id · s(x,y).y〈x〉 |!Id ·b(x,y).y〈x〉

with corresponding invocations

(νz) Id · s〈“Hello!′′,z〉.z(w).P (νz) Id ·b〈true,z〉.z(w).Q

and the exchange policy will contain

(ID,S) : STRING,STRINGchan (ID,B) : BOOL,BOOLchan

where the associations b : B,s : S,Id : ID, . . . are in Γ. The point is that Id can still be

sent along a channel as a polymorphic name, as for example in

op〈Id〉 | op(x).(bool(y).(νz)x ·b〈y〉.z(w).P | string(y).(νz)x · s〈y〉.z(w).Q)

Example 6.8. In the setting of the previous example, we show that it is possible to

define a properly polymorphic application operator in eπ using our simple nominal

typing discipline. Consider the term below:

apply(t, f ,v).(w)P = (νz)(f · t〈z,v〉.z(w).P)

which invokes the version of f having type t with argument v. The term is well typed

for all Γ,∆,A,B,C,D,P such that

Γ ⊢ t : A, f : B,v : C ∆
 D : [C],B ·A : [D,C] Γ,w : C ⊢∆ P

Chapter 7

Conclusions

This is the end, beautiful friend,

this is the end, my only friend, the end

— Jim Morrison, The Doors, 1967.

We shall conclude this dissertation with an overall summary of its contents which

backs up related work and summaries found at the end of each previous chapter. In

addition to this, we shall also discuss possible direction for future work.

This dissertation is about studying formal models for large scale systems based on

the human notion of trust.

The SECURE project has deeply investigated many of the issues brought forward

in this dissertation. But still, this is not the end of the story. There is still a lot to

be done, and its successors will develop further systems based on new theories. This

project has been one of the first tentative of formalising the human notion of trust and

taking it into computer systems.

In Chapter 4, we presented a novel model for trust in distributed dynamic networks.

The model builds on basic ideas from trust management systems and relies on domain

theory to provide a semantic model for the interpretation of trust policies in trust-

based security systems. Our technical contribution is based on bi-ordered structures

(T ,�,⊑), where the information ordering ⊑ measures the information contents of

data, and is needed to compute the fix-point of mutually recursive policies, while the

trust ordering � measures trust degrees and is used to make trust-informed decisions.

Trust and information orderings, as relations, are continuous with respect to each other.

Following this lead, we presented an interval construction as a canonical way to add

uncertainty to trust lattices, and used the theory to guide the design and underpin the

semantics of a simple, yet realistic policy language. We believe that the model can be

used to explain existing trust-based systems, as well as help to design of new ones.

We based our investigation on the notion of (complete) lattice, since it is the stan-

dard in the literature. However, there are reasons to believe that upper semi-lattices –

that is ordered structures in which only bounded sets have least upper bounds – provide

a better starting model. From a modelling perspective, it is easy to think of situations

in which it should not be possible to form the join of two trust level. For instance,

in a starship’s auto-destruction system, the capabilities “possess key A” and “possess

key B” to ignite cannot be joined, as the capability of possessing both the keys is not

contemplated in the system. From a theoretical point of view, the absence of a top

119

120 Chapter 7. Conclusions

element simplifies the development of trust structures and enriches their theory.

We remark that the constructions illustrated here can be understood in abstract

(categorical) terms. We have chosen to spell them out in set theoretical details to reach

a wider audience. In particular, looking at the partial order (D,≤) as a category, our

interval construction I can be seen as the free construction of a double category with all

ω-filtered colimits. Specifically, � and ⊑ are respectively the horizontal and vertical

arrows, while least upper bounds and their (mutual) commutation laws are expressed

by as colimits. Furthermore, the (I(D),�) component of the interval construction is

exactly the functor category Arr→ D, where Arr = • → • is the category with due

objects and one non-identity arrow between them. More generally, the construction is

related to the Yoneda embedding, as the image of the hom-functor HomD : Dop×D→
Set is (I(D),⊑).

In Chapter 5, we have introduced ctm, a calculus for trust management. The cal-

culus enjoys many new features which fit in global computing scenarios making use

of the notion of trust.

Principals in ctm have two components: the policy and the protocol. The policy

consists of an immutable part, α, and a variable s. The former expresses the logic

of the policy, i.e. the rules following which decisions are taken, on the basis of past

experiences. The latter records the observations which make up such experiences, as a

function of the messages exchanged in interactions between principals.

It may be objected that this yields a generic concurrent calculus of stateful enti-

ties, and not a calculus specifically designed to represent trust-based systems. This

is actually not the case. The key to the matter is that, while s is definitely a kind of

store, principals have absolutely no control as to what it stores, or when it stores it:

s is updated uniquely and exactly to reflect the outcome of interactions. These in-

clude feedback on untrusted clients and advice from trusted principals. In particular,

a principal cannot store arbitrary values to s, or retrieve them from it. In other words,

the calculus represents faithfully a distributed set of principals interacting with each

other according to trust policies and risk assessment based on computational histories.

Similarly it is not possible to compare ctm to an extension to locations of the applied

π-calculus [1] as the latter does not model the notion of collecting observations even

though function guards can represent policies.

We remark also that our use of guards works quite effectively with the choice of

synchronous communications, to abstract the sequence of actions service request, risk

assessment, response to client, and record observation, in a single, atomic step where

trust-based decisions are localised.

We also have shown that ctm is a powerful calculus which, also, introduces new

features so adding expressivity. We believe that in ctm we can encode many other

existing tentatives of providing an operational model for trust-based systems, e.g. we

are able to embed the systems provided in [11], [22] and [57].

In the last chapter, we have extended the synchronisation mechanism of π-calculus

with polyadic synchronisation, where channels are vectors of names. It is a simple

idea that has been adopted implicitly in many other calculi, but a formal treatment of

its expressivity has not been given until now.

We have shown that matching cannot be encoded in π-calculus, whereas it is ex-

pressed naturally in terms of polyadic synchronisation. We have shown how a re-

stricted form of polyadic synchronisation can be encoded weakly in π-calculus and

121

how, in the general case, the higher the degree of synchronisation of a calculus, the

greater its expressive power. We have adapted the results on mixed choice to eπ, con-

cluding that polyadic synchronisation and choice are independent from one another.

We have not delved into the question of the expressivity of mismatching, and we

conjecture that it is not encodable in eπ (and consequently in π). Mismatching is

seldom considered in the literature, it does not seem to have many applications, and it

complicates the equational theory of π-calculus. A remarkable exception is the work of

[51], who proposes πB (an extension of π-calculus with a blocking operator) to reason

about the concept of dynamic binding in process calculi. The author shows that πB and

π=,6= are mutually encodable. Polyadic synchronisation allows dynamic binding to be

expressed in the π-calculus framework in a different way. The Dπ example reported

in the beginning of the chapter, shows how a migrating process can gain access to

the local names of a subsystem without requiring any explicit communication: the

dynamic binding and re-binding of names is implicit in the semantics.

A possible interpretation of our main expressivity result is that locations are a

fundamental concept in distributed calculi, since the attempt to encode them in models

with simple synchronisation in general introduces divergence. We believe that eπ has

the expressive power to represent nested locations, but only in a static setting. The

Ambient Calculus instead, seems to be beyond the reach of the expressive power of

the model of synchronisation adopted by π-calculi.

The chapter about polyadic synchronisation concludes with a suggestion for a pos-

sible type system. This is just a first step, and could be seen as still ongoing work.

The idea is to have further developments of these types, and then search for applica-

bility to the ctm framework where they could turn to be useful in the static control of

trust-based systems.

Also note that the ability to encode cryptography, distribution and concurrent ob-

jects in the eπ setting can improve the understanding of these issues.

It would also be interesting to consider further extensions of the synchronisation

mechanism, exploring the ideas of [80] in the light of the recent work of [86] concern-

ing joint input, and of our work on polyadic synchronisation.

Bibliography

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communica-

tion. In Proc. of the 28th symposium on Principles of Programming Languages

(POPL’01), pages 104–115. ACM Press, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi

calculus. Information and Computation, 148(1):1–70, Jan. 1999.

[3] A. Abdul-Rahman and S. Hailes. Supporting trust in virtual communities. In

Hawaii International Conference on System Sciences 33, pages 1769–1777,

2000.

[4] K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information sys-

tem. In Proc. of 10th International Conference on Information and Knowledge

Management, 2001.

[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-

Wesley, 1995.

[6] R. Amadio, G. Boudol, and C. Lhoussaine. The receptive distributed pi-

calculus. In Proc. of the FST-TCS ’99, volume 1738 of LNCS. Springer-Verlag,

1999.

[7] A. W. Appel and E. W. Felten. Proof-carrying authentication. In Proc. 6th ACM

Conference on Computer and Communications Security, 1999.

[8] J. Baeten. A brief history of process algebra. Technical Report CSR 04-02,

Technische Universiteit Eindhoven, 2004.

[9] J. Baeten and W. Weijland. Process Algebra. Cambridge University Press,

1990.

[10] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North Hol-

land, 2nd edition, 1984.

[11] M. Y. Becker and P. Sewell. Cassandra: Flexible trust management, applied to

electronic health records. In Proc. of CSFW ’04. IEEE Computer Society Press,

2004.

[12] H. Bekiĉ. Towards a mathematical theory of processes. Technical Report TR

25.125, IBM Laboratory, Vienna, 1971.

123

124 Bibliography

[13] M. Berger, K. Honda, and N. Yoshida. Sequentiality and the π-calculus. In

Proc. TLCA’01, 2001.

[14] M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculus. In

Proc. FOSSACS’03, 2003.

[15] J. Bergstra and J. Klop. Algebra of communicating processes with abstraction.

Theoretical Computer Science, 37(1):77–121, 1985.

[16] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In

Proc. IEEE Conference on Security and Privacy, Oakland, 1996.

[17] M. Blaze, J. Feigenbaum, and J. Lacy. KeyNote: Trust management for public-

key infrastructure. LNCS, 1550:59–63, 1999.

[18] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Static analysis of processes

for no read-up and no write-down. In Proc. FOSSACS’99, number 1578 in

Lecture Notes in Computer Science, pages 120–134. Springer, 1999.

[19] C. Bodei, P. Degano, H. R. Nielson, and F. Nielson. Static analysis for secrecy

and non-interference in networks of processes. In Proc. PACT’01, number 2127

in Lecture Notes in Computer Science, pages 27–41. Springer, 2001.

[20] G. Boudol. Asynchrony and the π-calculus. Rapporte de Recherche 1702,

INRIA Sofia-Antipolis, 1992.

[21] G. Boudol and I. Castellani. Concurrency and atomicity. Theoretical Computer

Science, 59(1-2):25–84, July 1988.

[22] C. Braghin, D. Gorla, and V. Sassone. A distributed calculus for role-based

access control. In Proc. of CSFW ’04. IEEE Computer Society Press, 2004.

[23] S. Buchegger and J. Y. Le Boudec. The effect of rumor spreading in reputation

systems for mobile ad-hoc networks. In Proceedings of WiOpt ‘03: Modeling

and Optimization in Mobile, Ad Hoc and Wireless Networks, Sophia-Antipolis,

France, March 2003.

[24] M. Burrows, M. Abadi, B. W. Lampson, and G. Plotkin. A calculus for access

control in distributed systems. LNCS, 576:1–23, 1991.

[25] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In Pro-

ceedings of the Royal Society, Series A, 426:18–36, 1991.

[26] V. Cahill, E. Gray, J.-M. Seigneur, C. Jensen, Y. Chen, B. Shand, N. Dimmock,

A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis, P. Nixon, G. Serugendo,

C. Bryce, M. Carbone, K. Krukow, and M. Nielsen. Using Trust for Secure Col-

laboration in Uncertain Environments. IEEE Pervasive Computing Magazine,

2(3):52–61, 2003.

[27] L. Caires and L. Cardelli. A spatial logic for concurrency (Part I). Information

and Computation, 186/2:194–235, 2003.

Bibliography 125

[28] L. Caires and L. Cardelli. A spatial logic for concurrency (Part II). To appear

in Information and Computation, 2005.

[29] M. Carbone, M. Coccia, G. Ferrari, and S. Maffeis. Process algebra-guided

design of java mobile network applications. Extended Abstract in Inf. Proc. of

FMTJP’01, 2001.

[30] M. Carbone and S. Maffeis. On the expressive power of polyadic synchronisa-

tion in π-calculus. In EXPRESS ’02, volume 68.2 of ENTCS. Elsevier Science

Publishers, 2002.

[31] M. Carbone and S. Maffeis. On the expressive power of polyadic synchroni-

sation in π-calculus. Nordic Journal of Computing (NJC), 10(2), September

2003.

[32] M. Carbone, S. Maffeis, and A. Ravara. Typing polyadic synchronisation. Un-

published manuscript, Apr 2004.

[33] M. Carbone, M. Nielsen, and V. Sassone. A formal model for trust in dynamic

networks. In International Conference on Software Engineering and Formal

Methods (SEFM’03). IEEE, 2003.

[34] M. Carbone, M. Nielsen, and V. Sassone. A calculus for trust management.

In Proc. of the FST-TCS ’04, volume 3328 of LNCS, pages 161–173. Springer-

Verlag, 2004.

[35] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Sci-

ence, 240(1):177–213, 2000. An extended abstract appeared in Proceedings of

FoSSaCS ’98: 140–155.

[36] E. J. H. Chang and R. Roberts. An improved algorithm for decentralized

extrema-finding in circular configurations of processes. Communications of the

ACM, 22(5):281–283, May 1979.

[37] D. Chaum. Achieving electronic privacy. Scientific American, 267(2):96–101,

1992.

[38] T. Chothia and I. Stark. A distributed π-calculus with local areas of commu-

nication. In Proceedings of HLCL ’00, number 41.2 in Electronic Notes in

Theoretical Computer Science. Elsevier, 2001.

[39] Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss.

REFEREE: Trust management for web applications. Computer Networks and

ISDN Systems, 29(8-13):953–964, 1997.

[40] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos,

and R. L. Rivest. Certificate chain discovery in SPKI/SDSI.

http://theory.lcs.mit.edu/˜rivest, 1999.

[41] F. S. de Boer and C. Palamidessi. Embedding as a tool for language comparison.

Information and Computation, 108(1):128–157, Jan. 1994.

http://theory.lcs.mit.edu/~rivest

126 Bibliography

[42] M. Deutsch. Cooperation and trust: Some theoretical notes. In Jones M.R. (ed.),

Nebraska Symposium on Motivations, 1962.

[43] Y. Ding, P. Horster, and H. Petersen. A new approach for delegation using

hierarchical delegation tokens. In Communications and Multimedia Security,

pages 128–143, 1996.

[44] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylonen.

SPKI certificate theory. Internet RFC 2693, 1999.

[45] U. Engberg and M. Nielsen. A calculus of communicating systems with name-

passing. Technical Report PB-208, DAIMI, University of Aarhus, 1986.

[46] C. English, W. Wagealla, P. Nixon, S. Terzis, H. Lowe, and A. McGettrick.

Trusting collaboration in global computing systems. LNCS, 2692:136–149,

2003.

[47] G. Ferrari. Atomicity and concurrency control in process calculi. FUNDINF:

Fundamenta Informatica, 29.4:341–368, 1997.

[48] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Program-

ming. Ph.D. thesis, Ecole Polytechnique, 1998.

[49] C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In

Proceedings of the 23rd ACM Symposium on Principles of Programming Lan-

guages, pages 372–385, 1996.

[50] C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous

calculi. In Proc. ICALP ’98, volume 1443 of LNCS, pages 844–855. Springer-

Verlag, 1998.

[51] J. L. V. Frontana. Dynamic Binding of Names in Calculi for Mobile Processes.

Ph.D. thesis, Department of Microelectronics and Information Technology, Mar.

2001.

[52] D. Gambetta. Trust: Making and breaking cooperative relations.

http://www.sociology.ox.ac.uk/papers/trustbook.html, 2000.

[53] S. Gay. Some type systems for the pi-calculus. Unpublished draft, 1999.

[54] T. Grandison and M. Sloman. A survey of trust in internet application. IEEE

Communications Surveys, Fourth Quarter, 2000.

[55] E. Gray, P. O’Connell, C. Jensen, S. Weber, J.-M. Seigneur, and C. Yong. To-

wards a Framework for Assessing Trust-Based Admission Control in Collabo-

rative Ad Hoc Applications. Technical Report 66, Dept. of Computer Science,

Trinity College Dublin, December 2002.

[56] G. Gräzer. Lattice Theory: First Concepts and Distributive Lattices. Freeman

and Company, 1971.

Bibliography 127

[57] J. Guttman, J. Thayer, J. Carlson, J. Herzog, J. Ramsdell, and B. Sniffen. Trust

management in strand spaces: A rely-guarantee method. In Proc. of ESOP ’04,

LNCS. Springer-Verlag, 2004.

[58] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-

rency. Journal of ACM, 32(1):137–161, 1985.

[59] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.

In Proceedings of HLCL ’98, volume 16.3 of ENTCS, pages 3–17. Elsevier

Science Publishers, 1998.

[60] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.

Information and Computation, 173(1):82–120, 2002.

[61] C. Hoare. Communicating Sequential Processes. Prentice Holl, New York,

1985.

[62] K. Honda and M. Tokoro. An object calculus for asynchronous communication.

In Proceedings of ECOOP, volume 512, pages 133–147, Berlin, Heidelberg,

New York, Tokyo, 1991. Springer-Verlag.

[63] K. Honda and N. Yoshida. On reduction-based process semantics. In Proc. of

the FST-TCS ’93, volume 761 of LNCS, pages 373–387. Springer-Verlag, 1993.

[64] K. Honda, N. Yoshida, and M. Berger. Control in the π-calculus. In Proc. Fourth

ACM-SIGPLAN Continuation Workshop (CW’04), 2004.

[65] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for ex-

pressing authorizations. In Proc. of the 1997 IEEE Symposium on Security and

Privacy, Oakland, CA, 1997.

[66] J. Jalava. Trust or confidence: comparing Luhmann’s and Giddens’ views of

trust. In Proc. of 5th Conference of the European Sociological Association,

’Visions and Divisions’, 2001.

[67] O. Jensen and R. Milner. Bigraphs and mobile processes. In Conference Record

of POPL’03: The 30th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Jan. 2003.

[68] O. Jensen and R. Milner. Bigraphs and mobile processes. Technical Report

TR570-580, Cambridge Computer Laboratory, 2003-04.

[69] A. J. I. Jones and B. S. Firozabadi. On the characterisation of a trusting agent.

In Workshop on Deception, Trust and Fraud in Agent Societies, 2000.

[70] C. Jonker and J. Treur. Formal analysis of models for the dynamics of trust

based on experiences. LNAI, 1647:221–232, 1999.

[71] A. Jøsang. A logic for uncertain probabilities. Fuzziness and Knowledge-Based

Systems, 9(3), 2001.

128 Bibliography

[72] K. Krukow, M. Nielsen, and V. Sassone. A formal framework for concrete

reputation-systems with applications to history-based access control. Submit-

ted. Available online: http://www.brics.dk/˜krukow, 2005.

[73] U. W. Kulish and W. L. Miranker. Computer Arithmetic in Theory and Practice.

Academic Press, 1981.

[74] F. Levi and S. Maffeis. On abstract interpretation of mobile ambients. Informa-

tion and Computation, 188(2):179–240, 2004.

[75] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust man-

agement framework. In Proceedings of the 2002 IEEE Symposium on Security

and Privacy, pages 114–130. IEEE Computer Society Press, May 2002.

[76] N. Luhmann. Trust and Power. Chichester:Wiley, 1979.

[77] S. Marsh. Formalising Trust as a Computational Concept. Ph.D. thesis, De-

partment of Computing Science and Mathematics, University of Stirling, 1994.

[78] D. H. McKnight and N. L. Chervany. The meanings of trust. Trust in Cyber-

Societies - LNAI, 2246:27–54, 2001.

[79] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. LNCS,

1443:856–867, 1998.

[80] R. Milner. Reduction and transition semantics for the π-calculus with multi-

names. Unpublished manuscript RM18, mar 1991.

[81] R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Speci-

fication. Springer-Verlag, Heidelberg, 1993.

[82] R. Milner. Communication and concurrency. Prentice Hall International (UK)

Ltd., 1995.

[83] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge

University Press, May 1999.

[84] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.

Information and Computation, 100(1):1–40,41–77, Sept. 1992.

[85] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theo-

retical Computer Science, 114(1):149–171, 1993.

[86] U. Nestmann. On the expressive power of joint input. In EXPRESS ’98: Ex-

pressiveness in Concurrency (Nice, France, September 7, 1998), volume 16.2

of ENTCS. Elsevier Science Publishers, 1998.

[87] U. Nestmann. What is a good encoding of guarded choice? Information and

Computation, 156:287–319, 2000.

[88] U. Nestmann and B. C. Pierce. Decoding choice encodings. Journal of Infor-

mation and Computation, 163:1–59, 2000.

http://www.brics.dk/~krukow

Bibliography 129

[89] R. D. Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: A kernel language for

agents interaction and mobility. IEEE Transactions on Software Engineering,

24(5):315–330, May 1998. Special Issue: Mobility and Network Aware Com-

puting.

[90] R. D. Nicola and M. Hennessy. Testing equivalences for processes. Theoretical

Computer Science, 34:83–133, 1984.

[91] F. Nielson, R. R. Hansen, and H. R. Nielson. Abstract interpretation of Mobile

Ambients. Science of Computer Programming, 47:145–175, 2003.

[92] C. Palamidessi. Comparing the expressive power of the synchronous and asyn-

chronous π-calculi. Mathematical Structures in Computer Science, To appear,

2003.

[93] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry

in mobile processes. In Thirteenth Annual Symposium on Logic in Computer

Science (LICS) (Indiana), pages 176–185. IEEE, Computer Society Press, July

1998.

[94] C. Petri. Kommunikation mit Automaten. Ph.D. thesis, Institut fuer Instru-

mentelle Mathematik, Bonn, 1962.

[95] I. Phillips and M. Vigliotti. Electoral systems in ambient calculi. In Proc. of 7th

International Conference on Foundations of Software Science and Computation

Structures, volume 2987, pages 408–422. LNCS, 2004.

[96] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.

Mathematical Structures in Computer Science, 6(5):409–453, Oct. 1996.

[97] G. D. Plotkin. Domains. Technical report, University of Edinburgh, 1983.

[98] I. Pörn. Some basic concepts of action. In S. Stenlund (ed.), Logical Theory

and Semantic Analysis. Reidel, Dordrecht, 1974.

[99] P. V. Rangan. An axiomatic basis of trust in distributed systems. In Symposium

on Security and Privacy, 1998.

[100] R. L. Rivest and B. Lampson. SDSI – A simple distributed security infrastruc-

ture. Presented at CRYPTO’96 Rumpsession, 1996.

[101] D. Sangiorgi and R. Milner. Techniques of weak bisimulation up to. Revised

version of an article appeared in the Proc. CONCUR’92, LNCS 630, 1992.

[102] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes.

Cambridge University Press, 2001.

[103] B. Schoenmakers. Security aspects of the EcashT M payment system. State of

the Art in Applied Cryptography: Course on Computer Security and Industrial

Cryptography, LNCS (1), 528:338–353, 1998.

[104] D. S. Scott. Domains for denotational semantics. ICALP ’82 - LNCS, 140, 1982.

130 Bibliography

[105] J.-M. Seigneur and C. D. Jensen. The claim tool kit for ad-hoc recognition of

peer entities. Journal of Science of Computer Programming, 52(1), 2004.

[106] P. Sewell, P. Wojciechowski, and B. C. Pierce. Location independence for mo-

bile agents. In Proceedings of ICCL ’98, volume 1686 of LNCS. Springer-

Verlag, Sept. 1999.

[107] B. Shand, N. Dimmock, and J. Bacon. Trust for transparent, ubiquitous collab-

oration. In First IEEE Annual Conference on Pervasive Computing and Com-

munications. IEEE, 2003.

[108] V. Shmatikov and C. Talcott. Reputation-based trust management. In Workshop

on Issues in the Theory of Security (WITS), 2003.

[109] J. Siméon and P. Wadler. The essence of xml. In Proc. of POPL ’03, January

2003.

[110] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5:285–309, 1955.

[111] F. Valencia. Temporal Concurrent Constraint Programming. Ph.D. thesis,

BRICS, Department of Computer Science, University of Aarhus, Denmark,

2002.

[112] V. T. Vasconcelos. A process-calculus approach to typed concurrent objects.

PhD thesis, Keio University, 1994.

[113] V. T. Vasconcelos and M. Tokoro. A typing system for a calculus of objects.

In Object Technologies for Advanced Software, volume 742 of LNCS, pages

460–474. Springer-Verlag, Nov. 1993.

[114] A. Venet. Abstract interpretation of the pi-calculus. In Selected papers from the

5th LOMAPS Workshop on Analysis and Verification of Multiple-Agent Lan-

guages, pages 51–75. Springer-Verlag, 1997.

[115] W. Wagealla, M. Carbone, C. English, S. Terzis, H. Lowe, and P. Nixon. A

formal model for trust lifecycle management. In the 1st International Workshop

on Formal Aspect of Security and Trust (FAST), 2003.

[116] S. Weeks. Understanding trust management systems. In Proc. IEEE Symposium

on Security and Privacy, Oakland, 2001.

[117] U. G. Wilhelm, L. Buttyàn, and S. Staamann. On the problem of trust in mobile

agent systems. In Symposium on Network and Distributed System Security.

Internet Society, 1998.

[118] W. H. Winsborough and N. Li. Towards practical automated trust negotiation.

In IEEE 3rd Intl. Workshop on Policies for Distributed Systems and Networks,

2002.

[119] G. Winskel. The Formal Semantics of Programming Languages: An Introduc-

tion. The MIT Press, 1993.

Bibliography 131

[120] L. Xiong and L. Liu. Building trust in decentralized peer-to-peer electronic

communities. In The 5th International Conference on Electronic Commerce

Research(ICECR-5), October 2002.

[121] N. Yoshida, M. Berger, and K. Honda. Strong Normalisation in the π-Calculus.

In Proc. LICS’01, pages 311–322. IEEE, 2001. The full version to appear in

Journal of Inf. & Comp..

[122] P. Zimmer. On the expressiveness of pure safe ambients. Mathematical Struc-

tures in Computer Science, 13:721–770, 2003.

[123] P. Zimmermann. PGP Source Code and Internals. The MIT Press, 1995.

	Abstract
	Acknowledgements
	Publications List
	Introduction
	Overview
	Concurrency
	A new approach: Trust

	Structure of the dissertation

	Preliminary notions
	Partial Orders
	The -calculus
	Syntax
	Binding, Substitution, -conversion and Structural Congruence
	Reduction Semantics and Barbed Congruence
	Labelled Transition System
	Bisimulations
	Types for -calculus

	Encodings
	The Op family

	I Trust for Global Computing
	The SECURE project
	Understanding trust
	Handling trusted interactions
	Risk analysis
	Building trust

	Software framework
	Applications
	Electronic purse
	Collaborative gaming

	Trust Domains
	A Model for Trust
	Modelling the Trust Box

	Trust Structures
	Interval Construction
	Lifting Operators
	Product and Function Constructors

	A Language for Policies
	Syntax
	Denotational Semantics

	A Calculus for Trust Management
	The Calculus
	Abstract Policies
	Syntax
	Reduction Semantics
	An example

	Barbed Equivalences
	Contexts
	Barbs
	Network Reduction Congruence
	Barbed Equivalences for Principals
	A Weak Reduction Congruence for Networks

	A Characterisation of Barbed Equivalences
	A labelled transition system
	Network bisimulation
	Principal Bisimulation
	Protocol Bisimulation
	Weak network bisimulation
	Summary of studied relations
	Proof Examples

	On the expressive power of ctm
	Related Work

	II On Polyadic Synchronisation
	Polyadic Synchronisation and its expressive power
	Introduction
	Examples of polyadic synchronisation
	Previous research related to polyadic synchronisation

	Polyadic Synchronisation in -calculus
	Syntax and semantics of e
	Encoding polyadic synchronisation in -calculus

	Expressivity of Polyadic Synchronisation
	Matching
	Mixed Choice
	Polyadic Synchronisation

	A hierarchy of Expressiveness
	Typing Polyadic Synchronisation
	Structural Types for e
	Nominal Types for e

	Conclusions
	Bibliography

