
Synthesis of Software Programs for Embedded Control Applications

Massimiliano Chiodo
Paolo Giusto

Attila Jurecska
Magneti Marelli, Italy

Luciano Lavagno
Dipartimento di Elettronica
Politecnico di Torino, Italy

Harry Hsieh�
Kei Suzuki

Alberto Sangiovanni-Vincentelli
Department of EECS

Univ. of California, Berkeley, CA

Ellen Sentovich
Cadence Berkeley Labs

Berkeley, CA

Abstract

Software components for embedded reactive real-time appli-
cations must satisfy tight code size and run-time constraints.
Cooperating Finite State Machines provide a convenient in-
termediate format for embedded system co-synthesis, between
high-level specification languages and software or hardware
implementations. We propose a software generation method-
ology that takes advantage of the very restricted class of spec-
ifications and allows for tight control over the implementation
cost. The methodology exploits several techniques from the
domain of Boolean function optimization. We also describe
how the simplified control/data-flow graph used as an inter-
mediate representation can be used to accurately estimate the
size and timing cost of the final executable code.

1 Introduction

In this paper we address the problem of synthesizing effi-
cient software for embedded reactive real-time systems. Such
systems are in general composed of software and hardware
components, and the software has tight memory-size and
execution-speed constraints.

In particular, we focus on control-dominatedembedded sys-
tems, where the emphasis is on the decision process that leads
from a set of input events to a set of output events (reaction).
This class of systems covers a fairly broad range of applica-
tions, from microwave ovens and watches to telecommunica-
tion network management and control functions. Finite State
Machines (FSMs) provide a convenient and common mech-
anism for specifying the intended behavior of such systems.
Although we use the Codesign Finite State Machine (CFSM)
model defined in [CGH+94a] for the sake of explanation, our
results can be applied to any FSM-based specification.

The use of FSMs for embedded control specification offers
several advantages over apparently more powerful formalisms
(such as unrestricted programming languages). First of all,
they are easily understood and widely used even as informal
specifications. Secondly, there are abundant theoretical and
practical results concerning their manipulation (minimization,
encoding, formal verification of properties, : : :).

�supported by SRC Contract DC-324-028

0

Unfortunately “pure” FSMs don’t provide a very conve-
nient representation for systems that perform even a small
amount of computation. It is customary to extend them with
the capability to perform assignments of expressions to vari-
ables, and to use comparisons to determine transition con-
ditions. This mechanism increases the expressive power at
the expense of the synthesis and verification capabilities (e.g.,
there is no longer a “canonical” form for such extended FSMs,
verification becomes much more difficult, etc.).

The purpose of this paper is to describe algorithms for an
optimizing compiler from an FSM specification to object code
on a micro-controller. This compiler is not to be compared
against traditional compilers for a programming language like
C or Pascal, because we are solving a much simpler and more
restricted problem. But exactly for this reason we can afford
to perform optimizations that are either impossible or simply
too expensive in the general case ([ASU88]). We can even
tightlycouple the optimizationprocess with a fast and accurate
timingand code size estimation procedure, to take into account
constraints at a much finer granularity level than is possible
with a truly general-purpose compiler.

Throughout thispaper we make the followingmain assump-
tions:

1. The standard resource allocation and operation schedul-
ing steps have already been performed on the high-level
specification ([CW91]). A global approach, where re-
source allocation, scheduling and control implementation
are all considered simultaneously is left to future research.

2. A Real Time Operating System is used to activate appro-
priately the tasks implementing the FSMs, ensuring the
satisfaction of timing constraints that span more than one
FSM transition. Our synthesis procedure, on the other
hand, provides the Operating System with execution time
estimates that can be used either off-line or on-line to
schedule the FSMs. We are investigating means to allow
an off-line scheduling procedure to propagate timing con-
straints to the compiler so that scheduling becomes easier
(or feasible at all).

3. A general-purpose (but machine-specific) compiler is
used to transform the code that we produce into machine
code. This allows us to concentrate on domain-specific
transformations, while leaving general ones such as reg-
ister allocation and instruction selection to the general-
purpose compiler. Note that the C code that we produce
is so simple and low-level that we can keep a very tight
control over the resulting machine code, and the compiler
cannot “undo” our optimizations.

We use, like most compilation strategies, a control/data-
flow diagram (called s-graph, for software graph, in the fol-
lowing) as an intermediate data structure. The s-graph is sim-
pler than general control/data-flow diagrams, because it needs

1

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

only to represent a single function from a discrete domain (the
set of input events and values) to a discrete domain (the set
of output events and values). As such, it requires only two
primitives: conditional branch and assignment (using arith-
metic and relational expressions without side effects). This
simple representation has a straightforward representation in
C and can be translated with equal ease into object code by
any available compiler. In this way we can obtain good cost
and performance estimates at any intermediate stage of the
optimization process, without the need to compile the code
and analyze the results.

Our software synthesis procedure is composed of the fol-
lowing main steps:

1. Translation of a given CFSM into an s-graph.

2. S-graph optimization.

3. Translation of the s-graph into a target language.

4. Scheduling of the CFSMs.

5. Compilation into machine code to be run on the target
processor.

Step 1 uses Binary Decision Diagrams (BDDs, [Bry86]) as
an intermediate representation, to generate a very fast initial
s-graph, potentiallyat the expense of code size. It is based on a
new result, described in this paper, that states the equivalence
between a multioutput multivalued function f and an s-graph
that is directly obtained from a BDD representing f .

Steps 2 and 4, which are currently being implemented, will
use the software performance estimation package to minimize
the code size and meet the given timing constraints.

The paper is organized as follows. Section 2 contains back-
ground information and the s-graph structure definition. Sec-
tion 3 describes the software cost and performance estimation
technique based on s-graphs. Section 4 describes the s-graph
synthesis and optimization procedure. Section 5 shows some
experimental results demonstrating the effectiveness of the
approach.

2 Preliminaries

2.1 Previous Work

Previous approaches to automated code generation for reactive
real-time systems have started either from synchronous pro-
gramming languages (e.g., Esterel, [BCG91]), or from other
high-level languages ([CWB94, GJM94]).

In the first case, the main problem is the identification of
a single FSM equivalent to the Esterel specification, and its
efficient implementation as a software program. The approach
has the advantage of producing a very fast implementation (as
all the internal communication between modules disappears
when the single FSM is produced), at the expense of code
size. Our approach allows a finer trade-off between size and
speed, because the designer can choose the granularity of the
generated CFSMs, even if they are produced from an Esterel
specification ([Yee94]). Moreover, the currently distributed
version of the Esterel compiler (V3) produces C code rep-
resenting the FSM in tabular format, with a fast interpreter
for it. Our software implementation strategy, on the other
hand, produces an implementation of each transition function
in machine code, thus relying on the efficiency of the micro-
controller instruction set coding.

In the second case, previous work usually focused on the
scheduling of operations derived from a concurrent high-level
specification. The problem is that of choosing an order for
potentially concurrent operations that satisfies the given tim-
ing constraints. In our case, we decompose the problem of
satisfying timing constraints into two (possibly iterated) steps:

(1) code generation for each CFSM, (2) scheduling of CFSM
transitions to satisfy timing constraints. The difference is that
we can take advantage of the large body of research about
scheduling for real-time systems (e.g., [LL73]) for the second
step. On the other hand, some of the algorithms of [GJM94]
can also be used to perform a preliminary optimization before
our synthesis algorithm. This would allow an easier satisfac-
tion of “short term” timing constraints (e.g., those dictated by
a specific interface protocol implemented directly in software)
which may be more difficult to satisfy with classical schedul-
ing techniques (designed for “long term” response and input
rate constraints).

2.2 Binary Decision Diagrams and Character-
istic Functions

A Binary-Decision Diagram (BDD, [Bry86]) is an efficient
representation for storing and manipulating Boolean func-
tions. A BDD is a directed acyclic graph with a root node
for each output function and leaf nodes representing the value
of each function for each input minterm. Each non-leaf node
represents an input variable, and each of the two out-edges of
the node represents the value of the variable (0 or 1) along
that branch. The representation is made compact (reduced)
by sharing common functional subgraphs. Given a function f
and an ordering of the input variables, the Reduced Ordered
BDD (simply called BDD in the following)is a canonical form
for f .

While the size of theBDD may be exponential in the number
of inputs for any ordering, in many practical cases (especially
those that deal with a decision process) a good ordering can be
found that produces a small BDD. Functional operations on
the BDD take at most n2 space and time (n is the number of
nodes in the BDD); equivalence checking between two BDDs
requires only a graph isomorphism check. The canonicity
property of BDDs, efficient BDD package implementation,
and recent improvements in variable ordering strategies have
made BDD-based algorithms efficient and effective for a vari-
ety of problems involving Boolean function manipulation.

Multioutput functions (or, equivalently, sets of functions
defined on the same domain) can be represented by their char-
acteristic functions. A single-output binary-valued function
�f : (X � Y) ! f0; 1g, where X = X1 � : : :Xm and
Y = Y1� : : :Yl, represents the multioutput multivalued func-
tion f : X ! Y if �f (x; y) , (y = f(x)). The same
notation can also be used to describe a Boolean relation R, as
�R(x; y), (y 2 R(x))

The function resulting when some argumentxj of a function
f is replaced by a constant b is called a restriction (or cofactor)
and is denoted fxj=b. The projection of a function f onto a
space orthogonal to xj (or Smoothing of f by xj) is denoted
Sxjf . That is, if xj 2 f0; 1g, then Sxjf = fxj=1 _ fxj=0.

The support of an output variable yi of a multioutput func-
tion is the set of inputs upon which yi essentially depends.
More precisely, an input variable xj belongs to the support of
yi if Sxjyi(x1; : : :xn) 6= yi(x1; : : :xn).

2.3 Codesign Finite State Machines

According to [CGH+94a], a CFSM is a reactive Finite State
Machine with a set of input and output events. Events are en-
tities that may occur at determinate instants of time and may
or may not carry a value (cfr. the notion of signal in Esterel).
For the purpose of this discussion, each event is associated
with a binary-valued variable which is true in the time interval
between its emission and its detection, and with an optional
discrete-valued variable carrying its value. This value is de-
fined only when the associated binary-valued variable is true,

2

BEGIN

*c

END

0 1

EQ(a,b)

a’:=INC(a) a’:=0

10

*y:=0 *y:=1

Figure 1: A simple s-graph

and remains unchanged until a new event of the same type
occurs. In the following, variables denoting the presence of
an event are identified by the event name preceded by a “*”,
while variables denoting its value are identified just by the
event name. An input event to a CFSM may be detected at
most once at any time after its emission. The reaction is deter-
mined by the transition function of the CFSM. The transition
function maps the set of input events and values onto the set
of output events and values: f : X1 � : : :Xm ! Y1 � : : : Yl.

2.4 Software Graphs

In this section we define more precisely the control-flow graph
that we use internally to represent the CFSM transition func-
tion.

Definition 1 An s-graph G is a directed acyclic graph (DAG)
with one source and one sink. Its vertex set V contains four
types of vertices: BEGIN, END, TEST, and ASSIGN. The
source has type BEGIN, the sink has type END. All other
vertices are of type TEST or ASSIGN. Each TEST vertex
v has two children true(v) and false(v)1 . Each BEGIN
or ASSIGN vertex u has one child next(u) only. Any non-
source vertex can have one or more parents. Each vertex is
labeled with a functiondefined on a set of discrete finite-valued
variables z1; : : : zj; : : : zn. An ASSIGN vertex v is associated
with a function aj;v(z1; : : : zj ; : : : zn) and an output variable
zj (intuitively, it assigns the result of aj;v(z1; : : : zj ; : : :zn) to
zj). A TEST vertex v is associated with a Boolean-valued
function (predicate) pv(z1; : : : zn).

A simple s-graph is shown in Figure 1.
The definition of the multioutput function computed by

an s-graph G with BEGIN node v is given by the following
algorithm. Let z = (x1; : : :xm; y1; : : : yl) be a vector of vari-
ables appearing in the vertex labels of G (xi 2 Xi [f�g and
yj 2 Yj [f�g, where � is a distinguished “undefined” value).
procedure evaluate (v: vertex; x1; : : :xm; y1; : : : yl:variable)
begin

zj(xi for 1 � j � m
zj(� for m + 1 � j � m+ l
eval (next(v), z1; : : :zm+l)

end

procedure eval (v:vertex; z1; : : : zm+l :variable)
begin

1The implementation described in Section 5 allows more than two children.
The extension of the definitions and theorems to the more general case is
trivial.

if v is a TEST
then

if pv(z1; : : : zm+l)
then eval (true(v), z1; : : : zm+l)
else eval (false(v), z1; : : : zm+l)

else if v is an ASSIGN
then

zj(aj;v(z1; : : : zm+l)
eval (next(v), z1; : : : zm+l)

else (v is END)
yj(zm+j for 1 � j � l

end

Definition 2 An s-graph is functional if every (output) variable
zm+j , for 1 � j � l:

1. is assigned by eval at least one defined value for each
combination of values of the input variables, and

2. has a defined value whenever a predicate or a function
depending on zm+j is visited by eval.

Definition 3 A functional s-graph, with BEGIN vertex v, de-
notes a function f : X1 � : : :Xm ! Y1 � : : : Yl computed by
procedure evaluate (v; x1; : : :xm; y1; : : : yl).

It is easy to show that the definition is consistent (i.e., that
f is indeed a completely specified function), and that a non-
functional s-graph computes either an incompletely specified
function (if condition 1 in Definition 2 is violated),or a relation
between the input and the output variables (if condition 2 in
Definition 2 is violated). This fact can be used in optimizing
the s-graph, as briefly explained in Section 4.

If we apply procedure evaluate to the s-graph of Figure 1,
we see that it defines a function which is triggered by event
�c and assigns to a0 the value of a + 1 if a is not equal to
b. Otherwise it emits �y and resets a to 0. It should be clear
that if iteratively called by the scheduler, connecting a and a0

together, it implements a CFSM which increments a until it
equals b, and then emits �y and resets a to 0.

The next two sections describe how the timing and size of
the code generated from an s-graph can be accurately esti-
mated, and how an s-graph implementing a given transition
function can be built.

3 Software Cost and Performance Esti-
mation

Hardware/software partitioning and software synthesis for
real-time embedded systems require accurate and quick es-
timates of code size and of minimum and maximum execution
time.

There are at least two aspects of the problem that we must
consider here: the structure of the code, e.g., loops and false
paths2, and the system on which the program will run, includ-
ing the CPU (instruction set, interrupts, etc.), the hardware
architecture (cache, etc.), the Operating System, and the com-
piler.

The s-graph structure is very similar (as shown more pre-
cisely in Section 4.2) to the final code structure, and hence
helps in solving the problem of cost and performance estima-
tion. Each vertex in an s-graph is in one-to-one correspon-
dence with a statement of the synthesized C code, and the
form of each statement is determined by the type of the cor-
responding vertex. This means that the resulting C code is
poorly structured from a user’s point of view, but has a very

2A path in the control flow graph is false if it can never be executed, e.g.,
due to conflicting Boolean conditions.

3

simple structure. Hence the effects of the target system on the
execution time and code size of each vertex type can be easily
determined, as described below.

The timing analysis is drastically simplified, because the
s-graph implements the FSM transition function: looping is
dealt with at the Operating System level. Moreover, false
paths can be determined with a good degree of accuracy from
the structure of the CFSM network, e.g. by computing event
incompatibility relations.

Cost estimation can hence be done with a simple traversal
of the s-graph. Costs are assigned to every vertex, represent-
ing its estimated execution cycle requirements and code size
(including most effects of the target system).

3.1 Cost Estimation on the S-graph

Our estimation method consists of two major parts. First, we
determine the cost parameters for the target system. Secondly,
we apply those parameters to the s-graph, to compute the
minimum and maximum number of execution cycles and the
code size.

Each vertex is assigned two specific cost parameters (one
for timing and one for size), depending on the type of the
vertex and the type of the input and/or output variables of the
vertex. Edges may also have an associated cost, as the then
and else branches of an if statement generally take different
times to execute. Currently, we use seventeen cost parameters
for calculating execution cycles, fifteen for code size, and four
for characterizing the system (e.g., the size of a pointer).

The parameters are determined for each target system (CPU,
memory/bus architecture, compiler) with a set of sample
benchmark programs. These programs are written in C, and
consist of about 20 functions, each with 10 to 40 statements.
Each if or assignment statement which is contained in these
functions has the same style as one of the statements generated
from a TEST or ASSIGN vertex. The value of each parameter
is determined by examining the execution cycles and the code
size of each function. A profiler or an assembly level code
analysis tool, if available, can be used for this examination
(we are currently using an internally developed cycle calcula-
tor for the Motorola 68HC11 micro-controller, as well as the
pixie tool for MIPS CPUs).

The calculation of software performance is based on graph
traversing algorithms. The minimum execution cycle require-
ment is calculated by finding a minimum cost path (based
on Dijkstra’s shortest path algorithm) from the BEGIN to the
END vertex of the s-graph. Similarly, the maximum execution
cycles are calculated by finding a maximum cost path (based
on the PERT longest path algorithm). The code size is calcu-
lated simply by summing up all the code size parameters for
all the vertices of the s-graph. The computational complexity
of those graph traversing algorithms is O(ElogN), O(E) and
O(E) respectively (where E is the number of edges, and N is
the number of vertices in the s-graph).

4 S-graph Implementation and Opti-
mization

We have shown in the previous sections how an s-graph com-
putes a function, and how its timing and code size characteris-
tics can be estimated. In this section we describe the s-graph
synthesis and optimization algorithms more in detail. The cur-
rently implemented procedure is as follows: (1) Initial s-graph
implementation from the transition function of an FSM. (2)
S-graph optimization. (3) Translation of the s-graph into C
code. The next sections are devoted to an explanation of each
step.

4.1 Initial S-graph Implementation

The first step of the software synthesis procedure derives an s-
graph implementing the transition function of a given CFSM.
The method is based on the Shannon decomposition and is
given assuming that all variables are binary xi 2 f0; 1g (the
next section describes how this can be extended to multivalued
variables). It takes as input an arbitrary ordering z1; : : : zm+l

on the input and output variables, a variable index i (initialized
as 0 at the root of the recursive call), and the characteristic
function �f of the transition function. As we will see below,
the choice of the ordering influences the form of the final s-
graph (specifically the relative mix of TEST and ASSIGN
nodes).
procedure build(z1; : : : zm+l :variable; i:index; F :function)
begin

if i = 0
then

create a BEGIN vertex v
next(v) (build(z1; : : :zm+l , 1, F)

else if F = 1

then
create or retrieve the END vertex v

else if zi is an input
then

create a TEST vertex v with pv = (zi)
true(v) (build(z1; : : : zm+l , i+ 1, Fzi=1)
false(v) (build(z1; : : :zm+l , i + 1, Fzi=0)

else if zi is an output
then

create an ASSIGN vertex v labeled with
zi = Szkjk�i+1^zkis an inputFzi=1

(either a constant or a functiondepending on un-processed out-
put variables) next(v) (build(z1; : : : zm+l , i + 1,
SziF))

return v
end

The following theorem, proved in [CGH+94b], shows the
correctness of this algorithm.

Theorem 1 Let �f (x1; : : :xm; y1; : : : yl) be the character-
istic function of multioutput function f , such that yk =
fk(x1; : : :xm), and let z1; : : : zl+m be an arbitrary total order-
ing of its variables. Then the s-graphG returned by procedure
build(x1; : : : ; xm; y1; : : : ; yl; 0; �f) computes f .

A straightforward reduction procedure can then be used to
minimize the size of the s-graph (as for BDDs). It recursively
merges nodes with the same labels and the same children,
starting from the END.

Note that the mapping from the transition function to the
s-graph is not unique since it is based on the ordering of the
variables. Section 4.1.2 discusses the influence of this choice
over the timing and size characteristics of the generated code.

Moreover, the input to this algorithm need not always be
a function, but could also be a relation (e.g., when non-
determinism is used to describe design freedom, or don’t
cares). In that case, the ASSIGN label may depend on un-
defined output variables (including zi) as well. The simplest
case, when Szi+1:::zm+l�

f = zi, corresponds to a classical
“don’t care”, because zi can be assigned any value (including
the cheapest option of no assignment) and still be compatible
with the characteristic function.

This flexibility can be exploited to minimize the
size of the s-graph, because the ASSIGN label aj;v
could in fact be any function which is 1 whenever

(Szi+1:::zm+l�
f
zi=1)^ (Szi+1:::zm+l�

f
zi=0) is 1, and is 0 when-

ever (Szi+1:::zm+l�
f
zi=1) _ (Szi+1:::zm+l�

f
zi=0) is 0.

4

*c

R
s

a

b

EQ

a’
INC

M

0

1 y

0

0

1

1

Figure 2: Block diagram of a mixed control- and data-flow
graph

4.1.1 Arithmetic Function Handling

A transition function involving arithmetic operations cannot be
handled efficiently by a direct application of procedure build.
First of all, representing the function �f (e.g., as a BDD)
would be very inefficient. Moreover, the cofactoring opera-
tions were described assuming binary variables. In practice,
we need to handle the more general case of extended FSMs,
with arithmetic and relational operators. So we must consider
a data flow graph associated with both the BDD representation
of �f and with the s-graph, which performs arithmetic com-
putations. Formally, this can be described by representing the
global CFSM transition function as a composition of a reac-
tive block and a set of operators. The reactive block specifies
a function from a set of input variables (some of which can
be output of an operator) to a single selection variable. s This
variable selects which function of the primary inputs of the
CFSM is assigned to each output. In the following we will
call h(k;j)(z1; : : : zm+l) the function assigned to zj when the
selection variable has value k.

The algorithm to build an s-graph from a transition function
represented in composite form is derived from procedure build
as follows. First, procedure build is applied to the reactive
block R only, with just one multivalued output variable, the
selection s. In the resulting s-graph each path has only one
ASSIGN vertex labeled with s(k. Each ASSIGN vertex of
this initial s-graph is replaced by a chain of lASSIGN vertices,
each labeled with yj = h(k;j).

Figure 2 shows a data-flow graph of the CFSM of Figure 1.
The control-flow graph is contained within the reactive block
R.

4.1.2 Algorithm Implementation and Practical Issues

As we said above, the initial s-graph can be formed in a variety
of ways, depending on the variable order used in procedure
build. The following three major classes of orderings can be
used:

1. Ordering each output after its support yields an s-graph
where all the decision computation is done by TESTs.
ASSIGN nodes are labeled only with theh(k;j) functions.

2. Ordering each output before its support yields an s-graph
without TEST nodes. Each ASSIGN node is labeled
with the logical and of the enabling condition for the
multiplexer and the h(k;j) function.

3. All other orderings yield an s-graph with some interme-
diate mix between TEST and ASSIGN nodes.

Our current implementation allows only the first two possi-
bilities, while the range of solutions that can be obtained with
the thirdclass of orderings is available through an optimization
step described in the next section.

In both cases, the s-graph is built from a BDD representing
the characteristic function of the reactive component of the
transition function. In case 1 a traversal of the BDD from
the root corresponds exactly to the traversal performed by
procedure build, because the smoothing of the output variables
yields one of the two children of the current BDD node. The
size of the s-graph is exactly the same as the size of the BDD.

For this reason, it is very important to have a small BDD rep-
resenting the transition function. Dynamic variable reordering
is run to locally optimize the BDD size. The reordering is done
with the “sift” algorithm [Rud93], which sifts one variable at a
time up and down in the ordering and freezes it in the position
where the BDD size is minimized (with the constraint that no
output can sift before any input in its support).

The s-graph obtained in this way has the following impor-
tant properties. Each input variable is tested only once per
path; this provides the minimum depth s-graph (which trans-
lates to minimum execution time). Moreover, the ordering
of the variable tests is heuristically optimal for code size, in
the sense that no single variable can be moved in the order-
ing while decreasing the size of the BDD, and hence of the
s-graph.

4.2 S-graph to C Translation

The s-graph obtained according to one of the procedures de-
scribed in the previous section can now be translated into C
code, to be compiled on the target machine. There are a
number of optimization operations that can be performed on
the s-graph before the final code generation. Some of them,
such as code motion, common subexpression factoring, etc.,
are common to general-purpose compilers and will not be de-
scribed in detail here. Other optimizations are specific to the
FSM domain.

For example, we can collapse multiple adjacent TEST
nodes with a unique entry point into a single TEST node
with a multivalued function and multiple children. This com-
plex TEST node can be implemented using constructs such
as switch in C or case in Pascal. The choice of whether such
collapsing should be used depends essentially on the rela-
tive efficiency of implementation of conditional jumps versus
multi-way jumps in the chosen micro-controller. For exam-
ple, micro-controllers where the program counter is a general-
purpose register allow efficient multi-way jumps by using jump
tables. The cost and performance estimation procedure can
be used to quickly evaluate the alternatives and drive the opti-
mization.

The final translation of the s-graph into C (or any other
high-level language) is fairly straightforward, due to the direct
correspondence between s-graph node types and basic C prim-
itives. The fact that the code is so unstructured may hinder its
readability3, but allows greater efficiency.

Basically, a TEST node is translated to an if and two gotos,
while an ASSIGN is translated to an assignment. Appropriate
declarations of local and global variables, as well as Operating
System support statements (e.g., handling of input and output
event buffers) are also inserted into the output code.

After the synthesis of the code is complete, we can evaluate
the effectiveness of the methodology, as shown in the next
section.

3Note that in our envisioned codesign methodology the designer should
never be exposed to it, just like the user of a general-purpose compiler should
never have to look at the assembly code.

5

function estimated measured perc. diff
time size time size time size

BELT 353 433 270 392 30 10
ODOMETER 379 287 380 266 0 7
FUEL 541 657 555 631 -2 4
SPEEDOMETER 851 601 872 621 -2 -3
NORMALIZE 920 479 999 458 -7 4
CROSS DISP 3795 4169 4040 5182 -6 -19
DETECT EDGE 850 511 810 484 4 5
QUAD2SIGN 919 509 928 509 0 0
COIL SWITCH 1038 677 912 712 13 -4
TIMER 1005 1417 859 1137 16 24

Table 1: Results of the cost/performance estimation procedure

5 Experimental Results

In this section we report the results of the cost/performance
estimation procedure and of the s-graph synthesis procedure,
applied to a car dashboard control system. In all cases, the
numbers are given for a Motorola 68HC11 micro-controller.
They are obtained using our estimation package, as well as
by actual measurements done on the output of the INTROL C
compiler for the 68HC11. The timing columns are given in
terms of clock cycles for a single transition of each FSM, and
the code size columns are given in terms of bytes.

Table 1 summarizes the result of the cost estimation pro-
cedure, and compares it against an exact measurement of the
code size and timing (maximum number of clock cycles), per-
formed by analyzing the compiled object code.

Table 2 shows the effect of the different orderings in proce-
dure build on the software size and timing. In both cases, the
computed function is exactly the same. The only difference is
the order of the variables, which affects the number of TEST
nodes. The first case uses a naive ordering, in which all out-
puts are ordered after all inputs, the second case forces each
output to appear after its support (case 1 in Section 4.1.2). The
timing in both cases is exactly the same, because the number
of TEST and ASSIGN nodes on a path on the s-graph is the
same. The only difference is the size, due to the sharing among
subgraphs, which can be performed better in the second case.
As a reference, we also compare the result with an implemen-
tation which uses a two-level multi-way jump structure. The
first jump is done based on the current state, the second jump
is done based on the concatenation of all the decision variable
into a single integer. The jumps are followed by an appro-
priate sequence of ASSIGNs. This simple implementation
(similar to what is often done during structured hand-coding
of reactive systems) performs better than the naive ordering,
but worse than the optimized decision graph.

As a reference, a hand-designed version of the same dash-
board controller requires 7425 bytes of memory. Our small-
est implementation requires 10392 bytes of memory, but has
much better timing characteristics. E.g., the hand-designed
version of SPEEDOMETER requires about 3200 cycles, while
ODOMETER takes about 4000 cycles.

We have also tried to compile the same code using the
MIPS compiler, which has much better optimization capabil-
ities than the INTROL compiler, and the results are similar.
This demonstrates that the optimization space that we can ex-
plore in our restricted case is significantly larger than in the
case of a general-purpose compiler.

6 Conclusions and Future Work

In this paper we have presented a new methodology for the syn-
thesis of software for embedded real-time control-dominated
systems. The methodology exploits the use of a Finite State
Machine specification, and unlike classical compilation algo-
rithms starts from a description of the function to be computed,

function in before out support two-level
BELT 396 392 1029
ODOMETER 350 266 365
FUEL 1148 631 872
SPEEDOMETER 724 621 714
NORMALIZE 458 458 516
CROSS DISP 6275 5182 6274
DETECT EDGE 519 484 612
QUAD2SIGN 799 509 931
COIL SWITCH 1699 712 1136
TIMER 32447 1137 1206

Table 2: Effect of different TEST variable orderings

rather than from one operational implementation of it. This
allows the use of powerful optimization algorithms based on
Boolean function manipulation methods.

The internal representation that we use is also the basis of a
quick but fairly precise cost and performance estimation pro-
cedure. The procedure is based on assigning cost parameters
to the control/data-flow graph, and can be easily customized
for different CPUs and runtime environments.

In the future we plan to exploit the cost estimation pro-
cedure to perform global optimizations aimed at satisfying
timing and size constraints, with a much finer tuning than is
currently possible. We are also exploring the coupling be-
tween scheduling algorithms and code synthesis, to allow the
scheduling procedure to transmit user-defined constraints to
the compilation steps.

References
[ASU88] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin-

ciples, Techniques and Tools. Addison-Wesley, 1988.
[BCG91] G. Berry, P. Couronné, and G. Gonthier. The syn-

chronous approach to reactive and real-time systems.
IEEE Proceedings, 79, September 1991.

[Bry86] R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-
35(8):677–691, August 1986.

[CGH+94a] Massimiliano Chiodo, Paolo Giusto, Harry Hsieh,
Attila Jurecska, Luciano Lavagno, and Alberto
Sangiovanni-Vincentelli. A formal methodology for
hardware/software codesign of embedded systems.
IEEE Micro, August 1994.

[CGH+94b] Massimiliano Chiodo, Paolo Giusto, Harry Hsieh,
Attila Jurecska, Luciano Lavagno, and Alberto
Sangiovanni-Vincentelli. Synthesis of software pro-
grams from CFSM specifications. Technical Report
to appear, U.C. Berkeley, 1994.

[CW91] R. Camposano and W. Wolf, editors. High-level VLSI
synthesis. Kluwer Academic Publishers, 1991.

[CWB94] Pai Chou, E. Walkup, and G. Borriello. Scheduling for
reactive real-time systems. IEEE Micro, August 1994.

[GJM94] R. K. Gupta, C. N. Coelho Jr., and G. De Micheli. Pro-
gram implementation schemes for hardware-software
systems. IEEE Computer, pages 48–55, January 1994.

[LL73] C. Liu and J.W Layland.Scheduling algorithms for mul-
tiprogramming in a hard real-time environment.Journal
of the ACM, 20(1):44–61, January 1973.

[Rud93] R. Rudell. Dynamic variable ordering for ordered binary
decision diagrams. In Proceedings International Con-
ference on Computer-Aided Design, November 1993.

[Yee94] S.Y. Yee. An esterel to SHIFT compiler for a hard-
ware/software codesign environment. Master’s thesis,
U.C. Berkeley, 1994.

6

	DAC 95
	Front Matter
	Table of Contents
	Sessions
	Author Index

