
IT-University of Copenhagen

Student project

The Future of C5
Developing the C5 Generic Collection Library for .NET 4.0 and beyond

Author:
Rasmus Nielsen
280877-1317
rnie@itu.dk

Supervisor:
Peter Sestoft
sestoft@itu.dk

May 24, 2011

mailto:rnie@itu.dk
mailto:sestoft@itu.dk

Abstract

This project aims to investigate the future of the C5 Generic Collection Library
for C♯ and CLI. We move C5 to Github and .NET 4.0 and make a number of
optimizations in the process. We reduce the code base by removing redundant
implementations and make C5 available to Silverlight. We prepare C5 for future
upgrades and uncover a number of issues which developers will have to consider
when developing future versions of C5.

Contents

1 Introduction 1
1.1 The users . 2
1.2 Project goals . 2
1.3 Modus operandi . 2
1.4 A note on continuity . 3

2 Availability 5
2.1 Upgrade version control system and make C5 publicly available . 5
2.2 NuGet . 6

2.2.1 Publishing C5 to NuGet 6

3 Maintainability 9
3.1 File structure . 9
3.2 Naming conventions . 9
3.3 Testing . 10
3.4 License . 11
3.5 Conclusion . 11

4 Upgradability 13
4.1 Overview of the new features in C♯ 3.0 and 4.0 13

4.1.1 C♯ 3.0 features . 13
4.1.2 C♯ 4.0 features . 14

4.2 Retargeting C5 to .NET 4.0 . 14

5 Portability 17
5.1 Other platforms . 17

5.1.1 Silverlight . 17
5.1.2 Windows Phone 7 and the .NET Compact Framework . . 17
5.1.3 Mono . 18
5.1.4 .NET Micro Framework 18
5.1.5 Portable Library Tools . 18

5.2 CLS compliance . 19
5.2.1 Non-CLS compliant types 19
5.2.2 Non-CLS compliant overloads 19

i

Contents Contents

6 Building C5 as a portable library 21
6.1 System.Serializable . 21
6.2 System.Comparison . 21
6.3 System.ICloneable . 22
6.4 System.Console . 22
6.5 System.Exception . 24
6.6 System.Type.EmptyTypes . 24
6.7 System.Runtime.CompilerServices.RuntimeHelpers.GetHashCode 24
6.8 System.Reflection.Emit . 25
6.9 System.Reflection.MethodBase 25
6.10 Covariance and contravariance 25
6.11 Conclusion . 26

7 Features 27
7.1 Replace C5 specific delegates with generic .NET types 27

7.1.1 Implementing System.Action/System.Func 27
7.2 Crude timer . 28
7.3 Updating the online documentation of C5 28
7.4 Redundant type constraints . 28
7.5 Covariance and contravariance 29
7.6 Eliminating the preprocessor . 29
7.7 Removing preprocessor directives 30
7.8 DEBUG symbol . 31
7.9 Comparers . 31
7.10 Delegate comparer . 32
7.11 Equality comparers . 32
7.12 Special equality comparers . 32

7.12.1 Comparer zero hash code equality comparer 33
7.12.2 Sequenced and unsequenced collection equality comparer 33

7.13 Test attribute . 33

8 Future work 35

9 Conclusion 37

A Screen shots 39

B Code samples 45

ii

Chapter 1

Introduction

Perfection is achieved, not when there is nothing more to add, but
when there is nothing left to take away.

Antoine de Saint-Exupery (1900 – 1944)

The C5 Generic Collection Library for C♯ and CLI (C5) is a generic collection
library for the .NET Framework created by Niels Kokholm and Peter Sestoft
from 2003 to 2006.

In the authors’ opinion “C5 provides the most powerful, well-structured and
scalable generic collections library available for C♯/CLI” [Kokholm and Sestoft,
2006, page 2].

Version 1.0 of the C5 library was first published in 2006 [Kokholm and
Sestoft, 2010] and has since received a small number of bug fixes.

The current version of C5 is version 1.1.1 released 17 December, 2010 [Kok-
holm and Sestoft, 2010].

C5 is built on .NET 2.0 and currently supports both the Common Language
Runtime (CLR)1 and Mono2.

Microsoft has continued to expand the Common Language Runtime (CLR)
with every new version of the .NET Framework and has also expanded the
framework beyond the desktop – mainly to the web browser with Silverlight in
2007 and the mobile phone with Windows Phone 7 in 2010.

This also means that a lot of the innovative features of C5 are now incorpo-
rated as part of the base class library (BCL)3. This will allow us to take away
chunks of C5 without loosing functionality.

The Mono project in turn brings .NET to the Mac OS X and Linux desktops.
Mono supports C5 by bundling it as a third party API4.

This project will establish a staging ground for the continuous development
of C5 for the foreseeable future.

1The CLR is Microsoft’s implementation of the Common Language Infrastructure (CLI)
2Mono is an open source implementation of the CLI until recently sponsored by Novell

[de Icaza, 2011].
3The BCL is a standard library available to all languages using the .NET Framework. It

is comparable to the Java Class Library and the C++ Standard Template Library.
4http://www.mono-project.com/Release Notes Mono 2.0

1

http://www.mono-project.com/Release_Notes_Mono_2.0

Chapter 1. Introduction 1.1. The users

1.1 The users

A number of users have suggested new features and enhancements for C5. These
are:

• Alex Rønne Petersen

• Henrik Feldt

• Marcus Griep

• Kasper Overg̊ard Nielsen

• Jack Addington

• Keith (surname unknown)

We will treat a number of these suggestions throughout the course of the
project.

When their names are mentioned in the following text, it refers to email
correspondence between them and the original authors of C5.

1.2 Project goals

This project has a number of goals for the future of C5 which concern many
spectrums of software development: Availability, maintainability, upgradability,
portability, and testability. The goals are:

1. Make C5 available through online open source repositories and package
managers.

2. Upgrade the version control system (VCS) of C5 to a modern platform for
enabling effective branching and development.

3. Upgrade C5 to .NET 4.0 and make it easier to support upcoming versions
of the CLR and Mono.

4. Make C5 available to multiple platforms including Silverlight, Windows
Phone, and Mono.

5. Consider the use of a continuous integration server to make building and
testing C5 more efficient.

6. Discuss the majority of the incoming feedback, suggestions, and bug re-
ports received from the users since C5’s inception.

1.3 Modus operandi

The original authors of C5 have gone to great lengths to test every aspect of
C5 during the development. The library includes over 1400 unit tests to prove
this.

2

Chapter 1. Introduction 1.4. A note on continuity

In order to secure the stability of the library going forward it is therefore
very important to observe that these tests do not break, and whether they do
provide a way to fix this.

This project aims to plan for creating a future version of C5, hence back-
wards compatibility will not take precedence over goals like Common Language
Specification (CLS) compliance and adherence to newer .NET naming conven-
tions.

This project is a precursor for a planned master’s thesis on the future of C5.
The plan is to execute the pending goals and objectives found throughout this
project during the course of future thesis.

However, this project has become more than a mere thought experiment, as
it quickly became clear that it would be more feasible to complete many of the
goals during the project as oppose to postponing them for the thesis.

1.4 A note on continuity

The project report is divided into chapters where similar objectives are treated
as a whole. The path to version 2.0 of C5 has been more rugged, which is why
the reader will find C5 2.0 published to NuGet in section 2.2.1 before the library
is retargeted to .NET 4.0 in section 4.2 and ported to Silverlight in chapter 6.

3

Chapter 2

Availability

To ensure the success of C5 it is paramount that the community and the poten-
tial consumers of C5 have easy access to information about C5, news, and the
current build of the library.

Currently C5 resides on a static web page on the IT-University of Copen-
hagen’s (ITU) servers at: http://www.itu.dk/research/c5/.

The source code is controlled using the aging Concurrent Versions System
(CVS)1 on an internal server at the Faculty of Life Sciences at Copenhagen
University (KU LIFE)2.

C5 is only available by downloading either a compiled .dll or the source from
the aforementioned ITU web site.

2.1 Upgrade version control system and make
C5 publicly available

The authors have received a number of suggestions to move the trunk of C5
to a publicly available server. Some have even made an SVN server available,
others have forked C5 and uploaded the source to Github repositories without
the author’s consent3.

Since C5 is published under an open source license [Sestoft and Kokholm,
2007] it would seem like a natural step forward to make the library publicly avail-
able through one of the free open source hosting facilities which have sprouted
on the Internet in recent years.

Currently there are a number of providers of open source hosting, most
notably:

• Github at github.com using Git4.

• Bitbucket at bitbucket.org using Mercurial5.

1http://savannah.nongnu.org/projects/cvs
2Cf. Peter Sestoft 15 April 2011
3Cf. Email from Henrik Feldt to Peter Sestoft, 15 November, 2009 and email from Marcus

Griep to Peter Sestoft, 22 March, 2010.
4http://git-scm.com
5http://mercurial.selenic.com

5

http://www.itu.dk/research/c5/
http://github.com
https://bitbucket.org
http://savannah.nongnu.org/projects/cvs
http://git-scm.com
http://mercurial.selenic.com

Chapter 2. Availability 2.2. NuGet

• SourceForge at sourceforge.net using either Git, Mercurial or ApacheTM

Subversion R⃝ (SVN)6.

• Google Code at code.google.com using either Mercurial or SVN.

• CodePlex at codeplex.com using either Mercurial, SVN, or Microsoft Team
Foundation Server (TFS)7.

Discussing the advantages and disadvantages of these is beyond the scope of
this report. However, we recommend the “Comparison of open source software
hosting facilities” article on Wikipedia [Wikipedia, 2011c] for further informa-
tion.

Conclusion

Due to the vibrant and very large community of Github [Github, 2011; Wikipedia,
2011c] and our previous experiences with Git, we have decided to move C5 to
Github.

C5’s new home is: https://github.com/sestoft/C5.

2.2 NuGet

In late 2010 Microsoft launched an open source package manager called NuGet
[Guthrie, 2010]. The goal of NuGet is to make the process of incorporating
open source libraries into a solution as easy as “Add Reference” [Hanselman
and Haack, 2011]8 using either a graphical user interface or a PowerShell-based
console from inside Visual Studio 2010.

NuGet makes it trivial for a consumer of open source libraries to keep up
to date with the latest versions. Dependencies are also resolved automatically
much like using apt-get on a Debian-based Linux distribution9.

If the NuGet C5 package is called “C5” one can install it and use it in a
project by typing Install-Package C5 in the Package Manager Console10.

2.2.1 Publishing C5 to NuGet

Having created a NuGet account on http://nuget.org and installed the NuGet
Package Explorer and the NuGet Command Line executable from http://nuget.
codeplex.com publishing to NuGet is a straight-forward process:

1. > nuget pack C5.csproj -symbols

6http://subversion.apache.org
7http://www.microsoft.com/visualstudio/en-us/products/2010-editions/

team-foundation-server
8NuGet also supports in-house closed-source development. For an entertaining in-depth

introduction to NuGet the author would recommend a presentation at MIX 11 by Scott
Hanselman and Phil Haack [Hanselman and Haack, 2011]

9http://wiki.debian.org/Apt
10The C5 source depends on NUnit, however it is not supplied with the source. I was able

to bring it down by just typing Install-Package which allowed the C5 source to compile
without errors.

6

http://sourceforge.net
http://code.google.com
http://www.codeplex.com
https://github.com/sestoft/C5
http://nuget.org
http://nuget.codeplex.com
http://nuget.codeplex.com
http://subversion.apache.org
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/team-foundation-server
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/team-foundation-server
http://wiki.debian.org/Apt

Chapter 2. Availability 2.2. NuGet

2. Open the generated C5.2.0.nupkg and C5.2.0.symbols.nupkg in the
NuGet Package Explorer to edit metadata and fix assembly references for
Silverlight and Windows Phone 7. See figure A.5 for details.

3. > nuget push C5.2.0.nupkg

Ad 1: The -symbols switch creates a symbols package which is uploaded to
http://www.symbolsource.org/. This allows the users of C5 to debug straight
into C5 as if the source was on their own machine. To do this two settings must
be changed in Visual Studio cf. figure A.7 and A.8 [Hanselman and Haack,
2011].

Conclusion

C5 is now available through NuGet at http://nuget.org/List/Packages/C5.
It can be referenced using the “Add Library Package Reference” dialog as

shown in figure A.6 or by typing:

PM> Install-Package C5

in the “Package Manager Console”.

7

http://www.symbolsource.org/
http://nuget.org/List/Packages/C5

Chapter 3

Maintainability

3.1 File structure

The current source for C5 is organized in very few, but very very long files –
some of them thousands of lines long.

Many files contain multiple classes, structs, interfaces, delegates, and enu-
merations.

This makes the code very hard to read and also hard to maintain.
For a future version of C5, we move to refactor the code by putting one and

only one class, struct, interface, delegate, or enumeration in each file.
These files can then be organized into folders instead.

3.2 Naming conventions

Throughout C5 a multitude of naming conventions have been used.
There a number of public methods which internally call methods with the

same names but in lower case. This practice ought to be abandoned in future
releases.

Method names were devised before the advent of LINQ and many even before
System.Collections.Generic. Therefore, there are naturally clashes as shown in table
3.1.

Table 3.1: Differences between C5 and CLR method names
C5 CLR
void AddAll(IEnumerable<T> items) void AddRange(IEnumerable<T> collection)

void Reverse()
void Reverse()

IDirectedEnumerable<T> Backwards()

bool Exists(Func<T, bool> p)
bool Exists(Predicate<T> match)

bool Any(Func<T, bool> p)
*

bool IsEmpty
**

bool Any()
*

IEnumerable<T> Filter(Func<T, bool> p) IEnumerable<T> Where(Func<T, bool> p)
*

void Apply(Action<T> action) void ForEach(Action<T> action)

* LINQ extension method
** lst.IsEmpty ∼ !lst.Any()

9

Chapter 3. Maintainability 3.3. Testing

Refactoring C5 by renaming these methods and properties will introduce
breaking changes. Also, there are subtle differences between Reverse and Backwards←↩

which cannot be ignored.
Regarding Exists, the .NET Framework counterpart only exists on System.←↩

Collections.Generic.List<T> and it is identical in functionality to the LINQ extension
method Any. The C5 implementation of Exists is time asymptotically linear in
the number of items so performance wise it should be on par with Any. Exists

could therefore be safely removed.
Regarding Filter, it is identical to the LINQ extension method Where. It could

also be safely removed.
One might argue that some of the names in C5 are better than what Mi-

crosoft came up with for System.Collections.Generic and System.Linq – Filter vs Where and
Apply vs ForEach – but the Microsoft names are part of an industry standard (and
there is no way we can change those), so it would be better for the consumer of
C5 if names where the same.

For future versions of C5 we recommend synchronizing names between C5
and the .NET Framework and removing redundant implementations.

3.3 Testing

The unit tests for C5 are very extensive and very exhaustive.
There are, however, a number of issues which could be optimized for future

versions:

1. Tests do not follow the common AAA pattern (Arrange, Act, Assert)
(Marcus Griep).

2. Some tests contain NO assertions

3. Many tests contain MULTIPLE assertions

4. Test names are very generic and non-descriptive

5. Some tests are very complex and there is a host of support classes for the
test project.

Ad 4: We suggest using a three part naming convention for unit tests:
MethodUnderTest Scenario ExpectedResult [Osherove, 2009, 7.3.1]. An ex-
ample can be seen in listing 3.1.

10

Chapter 3. Maintainability 3.4. License

Listing 3.1: Naming unit tests

1 [TestFixture]
2 pub l i c c l a s s HashSetTests
3 {
4 [Test]
5 pub l i c void Constructor_EqualityComparerIsNull_ExceptionIsThrown ()
6 {
7 Assert . Throws<ArgumentNullException >(() => new HashSet<int >(←↩

nu l l)) ;
8 }
9 }

Using this naming convention will make it very easy to read the outputs
from a test runner and one can instantly see where and what the problem is if
a test breaks.

Ad 5: In future versions this could maybe be solved by introducing param-
eterized tests ([RowTest] in NUnit) [Osherove, 2009, 7.2.5].

It would be a huge undertaking to change all the existing unit tests, but it
is important to deal with this problem in future versions of C5.

3.4 License

All the source files in C5 contain a copy of the license. Although the license is
not subject to change it is still cumbersome to maintain with many source files
– especially when applying the refactoring proposed in section 3.1.

We have opted to remove the license in the future and just add two lines
referring to the license file instead – see listing 3.2.

Listing 3.2: License header

1 // This f i l e i s part o f the C5 Generic Co l l e c t i on Library f o r C# and ←↩
CLI

2 // See https :// github . com/ s e s t o f t /C5/blob /master /LICENSE . txt f o r ←↩
l i c e n s i n g d e t a i l s .

3.5 Conclusion

The preceding section describes objectives which should be observed when writ-
ing a future version of C5. We will not go about refactoring the existing code
base just for the sake of refactoring it.

11

Chapter 4

Upgradability

The major reason for revisiting C5 is to upgrade the library to .NET 4.0 and
enable the use of all the new features of the framework.

We do not aim to be backwards compatible with older versions, which means
that users which have not yet migrated to .NET 4.0 will have to continue using
the 1.0 branch of C5.

4.1 Overview of the new features in C♯ 3.0 and
4.0

4.1.1 C♯ 3.0 features

C♯ 3.0 introduces a number of new features as shown in table 4.1 [Wikipedia,
2011a].

Table 4.1: C♯ 3.0 features
LINQ (Language-Integrated Query)
Object initializers
Collection initializers
Anonymous types
Local variable type inference
Lambda expressions
Expression trees
Automatic properties
Extension methods
Partial methods

Most of these features provide “syntactic sugar” for C♯ that allow developers
to write cleaner and more readable code – foreach statements can be replaced by
LINQ, delegates by lambda expressions, and public readonly fields can be replaced
by automatic properties.

C5 should be upgraded to take advantage of some or all of these features in
order to provide a cleaner source code that is easier to read, test, and maintain.

The most interesting feature of C♯ 3.0 is arguably LINQ which provides a
SQL-style way to query a database, XML file, or object collection. As C5 is

13

Chapter 4. Upgradability 4.2. Retargeting C5 to .NET 4.0

created for object collections it is paramount that future versions of C5 support
these features.

4.1.2 C♯ 4.0 features

C♯ 4.0 introduces a number of new features as shown in table 4.2 [Wikipedia,
2011b].

Table 4.2: C♯ 4.0 features
Dynamic member lookup
Covariant and contravariant generic type parameters
Optional parameters and named arguments

The interface IEnumerable<T> in .NET 4.0 has been redefined to IEnumerable<←↩

out T>. This means that every class that implement IEnumerable<Derived> for some
sub class derived from Base is compatible with IEnumerable<Base>.

In the current version of C5 the authors have previously allowed this by
adding extra type parameters in a number of interfaces like: void AddAll<U>(←↩

IEnumerable<U> xs)where U:T. With .NET 4.0 this can now be written as void AddAll←↩

<T>(IEnumerable<T>) without loosing any functionality.

4.2 Retargeting C5 to .NET 4.0

In order to retarget C5 to .NET 4.0 we will follow these steps:

1. Create a new branch: git branch net4

2. Switch branch: git checkout net4

3. Open C5 in Visual Studio

4. Build the project

5. Run all unit tests

6. Change target type of all projects in the C5 solution to “.NET Framework
4.0 Client Profile”, secondarily “.NET Framework 4.0”

7. Rebuild the project

8. Run all unit tests

9. Commit the changes: git commit --all --message "Upgraded to .NET 4.0"

10. Push everything up to Github: git push --all

Ad 4: The project cannot be built as it lacks a reference to NUnit1. With
NuGet in place this is resolved very quickly through the Package Manager Con-
sole: PM> Install-Package NUnit.

1http://www.nunit.org/

14

http://www.nunit.org/

Chapter 4. Upgradability 4.2. Retargeting C5 to .NET 4.0

Ad 5: There are some initial problems with the unit tests of C5. 1435 of
1438 tests pass which is actually very good. We just need it to be 100% going
forward.

Figure A.1 shows the initial output of the NUnit test runner.
First, there are the three failing tests. They test the behavior of enumerating

a HashDictionary<K, V> and assume that the output of enumerating the contents of
a dictionary will be yielded in a specific order. The failing tests are shown in
listing B.1. We have been unable to find anything in the specification which
would require this, furthermore it would seem like a very dangerous thing to
assume while using the interface, as a dictionary normally is agnostic to the
order of its content2.

To fix the failing tests and actually test what is relevant, the tests have been
rewritten as shown in listing B.2.

Second, there are a number of methods which have been erroneously marked
with a [Test] attribute. These are methods belonging to the C5UnitTests.

Templates.Events namespace, which will be called by other tests but which
are not unit tests themselves. See 3.3 for an in-depth discussion of this.

This means that the [Test] attributes should not have been there in the first
place, and we therefore remove them.

Ad 6: All projects could be safely retargeted to the “.NET Framework 4.0
Client Profile”. C5 can therefore be used in client applications on computers
which do not have the full .NET Framework installed. This includes the vast
majority of desktops as Microsoft has pushed the “.NET Framework 4.0 Client
Profile” as a recommended update for some time3.

Ad 8: Figure A.2 shows the final output of the NUnit test runner.

Conclusion

The upgrade went pretty smoothly and we can now start using all the new
features of C♯ 3.0 and 4.0 in the C5 implementation.

As an added bonus we get LINQ for free in all collections, which implement
IEnumerable<T>.

2C5 provides an ISortedDictionary<K, V> interface for this purpose, which the
HashDictionary<K, V> does not implement

3http://support.microsoft.com/kb/982670

15

http://support.microsoft.com/kb/982670

Chapter 5

Portability

In this chapter we will discuss porting C5 to other platforms and ensuring
CLS compliance to make the library callable from other languages on the .NET
Framework like IronPython, IronRuby, and F♯.

5.1 Other platforms

Users have requested that C5 be ported to different platforms like Silverlight
(Jack Addington) and the .NET Compact Framework (Kasper Overg̊ard Nielsen).

5.1.1 Silverlight

“Microsoft Silverlight is an application framework for writing and running rich
Internet applications, with features and purposes similar to those of Adobe
Flash” [Wikipedia, 2011f].

Silverlight supports only a subset of the .NET Framework and one can there-
fore often not use a library in Silverlight which is not specifically targeting it.

Conclusion

The C5 library does not target Silverlight and it uses some features not available
to Silverlight. In the following sections we will discuss whether these features
can be omitted or rewritten in order for C5 to be used in a Silverlight project.

5.1.2 Windows Phone 7 and the .NET Compact Frame-
work

“Windows Phone 7 (WP7) is a mobile operating system developed by Microsoft,
and is the successor to its Windows Mobile platform” [Wikipedia, 2011g].

WP7 is built upon the .NET Compact Framework (.NET CF) [Kidambi,
2010] which “is a version of the .NET Framework that is designed to run on re-
source constrained mobile/embedded devices such as personal digital assistants
(PDA’s), mobile phones, factory controllers, set-top boxes, etc.” [Wikipedia,
2011d]

WP7 supports Silverlight and Microsoft XNA, which is the Microsofts game
development platform, however WP7 only implements a subset of Silverlight

17

Chapter 5. Portability 5.1. Other platforms

and is thus even more limited in functionality than Silverlight itself compared
to the .NET Framework.

Conclusion

The C5 library does not target WP7. In the following sections we will discuss
whether these features can be omitted or rewritten in order for C5 to be used
in a WP7 Silverlight or XNA project.

5.1.3 Mono

“Mono is an open source implementation of Microsoft’s .NET Framework based
on the ECMA standards for C♯ and the Common Language Runtime.” [Mono,
2011].

Mono runs on multiple platforms, including Microsoft Windows, Linux, Mac
OS X, and mobile platforms like iOS and Android, and the browser with an open
source implementation of Silverlight called Moonlight.

Conclusion

C5 in its current version can already be built on Mono and the C5 will continue
to support Mono in the future.

5.1.4 .NET Micro Framework

“The .NET Micro Framework (.NET MF) is an Open Source .NET platform for
resource-constrained devices with at least 256 KBytes of flash and 64 KBytes
of RAM.” [Wikipedia, 2011e]

The current version of C5 is only about 300 Kb, but given the constraints
of .NET MF C5 would have to be reduced by a factor 10 to be usable.

Furthermore, .NET MF implements only a small version of the .NET CLR
and has not yet seen wide usage.

Conclusion

The scope of C5 will not currently take NETMF into consideration.

5.1.5 Portable Library Tools

Microsoft has recently released a new extension to Visual Studio 2010 called the
“Portable Library Tools” (PLT) [Microsoft, 2011]. PLT aims to make it easier to
built cross-platform libraries that are consumable by different implementations
of the CLR, including .NET, Silverlight, Windows Phone, and Xbox 360.

This is done by automatically restricting the available namespaces in the
project based on which platforms the developer has chosen to target.

For an in-depth demonstration of PLT see [Burke, 2010]

Conclusion

Future versions of C5 will be built using PLT for maximum portability.

18

Chapter 5. Portability 5.2. CLS compliance

5.2 CLS compliance

A goal for the authors of C5 is for the library to be compliant with the Common
Language Specification (CLS) [Kokholm and Sestoft, 2006, p. 1] and therefore
usable for any platform implementing the Common Language Infrastructure
(CLI).

A future version of C5 should therefore also be CLS compliant.
To declare a project to be CLS compliant one adds the line [assembly: ←↩

CLSCompliant(true)] to the AssemblyInfo.cs file of a project.
Compiling C5 produces a number of not CLS compliant warnings (Marcus

Griep) which we will discuss in the following.

5.2.1 Non-CLS compliant types

The default comparers and equality comparers of Builtin.cs implement comparers
for the standard .NET value types and the C♯ types sbyte, ushort, uint, and ulong,
which are not CLS compliant.

To solve this there are two options:

1. Decorate the offending classes with the [CLSCompliant(false)] attribute

2. Remove the offending classes completely

According to [Microsoft, 2010a] when applying the [CLSCompliant(false)] at-
tribute one must provide a compliant alternative but since CLS compliant lan-
guages do not know the types sbyte, ushort, uint, and ulong, they do not need
alternatives.

Conclusion

The [CLSCompliant(false)] attribute has been applied to the classes1:

• SByteEqualityComparer

• UShortEqualityComparer

• UIntEqualityComparer

• ULongEqualityComparer

5.2.2 Non-CLS compliant overloads

The overloaded methods:

• IDictionary<K,V>.Find(K key, out V value)

• IDictionary<K,V>.Find(ref K key, out V value)

are not CLS compliant as they differ only on whether or not key is a ref parameter.
To solve this there are at first glance three options:

1The classes SByteComparer, UShortComparer, UIntComparer, ULongComparer are also not
CLS compliant, but their visibility is internal so CLS compliance is irrelevant [Ecma, 2010,
section 7.3, CLS Rule 1] .

19

Chapter 5. Portability 5.2. CLS compliance

1. Decorate one of the offending methods with the [CLSCompliant(false)] at-
tribute

2. Remove one of the offending methods completely

3. Change the name of one of the offending methods so it is no longer an
overload

Ad 1: According to [Ecma, 2010, section 8.9.4, CLS Rule 18]: “CLS-
compliant interfaces shall not require the definition of non-CLS compliant meth-
ods in order to implement them.”. Rule 18 effectively invalidates this option.

Ad 2: At first, this option seems a bit drastic, however the methods are very
much the same. Also, there is only one implementation of this in DictionaryBase←↩

<K, V> where one of the methods will internally just call the other as seen in
listing 5.1.

Listing 5.1: Non CLS compliant overloads of Find methods

1 pub l i c v i r t u a l bool Find (K key , out V value)
2 {
3 re turn Find (r e f key , out value) ;
4 }
5

6 pub l i c v i r t u a l bool Find (r e f K key , out V value)
7 {
8 KeyValuePair<K , V> p = new KeyValuePair<K , V>(key) ;
9

10 i f (pairs . Find (r e f p))
11 {
12 key = p . Key ;
13 value = p . Value ;
14 re turn true ;
15 }
16 e l s e
17 {
18 value = de f au l t (V) ;
19 re turn f a l s e ;
20 }
21 }

Ad 3: Changing the name of one of the Find methods to something more
verbose will in any case be a breaking change. From our perspective it is already
confusing to have two identically named methods that do almost the same.
One will have to read the documentation carefully to choose the right one.
This confusion is unlikely to diminish if one of the methods where to be called
something like FindWithOutRef or even Find2 instead.

Conclusion

We have removed the version without ref – Find(K key, out V value).

20

Chapter 6

Building C5 as a portable
library

Having installed the PLT as described in section 5.1.5 we can now continue to
investigate building C5 for multiple platforms.

We initially created a new portable library and set it to target all available
platforms – .NET Framework, Silverlight 4, Silverlight for Windows Phone 7,
and XNA Framework 4.0 for Xbox 360.

Having done this reveals a host of problems that we will solve in this chapter.

6.1 System.Serializable

Problem: The [Serializable] attribute is not supported.
Solution: Remove the [Serializable] attribute completely.
If we consume C5 in a platform that supports serialization we can always

convert the collection to one of the built-in generic collection types like T [] ,
IEnumerable<T>, and IDictionary<T>, provided T is serializable.

First, this means that we can convert any given collection to a built-in
counterpart and serialize that – doing so does imply a small performance penalty,
but this will at most time asymptotically linear in the number of items.

Second, one of the most common uses of serialization is for interoperability
between different platforms and services, like returning a collection of objects
from a web service using either XML or JSON. If we were to return a C5 collec-
tion this would enforce an extra – and most probably unnecessary – dependency
on the caller.

Conclusion

We have removed the serialization attribute and thus removed the ability to
directly serialize a C5 collection.

6.2 System.Comparison

Problem: The Comparison<T> delegate is not supported.

21

Chapter 6. Building C5 as a portable library 6.3. System.ICloneable

The Comparison<T> delegate is only used in a support class – DelegateComparer –
that can create an IComparer<T> from a Comparison<T>.

Conclusion

Cf. section 7.10, we will remove DelegateComparer and replace it with a more useful
ComparerFactory<T>.

6.3 System.ICloneable

Problem: The ICloneable interface does not exist.
Cloning an IExtensible<T> can be done in two ways as seen in listings 6.1 and

6.2:

Listing 6.1: Cloning a collection using ICloneable

1 var newCollection = (IList<s t r i ng >) oldCollection . Clone () ;

Listing 6.2: Cloning a collection manually

1 IList<s t r i ng> newCollection = new LinkedList<s t r i ng >(oldCollection) ;

According to [Kokholm and Sestoft, 2006, secion 8.9] the automatic version
is “usually more efficient” but it does require the developer to use an unsafe
cast.

Furthermore a number of people, including Brad Abrams – one of the original
designers of the .NET Framework and the CLR – consider the use of ICloneable

to be bad coding practice mainly because the interface does not specify whether
to create a deep copy or a shallow copy [Abrams, 2003, 2004]. This is probably
the main reason why ICloneable is not available in Silverlight and XNA.

Conclusion

We have removed all implementations of ICloneable.

6.4 System.Console

The C5 library contains a large number of Console.WriteLine statements presumably
left by the developers for logging purposes.

If one consumes the C5 library with an ASP.NET or Windows Presentation
Foundation (WPF) application this will go about unnoticed, however, if one is
writing a Console application these logging statements will propagate to the UI.

Instead of using Console.WriteLine one could use System.Diagnostics.Debug.WriteLine.
This method will write the output to an instance of System.Diagnostics.DefaultTraceListener←↩

if one is supplied by the consumer of the library.
Alternatively, the C5 library could incorporate an observer pattern [Gamma

et al., 1994, p. 293], allowing the users of the library to choose a logging frame-
work of their own.

22

Chapter 6. Building C5 as a portable library 6.4. System.Console

This could be done simply by attaching a static singleton [Gamma et al.,
1994, p. 127] of type Action<string> as shown in listing 6.3.

Listing 6.3: Simple logging observer

1 us ing System ;
2

3 namespace C5
4 {
5 /// <summary>
6 /// Logging module
7 /// </summary>
8 pub l i c s t a t i c c l a s s Logger
9 {

10 pr i va t e s t a t i c Action<s t r i ng> _log ;
11

12 /// <summary>
13 /// Gets or s e t s the log .
14 /// </summary>
15 /// <example>The f o l l ow ing i s an example o f a s s i gn i ng a ←↩

obse rver to the l ogg ing module :
16 /// <code>
17 /// Logger . Log = x => Console . WriteLine (x) ;
18 /// </code>
19 /// </example>
20 /// <remarks>
21 /// I f Log i s not s e t i t w i l l r e turn a dummy act i on
22 /// <c>x => { re turn ; })</c>
23 /// e l im ina t i ng the need f o r nul l−r e f e r e n c e checks .
24 /// </remarks>
25 /// <value>
26 /// The log .
27 /// </value>
28 pub l i c s t a t i c Action<s t r i ng> Log
29 {
30 get { re turn _log ?? (x => { re turn ; }) ; }
31 set { _log = value ; }
32 }
33 }
34 }

And afterwards simply replacing all occurences of Console.WriteLine with Logger←↩

.Log.
This would allow the consumer of the library to choose if and how to log

diagnostic messages, using the likes of Elmah1 in a web application and Apache
log4net2 otherwise.

To crudely redirect all logging to the console one would simply write
Logger.Log = x => Console.WriteLine(x);.

Ultimately it might be desirable to use a real pluggable logging architec-
ture, which might be implemented using the Managed Extensibility Framework
(MEF)3, albeit MEF is currently not supported on Windows Phone 7 and Xbox
360.

Conclusion

We introduce the logger from listing 6.3 and replace all calls to Console.WriteLine

with Logger.Log.
We will enter a suggestion on Github about using MEF for logging.

1Error Logging Modules and Handlers for ASP.NET: http://code.google.com/p/elmah
2http://logging.apache.org/log4net
3http://mef.codeplex.com

23

http://code.google.com/p/elmah
http://logging.apache.org/log4net
http://mef.codeplex.com

Chapter 6. Building C5 as a portable library 6.5. System.Exception

6.5 System.Exception

Problem: System.Exception is now an abstract class.
This is actually a very bold and interesting move by Microsoft which forces

a developer to always throw a specific exception.
Upon closer inspection all instances of System.Exception in C5 are calls like this:

throw new Exception(”The method or operation is not implemented.”);.
These calls should have been throw new NotImplementedException(); in the first place.

Conclusion

All occurrences of System.Exception have been replaced by more specific exceptions.

6.6 System.Type.EmptyTypes

Problem: The Type.EmptyTypes property does not exist.
Type.EmptyTypes is just a clean way of writing new Type[0].

Conclusion

We have replaced Type.EmptyTypes with new Type[0].

6.7 System.Runtime.CompilerServices.Runtime-
Helpers.GetHashCode

Problem: The ReferenceEqualityComparer<T> uses RuntimeHelpers.GetHashCode(object o)←↩

, which is not available in Silverlight.
The RuntimeHelpers.GetHashCode method always calls Object.GetHashCode non-virtually,

even if the type has overridden the Object.GetHashCode method [Microsoft, 2010c].
The ReferenceEqualityComparer has been included in C5 to allow enforcing

a strict reference equality comparison when a type has overridden GetHashCode()
4.

The original authors are not aware that ReferenceEqualityComparer is used
in production anywhere5 and since it is a helper class it can be safely removed
(and implemented by the consumer of C5 if needed).

Note: As we will describe in section 7.10, we have supplied a new ComparerFactory←↩

<T> which makes the use of custom comparers and equality compares much
more simple using inline lambda expressions instead of custom implementations
of EqualityComparer<T>.

Conclusion

We have removed the ReferenceEqualityComparer<T> class.

4Cf. email from Peter Sestoft to Niels Kokholm 7 December, 2004.
5Cf. Peter Sestoft 6 May, 2011

24

Chapter 6. Building C5 as a portable library 6.8. System.Reflection.Emit

6.8 System.Reflection.Emit

Problem: There is a great amount of experimental code in C5 using Reflec-
tion.Emit to generate byte code at runtime. Although reflection is supported
on all platforms it is not yet available in a portable library.

However, since the code is only used when compiled with an experimental
flag, it is not needed.

Conclusion

We have removed all #if EXPERIMENTAL sections from the source.

6.9 System.Reflection.MethodBase

Problem: There are a couple of calls to MethodBase.GetCurrentMethod() in some internal
diagnostics code of the LinkedList<T> class.

Inspecting the code it seems the author intended to propagate the name of
the method causing the problem back to the caller.

First, according to [Microsoft, 2010b] MethodBase.GetCurrentMethod() always re-
turns the name of the innermost method – it has no way of knowing who started
the process (ultimately void Main(string [] args)!), so there is no point in using it in
this context. The line:

throw new InternalException(MethodBase.GetCurrentMethod()+ ”called on a view”);

will always evaluate to:
throw new InternalException(”Boolean checkViews()called on a view”);.
Second, the way the .NET Framework handles exceptions one will (almost)

always be able to debug the code and find the caller causing the exception quite
easily – especially if employing Intellitrace6.

Conclusion

We have updated the code to read throw new InternalException(”checkViews()called ←↩

on a view”);.

6.10 Covariance and contravariance

In sections 7.4 and 7.5 we will discuss the .NET 4.0 optimizations for covariant
and contravariant type parameters. Covariance and contravariance are also
available in the portable library tools, however, for Microsoft forgot to declare
IEnumerable<T> as covariant in Silverlight.

This has been fixed in Silverlight 5, but at the time of writing Silverlight 5
is only in beta and it will probably take a while before the update propagates
to Windows Phone 7 and Xbox 360.

Conclusion

We have reverted the changes made in section 7.5.

6http://msdn.microsoft.com/en-us/magazine/ee336126.aspx

25

http://msdn.microsoft.com/en-us/magazine/ee336126.aspx

Chapter 6. Building C5 as a portable library 6.11. Conclusion

6.11 Conclusion

After all the above changes have been made we are able to convert C5 to a
portable library and C5 now supports Silverlight, Windows Phone 7, and Xbox
360 development.

26

Chapter 7

Features

In this chapter we will discuss implementing a number of the features suggested
by the users including some of our own ideas.

7.1 Replace C5 specific delegates with generic
.NET types

C5 defines a number of delegates in Delegates.cs, namely void Act(A1 x1) to
void Act<A1, A2, A3, A4>(A1 x1, A2 x2, A3 x3, A4 x4) and R Fun<R>() to R Fun<A1, A2, A3, A4←↩

, R>(A1 x1, A2 x2, A3 x3, A4 x4).
These delegates precede the generic delegates System.Action<in T>

1 and System←↩

.Func<TResult Func<out TResult> introduced in .NET 3.52, however, they provide the
exact same functionality. It has been noted by both the authors in the comments
of the Delegates.cs file and by the users (Alex Rønne Petersen, Keith, Marcus
Griep) that these constructs are redundant. They have remained in the library
for backwards compatibility reasons.

The future version of C5 does not aim to be backwards compatible, which
allows us to remove the Act and Fun delegates completely after properly updating
the affected methods to use System.Action and System.Func instead.

7.1.1 Implementing System.Action/System.Func

To implement System.Action and System.Func we will:

1. Rename all Act delegates in Delegates.cs to Action

2. Rename all Fun delegates in Delegates.cs to Func

3. Delete the Delegates.cs file.

4. Rebuild solution

5. Run all unit tests

1System.Action<T> was introduced in .NET 2.0 but available with one and only one type
parameter.

2The in and out co- and contravariant type parameters where added in C♯ 4.0

27

Chapter 7. Features 7.2. Crude timer

Conclusion

After doing some manual edits – primarily inserting appropriate using statements
– We were able to build the solution and run the unit tests.

All tests passed and the new version has been committed to Github.

7.2 Crude timer

The C5 User Guide Examples library is practically littered with redundant
classes called Timer (Henrik Feldt). These timer classes provide a crude stopwatch
implementation using System.DateTime.

Microsoft already solved this problem by adding a System.Diagnostics.Stopwatch

class in .NET 2.0.
As such there is no need for a redundant and crude timer class anywhere in

C5.

Conclusion

We have replaced all the crude timer classes with stopwatches.

7.3 Updating the online documentation of C5

The C5 source includes a documentation project called docNet. It is a console
application which can build an HTML documentation site for C5.

Microsoft has been working on a documentation tool called Sandcastle3 since
around 2006 [Wikipedia, 2010]. The project was officially released to the web
(RTW) in January 2008. Sandcastle can build different types of documentation
directly from the .dll and .xml files of a .NET project. Sandcastle is, however,
quite difficult to use and lacks documentation, so the community has afterwards
built and released the Sandcastle Help File Builder4 which greatly simplifies the
process.

See figures A.3 and A.4 for the output of running C5 through Sandcastle.

Conclusion

The website and help file outputs are nearly identical and very well structured.
As a consequence we have chosen to remove the docNet project completely and
have included a Sandcastle Help File Builder project instead – C5.shfbproj.

The HTML documentation will be made available online on the C5 home
page later.

7.4 Redundant type constraints

In C5 there are a number of Generic bulk methods [Kokholm and Sestoft, 2006,
8.4]. These methods have generic type constraints which were inserted to over-
come C♯ 2.0’s lack of covariant generic type parameters.

3http://sandcastle.codeplex.com
4http://shfb.codeplex.com

28

http://sandcastle.codeplex.com
http://shfb.codeplex.com

Chapter 7. Features 7.5. Covariance and contravariance

C♯ 4.0 introduces covariant and contravariant generic type parameters – the
IEnumerable<T> interface is now declared as:

public interface IEnumerable<out T> : IEnumerable.

Conclusion

We have removed all redundant type constraints:
void AddAll<U>(SCG.IEnumerable<U> xs)where U : T is changed to void AddAll(SCG.IEnumerable←↩

<T> xs)

The same optimization is applied to AddSorted, ContainsAll, ContainsAny, InsertAll,
RemoveAll, and RetainAll.

Note: void IDictionary<K, V>.AddAll<U, W>(SCG.IEnumerable<KeyValuePair<U, W>> entries←↩

)where U : K where W : V; has not been changed as KeyValuePair is not, and cannot be
covariant.

7.5 Covariance and contravariance

The interface IDirectedEnumerable can be declared as covariant: IDirectedEnumerable←↩

<out T> as it extends from IEnumerable<out T>.

7.6 Eliminating the preprocessor

C5 contains a number of collections which are so similar that the original authors
have chosen to implement them in the same files using preprocessor directives
– otherwise knows as ifdefs.

The collections are:

• ArrayList and HashedArrayList

• LinkedList and HashedLinkedList

• RedBlackTreeSet and RedBlackTreeBag

Using compiler directives this way has generated the need for a preprocessor
implemented as a console application which must run before compiling C5.

Bjarne Stoustrup deliberately misquotes Cato in “The Design and Evolution
of C++”:

Furthermore, I am of the opinion that Cpp must be destroyed

Cato the Elder (Marcus Porcius Cato)
[Stroustrup, 1994, ch. 18]

Before dedicating a whole chapter to why we must avoid using the preprocessor
if at all possible.

Apart from being a security issue as noted by Stroustrup, some of the major
problems using compiler directives in C5 are that they make the code harder to
read, write, test, and maintain.

Generally we believe that the use of compiler directives is not necessary and
should be avoided at all costs. In a high level language like C♯ one should be
able to solve these problems much more elegantly using class inheritance and
dependency injection [Fowler, 2004].

29

Chapter 7. Features 7.7. Removing preprocessor directives

Conclusion

The preprocessor has been eliminated.
We need to consider refactoring the list/bag classes to eliminate the code

duplication introduced in this operation. This could be partially done by ex-
tracting methods to a super class but it would probably not suffice5.

7.7 Removing preprocessor directives

Following section 7.6 and cf. Peter Sestoft 15 April, 2011 and 26 April, 2011
there are a number of preprocessor directives which can be safely removed from
C5:

1. NCP is always true

2. SEPARATE_EXTRA is always false

3. EXPERIMENTAL is always false

4. LINEARPROBING is always false

5. REFBUCKET is always true

6. SHRINK is always false

7. INTERHASHING is always false

8. RANDOMINTERHASHING is always true

9. IMPROVED_COLLECTION_HASHFUNCTION is always true

10. MAINTAIN_SIZE is always true

11. EXPERIMENTAL is always false

12. STRONGNAME is always false

All directives except STRONGNAME regard different implementations tested
during development.

STRONGNAME allows for compilation with a strong name key. Since the code
is open source, if a consumer needs a strong named version, they can download
the source and compile it themselves.

Regarding EXPERIMENTAL, see section 6.8.

Conclusion

To simplify the code and build configuration we have opted to remove all pre-
processor directives.

5Cf. Peter Sestoft 15 February, 2011

30

Chapter 7. Features 7.8. DEBUG symbol

7.8 DEBUG symbol

The DEBUG symbol was used in the HashSet<T> class to allow for deterministic
hashing in debug builds. This was used to test the hash collections – HashSet<T>

and HashBag<T>.
We have removed the DEBUG symbol by:

1. Adding a Debug class as seen in listing 7.16.

2. Adding the line [assembly: InternalsVisibleTo(”C5.Tests”)] to AssemblyInfo.cs.

3. Modified the constructor of HashBag<T> to generate a deterministic hash
factor if (Debugging.UseDeterministicHashing).

4. Modified affected unit tests to call Debugging.UseDeterministicHashing = true; in
their [SetUp] methods.

This does solve one problem, but creates a new one: now we have deferred
a debug check to runtime instead of compile-time.

Listing 7.1: Debug class

1 // This f i l e i s part o f the C5 Generic Co l l e c t i on Library f o r C# and ←↩
CLI

2 // See https :// github . com/ s e s t o f t /C5/blob /master /LICENSE . txt f o r ←↩
l i c e n s i n g d e t a i l s .

3

4 namespace C5
5 {
6 /// <summary>
7 /// Class conta in ing debugging symbols − to e l im ina t e p r ep roc e s s o r←↩

d i r e c t i v e s
8 /// </summary>
9 i n t e r n a l c l a s s Debug

10 {
11 /// <summary>
12 /// Flag used to t e s t hashing . Set to t rue when uni t t e s t i n g ←↩

hash func t i on s .
13 /// </summary>
14 i n t e r n a l s t a t i c bool UseDeterministicHashing { get ; set ; }
15 }
16 }

Conclusion

The DEBUG symbol has been eliminated.
For a future version of C5, we will optimize unit tests to test the contract,

not the internal behavior. This will allow us to skip the debug check completely.

7.9 Comparers

The static class Comparer<T> provides a way to get a default (cached) comparer
for a given type, however it duplicates the exact same functionality from System←↩

.Collections.Generic.Comparer<T>.Default, which also caches its values.

6The debug property cannot be in the HashSet<T> class as static properties are not shared
between generic classes with different type parameters.

31

Chapter 7. Features 7.10. Delegate comparer

C5 also contains a number of comparers – IntComparer, NaturalComparerO etc. –
which again duplicates the built in comparers for a given type.

All these comparers do exactly the same as the comparers shipped with the
.NET Framework.

Conclusion

We have removed all the built-in comparers from C5.

7.10 Delegate comparer

C5 contains a helper class – DelegateComparer<T> – which can construct an IComparer←↩

<T> from a Comparion<T> delegate. This is helpful as implementing an IComparer or
an IEqualityComparer otherwise requires a lot of boilerplate code.

However, instantiating a Comparison<T> is in itself cumbersome. This could be
elegantly done using lambda expressions as described in [mark@lexparse.com,
2009].

Conclusion

We have removed the DelegateComparer<T> class and added a ComparerFactory<T>←↩

class along with two internal helper classes – Comparer and EqualityComparer which
can create comparers and equality comparers from a lambda expressions – see
listings B.3, B.4 and B.5.

7.11 Equality comparers

Like the newly removed comparers (see section 7.9), C5 also contains a somewhat
redundant EqualityComparer<T> class.

There are also a NaturalEqualityComparer<T> and a EquatableEqualityComparer<T>←↩

which again will just return the same as System.Collection.Generic.EqualityComparer←↩

<T>.Default.

Conclusion

We have removed the redundant implementations but retained a modified EqualityComparer←↩

<T> for now (listing B.6), which keeps the sequenced equality comparers intact.

7.12 Special equality comparers

Apart from the removed ReferenceEqualityComparer<T> (see section 6.7), there are a
number special comparers in C5:

• ComparerZeroHashCodeEqualityComparer<T>

• SequencedCollectionEqualityComparer<T, W>

• UnsequencedCollectionEqualityComparer<T, W>

32

Chapter 7. Features 7.13. Test attribute

7.12.1 Comparer zero hash code equality comparer

The ComparerZeroHashCodeEqualityComparer<T> is used to generate an IEqualityComparer←↩

<T> from a IComparer<T>.
This is used internally when a type implements IComparer<T> but not IEqualityComparer←↩

<T>.
It cannot be removed without introducing a number of breaking changes.
It could, however, be declared internal as it has no apparent use outside the

library.

7.12.2 Sequenced and unsequenced collection equality com-
parer

These comparers are used for equality of sequenced and unsequenced collections.
They are essentially just wrappers for the interface methods:

• GetSequencedHashCode()

• SequencedEquals(ISequenced<T> otherCollection)

• GetUnsequencedHashCode()

• UnsequencedEquals(ICollection<T> otherCollection)

This seems like what one would expect as the default behavior of ISequenced←↩

<T> and ICollection<T>.
Could this be solved by having ISequenced<T> implement IEquatable<ISequenced←↩

<T>> and ICollection<T> implement IEquatable<ICollection<T>>?
This will be a topic for future versions of C5.

Conclusion

We have kept the special equality comparers in C5 and modified the EqualityComparer←↩

<T> accordingly (listing B.6).
For future versions it should be investigated whether this can be removed

completely in lieu of collections implementing IEquatable<ICollection<T>> directly.

7.13 Test attribute

The TestedAttribute has been removed – it was a device used during initial devel-
opment, and it has lost its value7.

7Cf. email from Niels Kokholm 21 February, 2011

33

Chapter 8

Future work

A number of topics and suggestions have come up during the project develop-
ment which either cannot be implemented in the current version of C5 without
introducing major breaking changes to the API or have been postponed as they
are out of scope for this project.

These topics will be on the future work list for the next version of C5.
Notable topics are:

• Optimizing unit testing for the AAA pattern and refactoring multiple
asserts into more tests (section 3.3)

• ICollection should implement IEquatable<ICollection<T>> (section 7.12.2)

• ISequenced should implement IEquatable<ISequenced<T>> (section 7.12.2)

• Fixing problems with Silverlight not implementing proper covariant IEnumerable←↩

<out T> (section 6.10).

• Update the C5 home page with release notes and online documentation
(section 7.3).

• Update the C5 book to reflect the changes and push the LATEX source to
Github.

• Update the C5 page on Wikipedia1.

• Marcus Griep has suggested using Code Contracts2 and Pex3 for future
development using a “Design by Contract” approach. This should be
further investigated.

• Keith has suggested supporting Reactive Extensions (Rx)4, which enables
an interesting way of doing push-based collections and async program-
ming5.

1http://en.wikipedia.org/wiki/C5 Generic Collection Library for C Sharp and CLI
2http://research.microsoft.com/en-us/projects/contracts
3http://research.microsoft.com/en-us/projects/pex
4http://msdn.microsoft.com/en-us/data/gg577609
5For an interesting take on Rx, we recommend a talk by Bart de Smet:

“Rx: Curing your asynchronous programming blues” – http://channel9.msdn.com/posts/
DC2010T0100-Keynote-Rx-curing-your-asynchronous-programming-blues

35

http://en.wikipedia.org/wiki/C5_Generic_Collection_Library_for_C_Sharp_and_CLI
http://research.microsoft.com/en-us/projects/contracts
http://research.microsoft.com/en-us/projects/pex
http://msdn.microsoft.com/en-us/data/gg577609
http://channel9.msdn.com/posts/DC2010T0100-Keynote-Rx-curing-your-asynchronous-programming-blues
http://channel9.msdn.com/posts/DC2010T0100-Keynote-Rx-curing-your-asynchronous-programming-blues

Chapter 8. Future work

• C5 naming should follow the CLR and LINQ naming conventions (section
3.2).

• Using an automated build server for C5 (continuous integration) like
TeamCity6 which can immediately detect if one commits a change to C5
that breaks the build or the unit tests. This was part of the original goals
for this project (section 1.2 but it has been postponed due to resource
constraints.

• Alex Rønne Petersen notes that C5 library contains a number of public ←↩

readonly fields. This style is deprecated in public APIs in favor of automatic
properties with a private setter [Gunnerson, 2006], and should be fixed.

6http://www.jetbrains.com/teamcity/

36

http://www.jetbrains.com/teamcity/

Chapter 9

Conclusion

Through the course of this project we have upgraded C5 in many ways.
We have successfully upgraded C5 to .NET 4.0, making all the new language

features for C♯ 3.0 and 4.0 available.
We have converted C5 to a portable library and thus made it useable for

Silverlight, Windows Phone 7, and Xbox 360 development.
We have made major changes in the code and also reduced the code base

considerably by removing a lot of redundant implementations – most notably
the comparers and equality compares.

We have removed the complex build system and preprocessor directives mak-
ing the C5 build process much simpler.

We have pushed C5 into the wild by publishing it to a public Github repos-
itory and the NuGet gallery.

We have maintained C5’s reliability and trustability as all unit tests still
pass and no new bugs have been introduced (that we know of).

All in all we believe that C5 is now ready for the future of .NET and C5 is
now prepared a major rewrite which we intend to undertake in the near future.

37

Appendix A

Screen shots

Figure A.1: Screen shot of the inital NUnit output.

39

Figure A.2: Screen shot of the NUnit output after updating the enumerator
tests and removing erroneously marked test methods.

Figure A.3: Screen shot of the Sandcastle website output.

Appendix A. Screen shots

Figure A.4: Screen shot of the Sandcastle help file output.

Figure A.5: Updating NuGet package metadata using the NuGet Package Ex-
plorer

42

Appendix A. Screen shots

Figure A.6: Installing C5 using NuGet

Figure A.7: Setting up source server support (1/2)

43

Appendix A. Screen shots

Figure A.8: Setting up source server support (2/2)

44

Appendix B

Code samples

Listing B.1: Original HashDictionary enumerators tests

1 namespace C5UnitTests . hashtable . dictionary
2 {
3 [TestFixture]
4 pub l i c c l a s s Enumerators
5 {
6 pr i va t e HashDictionary<s t r i ng , s t r i ng> dict ;
7

8 pr i va t e SCG . IEnumerator<KeyValuePair<s t r i ng , s t r i ng>> dictenum←↩
;

9

10 [SetUp]
11 pub l i c void Init ()
12 {
13 dict = new HashDictionary<s t r i ng , s t r i ng >() ;
14 dict [”S”] = ”A” ;
15 dict [”T”] = ”B” ;
16 dict [”R”] = ”C” ;
17 dictenum = dict . GetEnumerator () ;
18 }
19

20 [TearDown]
21 pub l i c void Dispose ()
22 {
23 dictenum = nu l l ;
24 dict = nu l l ;
25 }
26

27

28 [Test]
29 pub l i c void Keys ()
30 {
31 SCG . IEnumerator<s t r i ng> keys = dict . Keys . GetEnumerator () ;
32

33 Assert . IsTrue (keys . MoveNext ()) ;
34 Assert . AreEqual (”R” , keys . Current) ;
35 Assert . IsTrue (keys . MoveNext ()) ;
36 Assert . AreEqual (”T” , keys . Current) ;
37 Assert . IsTrue (keys . MoveNext ()) ;
38 Assert . AreEqual (”S” , keys . Current) ;
39 Assert . IsFalse (keys . MoveNext ()) ;
40 }
41

42

43 [Test]
44 pub l i c void Values ()
45 {
46 SCG . IEnumerator<s t r i ng> values = dict . Values . GetEnumerator () ;
47

45

Appendix B. Code samples

48 Assert . IsTrue (values . MoveNext ()) ;
49 Assert . AreEqual (”C” , values . Current) ;
50 Assert . IsTrue (values . MoveNext ()) ;
51 Assert . AreEqual (”B” , values . Current) ;
52 Assert . IsTrue (values . MoveNext ()) ;
53 Assert . AreEqual (”A” , values . Current) ;
54 Assert . IsFalse (values . MoveNext ()) ;
55 }
56

57 [Test]
58 pub l i c void Fun ()
59 {
60 Assert . AreEqual (”B” , dict . Fun (”T”)) ;
61 }
62

63

64 [Test]
65 pub l i c void NormalUse ()
66 {
67 Assert . IsTrue (dictenum . MoveNext ()) ;
68 Assert . AreEqual (dictenum . Current , new KeyValuePair<s t r i ng ,←↩

s t r i ng >(”R” , ”C”)) ;
69 Assert . IsTrue (dictenum . MoveNext ()) ;
70 Assert . AreEqual (dictenum . Current , new KeyValuePair<s t r i ng ,←↩

s t r i ng >(”T” , ”B”)) ;
71 Assert . IsTrue (dictenum . MoveNext ()) ;
72 Assert . AreEqual (dictenum . Current , new KeyValuePair<s t r i ng ,←↩

s t r i ng >(”S” , ”A”)) ;
73 Assert . IsFalse (dictenum . MoveNext ()) ;
74 }
75 }
76 }

Listing B.2: Modified HashDictionary enumerators tests
1 namespace C5UnitTests . hashtable . dictionary
2 {
3 [TestFixture]
4 pub l i c c l a s s Enumerators
5 {
6 pr i va t e HashDictionary<s t r i ng , s t r i ng> _dict ;
7

8 [SetUp]
9 pub l i c void Init ()

10 {
11 _dict = new HashDictionary<s t r i ng , s t r i ng >() ;
12 _dict [”S”] = ”A” ;
13 _dict [”T”] = ”B” ;
14 _dict [”R”] = ”C” ;
15 }
16

17 [TearDown]
18 pub l i c void Dispose ()
19 {
20 _dict = nu l l ;
21 }
22

23 [Test]
24 pub l i c void Keys ()
25 {
26 var keys = _dict . Keys . ToArray () ;
27

28 Assert . AreEqual (3 , keys . Length) ;
29 Assert . IsTrue (keys . Contains (”R”)) ;
30 Assert . IsTrue (keys . Contains (”S”)) ;
31 Assert . IsTrue (keys . Contains (”T”)) ;
32 }
33

34

35 [Test]
36 pub l i c void Values ()
37 {

46

Appendix B. Code samples

38 var values = _dict . Values . ToArray () ;
39

40 Assert . AreEqual (3 , values . Length) ;
41 Assert . IsTrue (values . Contains (”A”)) ;
42 Assert . IsTrue (values . Contains (”B”)) ;
43 Assert . IsTrue (values . Contains (”C”)) ;
44 }
45

46 [Test]
47 pub l i c void Fun ()
48 {
49 Assert . AreEqual (”B” , _dict . Fun (”T”)) ;
50 }
51

52

53 [Test]
54 pub l i c void NormalUse ()
55 {
56 var pairs = _dict . ToDictionary (pair => pair . Key , pair => ←↩

pair . Value) ;
57

58 Assert . AreEqual (3 , pairs . Count) ;
59 Assert . IsTrue (pairs . Contains (new SCG . KeyValuePair<s t r i ng , ←↩

s t r i ng >(”R” , ”C”))) ;
60 Assert . IsTrue (pairs . Contains (new SCG . KeyValuePair<s t r i ng , ←↩

s t r i ng >(”S” , ”A”))) ;
61 Assert . IsTrue (pairs . Contains (new SCG . KeyValuePair<s t r i ng , ←↩

s t r i ng >(”T” , ”B”))) ;
62 }
63 }
64 }

Listing B.3: Comparer Factory
1 // This f i l e i s part o f the C5 Generic Co l l e c t i on Library f o r C# and ←↩

CLI
2 // See https :// github . com/ s e s t o f t /C5/blob /master /LICENSE . txt f o r ←↩

l i c e n s i n g d e t a i l s .
3

4 us ing System ;
5 us ing System . Collections . Generic ;
6

7 namespace C5 . Comparers
8 {
9 /// <summary>

10 /// Factory c l a s s to c r ea t e comparers and equa l i t y comparers us ing←↩
Func de l e g a t e s

11 /// </summary>
12 /// <typeparam name=”T”>The type to compare</typeparam>
13 pub l i c c l a s s ComparerFactory<T>
14 {
15 /// <summary>
16 /// Create a new comparer .
17 /// </summary>
18 /// <param name=”comparer”>The compare func t i on .</param>
19 /// <returns>The comparer</returns>
20 pub l i c s t a t i c IComparer<T> CreateComparer (Func<T , T , int> ←↩

comparer)
21 {
22 re turn new Comparer<T>(comparer) ;
23 }
24

25 /// <summary>
26 /// Creates a new equa l i t y comparer .
27 /// </summary>
28 /// <param name=”equa l s”>The equa l s func t i on .</param>
29 /// <param name=”getHashCode”>The getHashCode func t i on .</param←↩

>
30 /// <returns>The equa l i t y comparer .</ returns>
31 pub l i c s t a t i c IEqualityComparer<T> CreateEqualityComparer (Func←↩

<T , T , bool> equals , Func<T , int> getHashCode)
32 {

47

Appendix B. Code samples

33 re turn new EqualityComparer<T>(equals , getHashCode) ;
34 }
35 }
36 }

Listing B.4: Internal Comparer

1 // This f i l e i s part o f the C5 Generic Co l l e c t i on Library f o r C# and ←↩
CLI

2 // See https :// github . com/ s e s t o f t /C5/blob /master /LICENSE . txt f o r ←↩
l i c e n s i n g d e t a i l s .

3

4 us ing System ;
5 us ing System . Collections . Generic ;
6

7 namespace C5 . Comparers
8 {
9 /// <summary>

10 /// Def ines a method that a type implements to compare two ob j e c t s←↩
.

11 /// This c l a s s i s i n t e n t i o n a l l y dec l a r ed i n t e r n a l − use the ←↩
ComparerFactory to c r ea t e an in s tance .

12 /// </summary>
13 /// <typeparam name=”T”>The type o f ob j e c t s to compare .</typeparam←↩

>
14 i n t e r n a l c l a s s Comparer<T> : IComparer<T>
15 {
16 pr i va t e readonly Func<T , T , int> _compare ;
17

18 /// <summary>
19 /// Constructs a comparer us ing one Func de l ega t e .
20 /// </summary>
21 /// <param name=”compare”>The compare func t i on .</param>
22 pub l i c Comparer (Func<T , T , int> compare)
23 {
24 _compare = compare ;
25 }
26

27 /// <summary>
28 /// Compares two ob j e c t s and re tu rn s a value i nd i c a t i n g ←↩

whether one i s l e s s than , equal to , or g r e a t e r than the ←↩
other .

29 /// </summary>
30 /// <param name=”x”>The f i r s t ob j e c t to compare .</param>
31 /// <param name=”y”>The second ob j e c t to compare .</param>
32 /// <returns>A signed i n t e g e r that i n d i c a t e s the r e l a t i v e ←↩

va lues o f x and y , as shown in the f o l l ow ing tab l e . Value ←↩
Condit ion Less than zero x i s l e s s than y . Zero x equa l s y←↩
. Greater than zero x i s g r e a t e r than y.</ returns>

33 pub l i c i n t Compare (T x , T y)
34 {
35 re turn _compare (x , y) ;
36 }
37 }
38 }

Listing B.5: Internal equality comparer

1 // This f i l e i s part o f the C5 Generic Co l l e c t i on Library f o r C# and ←↩
CLI

2 // See https :// github . com/ s e s t o f t /C5/blob /master /LICENSE . txt f o r ←↩
l i c e n s i n g d e t a i l s .

3

4 us ing System ;
5 us ing System . Collections . Generic ;
6

7 namespace C5 . Comparers
8 {
9 /// <summary>

48

Appendix B. Code samples

10 /// Def ines methods to support the comparison o f ob j e c t s f o r ←↩
equa l i t y .

11 /// This c l a s s i s i n t e n t i o n a l l y dec l a r ed i n t e r n a l − use the ←↩
ComparerFactory to c r ea t e an in s tance .

12 /// </summary>
13 /// <typeparam name=”T”>The type o f ob j e c t s to compare .</typeparam←↩

>
14 i n t e r n a l c l a s s EqualityComparer<T> : IEqualityComparer<T>
15 {
16 pr i va t e readonly Func<T , T , bool> _equals ;
17 pr i va t e readonly Func<T , int> _getHashCode ;
18

19 /// <summary>
20 /// Constructs and equa l i t y comparer us ing two Func de l e g a t e s .
21 /// </summary>
22 /// <param name=”equa l s”>The equa l s func t i on .</param>
23 /// <param name=”getHashCode”>The get hash code func t i on .</←↩

param>
24 pub l i c EqualityComparer (Func<T , T , bool> equals , Func<T , int> ←↩

getHashCode)
25 {
26 _equals = equals ;
27 _getHashCode = getHashCode ;
28 }
29

30 /// <summary>
31 /// Determines whether the s p e c i f i e d ob j e c t s are equal .
32 /// </summary>
33 /// <param name=”x”>The f i r s t ob j e c t o f type T to compare .</←↩

param>
34 /// <param name=”y”>The second ob j e c t o f type T to compare .</←↩

param>
35 /// <returns>t rue i f the s p e c i f i e d ob j e c t s are equal ; ←↩

otherwise , f a l s e .</ returns>
36 pub l i c bool Equals (T x , T y)
37 {
38 re turn _equals (x , y) ;
39 }
40

41 /// <summary>
42 /// Returns a hash code f o r the s p e c i f i e d ob j e c t .
43 /// </summary>
44 /// <param name=”obj”>The System . Object f o r which a hash code ←↩

i s to be returned .</param>
45 /// <returns>A hash code f o r the s p e c i f i e d ob j e c t .</ returns>
46 pub l i c i n t GetHashCode (T obj)
47 {
48 re turn _getHashCode (obj) ;
49 }
50 }
51 }

Listing B.6: Equality comparer supporting collection equality
1 us ing System ;
2 us ing System . Linq ;
3 us ing System . Reflection ;
4 us ing SCG = System . Collections . Generic ;
5

6 namespace C5
7 {
8 /// <summary>
9 /// U t i l i t y c l a s s f o r bu i l d ing de f au l t g ene r i c equa l i t y comparers .

10 /// </summary>
11 /// <typeparam name=”T”></typeparam>
12 pub l i c s t a t i c c l a s s EqualityComparer<T>
13 {
14 pr i va t e s t a t i c SCG . IEqualityComparer<T> _default ;
15

16 readonly s t a t i c Type SequencedCollectionEqualityComparer = ←↩
typeo f (SequencedCollectionEqualityComparer <,>) ;

17

49

Appendix B. Code samples

18 readonly s t a t i c Type UnsequencedCollectionEqualityComparer = ←↩
typeo f (UnsequencedCollectionEqualityComparer <,>) ;

19

20 /// <summary>
21 /// A de f au l t g en e r i c e qua l i t y comparer f o r type T. The ←↩

procedure i s as f o l l ow s :
22 /// < l i s t >
23 /// <item>I f the ac tua l g ene r i c argument T implements the ←↩

gene r i c i n t e r f a c e
24 /// <s ee c r e f=”T:C5 . ISequenced ‘1”/> f o r some value W of i t s ←↩

gene r i c parameter T,
25 /// the equal ityComparer w i l l be <s ee c r e f=”T:C5 .←↩

SequencedCol lect ionEqual ityComparer ‘2”/></item>
26 /// <item>I f the ac tua l g ene r i c argument T implements
27 /// <s ee c r e f=”T:C5 . ICo l l e c t i on ‘1”/> f o r some value W of i t s ←↩

gene r i c parameter T,
28 /// the equal ityComparer w i l l be <s ee c r e f=”T:C5 .←↩

UnsequencedCollectionEqual ityComparer ‘2”/></item>
29 /// <item>Otherwise the SCG. EqualityComparer&l t ;T> ; . Defau l t ←↩

i s returned</item>
30 /// </ l i s t >
31 /// </summary>
32 /// <value>The comparer</value>
33 pub l i c s t a t i c SCG . IEqualityComparer<T> Default
34 {
35 get
36 {
37 i f (_default != nu l l)
38 {
39 re turn _default ;
40 }
41

42 var type = typeo f (T) ;
43 var interfaces = type . GetInterfaces () ;
44

45 i f (type . IsGenericType && type .←↩
GetGenericTypeDefinition () . Equals (typeo f (←↩
ISequenced<>)))

46 {
47 re turn CreateAndCache (←↩

SequencedCollectionEqualityComparer .←↩
MakeGenericType (new [] { type , type .←↩
GetGenericArguments () [0] })) ;

48 }
49

50 var isequenced = interfaces . FirstOrDefault (i => i .←↩
IsGenericType && i . GetGenericTypeDefinition () .←↩
Equals (typeo f (ISequenced<>))) ;

51 i f (isequenced != nu l l)
52 {
53 re turn CreateAndCache (←↩

SequencedCollectionEqualityComparer .←↩
MakeGenericType (new [] { type , isequenced .←↩
GetGenericArguments () [0] })) ;

54 }
55

56 i f (type . IsGenericType && type .←↩
GetGenericTypeDefinition () . Equals (typeo f (←↩
ICollection<>)))

57 {
58 re turn CreateAndCache (←↩

UnsequencedCollectionEqualityComparer .←↩
MakeGenericType (new [] { type , type .←↩
GetGenericArguments () [0] })) ;

59 }
60

61 var icollection = interfaces . FirstOrDefault (i => i .←↩
IsGenericType && i . GetGenericTypeDefinition () .←↩
Equals (typeo f (ICollection<>))) ;

62 i f (icollection != nu l l)
63 {
64 re turn CreateAndCache (←↩

UnsequencedCollectionEqualityComparer .←↩
MakeGenericType (new [] { type , icollection .←↩

50

Appendix B. Code samples

GetGenericArguments () [0] })) ;
65 }
66

67 re turn _default = SCG . EqualityComparer<T>. Default ;
68 }
69 }
70

71 pr i va t e s t a t i c SCG . IEqualityComparer<T> CreateAndCache (Type ←↩
equalityComparertype)

72 {
73 re turn _default = (SCG . IEqualityComparer<T>)(←↩

equalityComparertype . GetProperty (”Defau l t ” , ←↩
BindingFlags . Static | BindingFlags . Public) . GetValue (←↩
nul l , nu l l)) ;

74 }
75 }
76 }

51

Bibliography

Brad Abrams. Implementing ICloneable, 2003. URL http://blogs.msdn.com/
b/brada/archive/2003/04/09/49935.aspx.

Brad Abrams. Should we Obsolete ICloneable (The SLAR on Sys-
tem.ICloneable), 2004. URL http://blogs.msdn.com/b/brada/archive/2004/
05/03/125427.aspx.

Shawn Burke. 3-Screen Coding: Sharing code between Windows Phone, Sil-
verlight, and .NET, 2010. URL http://channel9.msdn.com/Events/PDC/
PDC10/CD11.

Miguel de Icaza. Announcing Xamarin, 2011. URL http://tirania.org/blog/
archive/2011/May-16.html.

Ecma. Standard ECMA-335 Common Language Infrastructure (CLI) 5th
edition (December 2010). Ecma International, 2010. URL http://www.
ecma-international.org/publications/standards/Ecma-335.htm.

Martin Fowler. Inversion of Control Containers and the Dependency Injection
pattern. martinfowler.com, 2004. URL http://martinfowler.com/articles/
injection.html.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

Github. Github Community, 2011. URL https://github.com/features/
community.

Eric Gunnerson. Public readonly string vs. public readonly property?, 2006.
URL http://blogs.msdn.com/b/ericgu/archive/2006/03/17/553934.aspx.

Scott Guthrie. Announcing NuPack, ASP.NET MVC 3 Beta, and WebMa-
trix Beta 2, 2010. URL http://weblogs.asp.net/scottgu/archive/2010/10/06/
announcing-nupack-asp-net-mvc-3-beta-and-webmatrix-beta-2.aspx.

Scott Hanselman and Phil Haack. NuGet In Depth: Empowering Open Source
on the .NET Platform, 2011. URL http://channel9.msdn.com/Events/MIX/
MIX11/FRM09.

Srivatsan Kidambi. .NET Compact Framework for Windows Phone 7 se-
ries, 2010. URL http://blogs.msdn.com/b/srivatsan/archive/2010/03/16/
net-compact-framework-for-windows-phone-7-series.aspx.

53

http://blogs.msdn.com/b/brada/archive/2003/04/09/49935.aspx
http://blogs.msdn.com/b/brada/archive/2003/04/09/49935.aspx
http://blogs.msdn.com/b/brada/archive/2004/05/03/125427.aspx
http://blogs.msdn.com/b/brada/archive/2004/05/03/125427.aspx
http://channel9.msdn.com/Events/PDC/PDC10/CD11
http://channel9.msdn.com/Events/PDC/PDC10/CD11
http://tirania.org/blog/archive/2011/May-16.html
http://tirania.org/blog/archive/2011/May-16.html
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
https://github.com/features/community
https://github.com/features/community
http://blogs.msdn.com/b/ericgu/archive/2006/03/17/553934.aspx
http://weblogs.asp.net/scottgu/archive/2010/10/06/announcing-nupack-asp-net-mvc-3-beta-and-webmatrix-beta-2.aspx
http://weblogs.asp.net/scottgu/archive/2010/10/06/announcing-nupack-asp-net-mvc-3-beta-and-webmatrix-beta-2.aspx
http://channel9.msdn.com/Events/MIX/MIX11/FRM09
http://channel9.msdn.com/Events/MIX/MIX11/FRM09
http://blogs.msdn.com/b/srivatsan/archive/2010/03/16/net-compact-framework-for-windows-phone-7-series.aspx
http://blogs.msdn.com/b/srivatsan/archive/2010/03/16/net-compact-framework-for-windows-phone-7-series.aspx

Bibliography Bibliography

Niels Kokholm and Peter Sestoft. The C5 Generic Collection Library for C♯
and CLI. IT University of Copenhagen, Copenhagen, Denmark, 2006.

Niels Kokholm and Peter Sestoft. The C5 Generic Collection Library for C♯
and CLI, 2010. URL http://www.itu.dk/research/c5.

mark@lexparse.com. C♯ Lambdas: Never implement IComparer and IEqual-
ityComparer again, 2009. URL http://www.lexparse.com/2009/11/02/
c-lambdas-never-implement-icomparer-and-iequalitycomparer-again/.

Microsoft. CLSCompliantAttribute Class, 2010a. URL http://msdn.microsoft.
com/en-us/library/system.clscompliantattribute(v=VS.100).aspx.

Microsoft. MethodBase.GetCurrentMethod Method, 2010b. URL
http://msdn.microsoft.com/en-us/library/system.reflection.methodbase.
getcurrentmethod.aspx.

Microsoft. RuntimeHelpers.GetHashCode Method (Object), 2010c. URL http:
//msdn.microsoft.com/en-us/library/11tbk3h9.aspx.

Microsoft. Portable Library Tools, 2011. URL http://visualstudiogallery.msdn.
microsoft.com/b0e0b5e9-e138-410b-ad10-00cb3caf4981.

Mono. Mono, 2011. URL http://www.mono-project.com.

Roy Osherove. The Art of Unit Testing with Examples in .NET. Manning
Publications Co., 2009.

Peter Sestoft and Niels Kokholm. C5 License, 2007. URL http://www.itu.dk/
research/c5/LICENSE.txt.

Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

Wikipedia. Sandcastle, 2010. URL http://en.wikipedia.org/wiki/Sandcastle
(software).

Wikipedia. C♯ 3.0, 2011a. URL http://en.wikipedia.org/wiki/C Sharp 3.0.

Wikipedia. C♯ 4.0, 2011b. URL http://en.wikipedia.org/wiki/C Sharp 4.0.

Wikipedia. Comparison of open source software hosting facilities,
2011c. URL http://en.wikipedia.org/wiki/Comparison of open source
software hosting facilities.

Wikipedia. .NET Compact Framework, 2011d. URL http://en.wikipedia.org/
wiki/.NET Compact Framework.

Wikipedia. .NET Micro Framework, 2011e. URL http://en.wikipedia.org/wiki/
.NET Micro Framework.

Wikipedia. Microsoft Silverlight, 2011f. URL http://en.wikipedia.org/wiki/
Microsoft Silverlight.

Wikipedia. Windows Phone 7, 2011g. URL http://en.wikipedia.org/wiki/
Windows Phone 7.

54

http://www.itu.dk/research/c5
http://www.lexparse.com/2009/11/02/c-lambdas-never-implement-icomparer-and-iequalitycomparer-again/
http://www.lexparse.com/2009/11/02/c-lambdas-never-implement-icomparer-and-iequalitycomparer-again/
http://msdn.microsoft.com/en-us/library/system.clscompliantattribute(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.clscompliantattribute(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.reflection.methodbase.getcurrentmethod.aspx
http://msdn.microsoft.com/en-us/library/system.reflection.methodbase.getcurrentmethod.aspx
http://msdn.microsoft.com/en-us/library/11tbk3h9.aspx
http://msdn.microsoft.com/en-us/library/11tbk3h9.aspx
http://visualstudiogallery.msdn.microsoft.com/b0e0b5e9-e138-410b-ad10-00cb3caf4981
http://visualstudiogallery.msdn.microsoft.com/b0e0b5e9-e138-410b-ad10-00cb3caf4981
http://www.mono-project.com
http://www.itu.dk/research/c5/LICENSE.txt
http://www.itu.dk/research/c5/LICENSE.txt
http://en.wikipedia.org/wiki/Sandcastle_(software)
http://en.wikipedia.org/wiki/Sandcastle_(software)
http://en.wikipedia.org/wiki/C_Sharp_3.0
http://en.wikipedia.org/wiki/C_Sharp_4.0
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://en.wikipedia.org/wiki/.NET_Compact_Framework
http://en.wikipedia.org/wiki/.NET_Compact_Framework
http://en.wikipedia.org/wiki/.NET_Micro_Framework
http://en.wikipedia.org/wiki/.NET_Micro_Framework
http://en.wikipedia.org/wiki/Microsoft_Silverlight
http://en.wikipedia.org/wiki/Microsoft_Silverlight
http://en.wikipedia.org/wiki/Windows_Phone_7
http://en.wikipedia.org/wiki/Windows_Phone_7

	Introduction
	The users
	Project goals
	Modus operandi
	A note on continuity

	Availability
	Upgrade version control system and make C5 publicly available
	NuGet
	Publishing C5 to NuGet

	Maintainability
	File structure
	Naming conventions
	Testing
	License
	Conclusion

	Upgradability
	Overview of the new features in C# 3.0 and 4.0
	C# 3.0 features
	C# 4.0 features

	Retargeting C5 to .NET 4.0

	Portability
	Other platforms
	Silverlight
	Windows Phone 7 and the .NET Compact Framework
	Mono
	.NET Micro Framework
	Portable Library Tools

	CLS compliance
	Non-CLS compliant types
	Non-CLS compliant overloads

	Building C5 as a portable library
	System.Serializable
	System.Comparison
	System.ICloneable
	System.Console
	System.Exception
	System.Type.EmptyTypes
	System.Runtime.CompilerServices.RuntimeHelpers.GetHashCode
	System.Reflection.Emit
	System.Reflection.MethodBase
	Covariance and contravariance
	Conclusion

	Features
	Replace C5 specific delegates with generic .NET types
	Implementing System.Action/System.Func

	Crude timer
	Updating the online documentation of C5
	Redundant type constraints
	Covariance and contravariance
	Eliminating the preprocessor
	Removing preprocessor directives
	DEBUG symbol
	Comparers
	Delegate comparer
	Equality comparers
	Special equality comparers
	Comparer zero hash code equality comparer
	Sequenced and unsequenced collection equality comparer

	Test attribute

	Future work
	Conclusion
	Screen shots
	Code samples

