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ABSTRACT
Modern enterprises have to deal with a variety of analytical queries
over very large datasets, also commonly referred to as big data an-
alytics. In this respect, Hadoop — an open-source implementa-
tion of MapReduce paradigm — has gained much popularity in the
recent years. Hadoop scales to thousand of nodes and terabytes
of data. However, Hadoop suffers from poor performance, espe-
cially in I/O performance, over a variety of analytical tasks. Several
works have proposed alternate data storage for Hadoop in order to
improve the query performance. However, many of these works
end up making deep changes in Hadoop or HDFS. As a result, they
are (i) difficult to adopt by several users, and (ii) not compatible
with future Hadoop releases. Furthermore, these works still do not
exploit full flexibility of data storage and hence there is still a lot
more potential to improve query performance.

In this paper, we present CARTILAGE, a comprehensive data
storage framework built on top of HDFS. CARTILAGE allows users
full control over their data storage, including data partitioning, data
replication, data layouts, and data placement. As a result, users can
implement several efficient query plans in Hadoop and improve the
performance of their analytical queries significantly. Furthermore,
CARTILAGE can be layered on top of an existing HDFS installa-
tion. This means that Hadoop, as well as other query engines, can
readily make use of CARTILAGE. We describe several use-cases
of CARTILAGE and propose to demonstrate the flexibility and effi-
ciency of CARTILAGE through a set of novel scenarios.

1. INTRODUCTION
Hadoop is a parallel data processing framework that has gained

much popularity in the recent years as it allows non-expert users
to run their analytical queries over big data and clusters. How-
ever, today, it is well known that the simplicity of Hadoop comes at
the price of poor performance [14]. One of the reasons is because
Hadoop has poor I/O performance. By default, Hadoop stores all
data in an identical byte-copy of input datasets, which typically are
in row layouts, and has a scan-oriented data processing (i.e. large
datasets are scanned entirely). Therefore, in the last two years, sev-
eral works have proposed alternate data layouts, such as CFile [12],
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Cheetah-layout [3], RCFile [8], CIF [7], and Trojan Layouts [9],
and alternate data access methods, such as HadoopDB [1], Trojan
Indexes [5], Full text indexes [11], and HAIL [6]. However, all
these approaches have two main problems:

(1.) These approaches are limited to data layouts and indexes. But,
there is still lot more flexibility that can be harnessed, such as com-
pression, co-location, co-grouping, and heterogenous data parti-
tioning (i.e., different partitioning key for different replicas). In
particular, we should be able to consider more than one of these
aspects at the same time. Furthermore, default data storage fea-
tures in Hadoop such as data replication, data partitioning, and data
distribution gives rise to newer challenges as well as research op-
portunities, e.g., multiple sort orders at the same time.

(2.) Many of these approaches of alternate data layouts and access
paths require deep changes in Hadoop or HDFS. However, with
the growing mass of Hadoop users, deep changes in the Hadoop
framework are bad. This is because now users must replace stan-
dard Hadoop or HDFS with the deeply changed one. This is just
not an option for many users. Furthermore, with deep changes we
make our software incompatible with future Hadoop versions. As
a result, it is difficult to support the software stack built on top of
Hadoop, e.g. Pig, Hive, with the deeply changed Hadoop or HDFS.

This calls for an approach that provides full flexibility of data
storage in Hadoop, while making minimal or no changes to the
Hadoop infrastructure. Our idea is to have a flexible storage layer
on top of HDFS, which (i) on the one hand exploits default features
of HDFS (such as data replication, data partitioning, and data distri-
bution) and (ii) on the other hand exposes full data storage flexibil-
ity (using UDFs) to Hadoop users. As a result, users must be able to
plug this new flexible data storage layer into existing (and most re-
cent) Hadoop versions and use any application on top of it. Notice
that, this is in contrast to high-level storage layers, e.g. WWHow!
layer [10] and RodentStore [4], because we do not come up with
the physical design decisions, e.g. using what, where, and how in
WWHow! layer and using storage algebra in RodentStore. Rather,
we allow for storing data in HDFS with a given set of physical de-
sign decisions. In summary, the main goal of having this new full
flexibility in data storage is to boost query performance while keep-
ing users’ applications compatible with newer versions of Hadoop.

In this demo, we present CARTILAGE, a fully flexible data stor-
age framework built on top of HDFS. The beauty of CARTILAGE is
that it does not require deep changes in Hadoop or HDFS. Rather,
CARTILAGE builds on existing HDFS capabilities and exposes full
control of data storage to users via UDFs. In the following, we
give an overview of CARTILAGE in Section 2. We show four use-
cases of CARTILAGE in Section 3 and describe our demonstration
scenarios in Section 4.
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Figure 1: The CARTILAGE Architecture

2. CARTILAGE
In this section, we illustrate the features of Cartilage via an ex-

ample of uploading a dataset (Section 2.1) and running a MapRe-
duce job on top of it (Section 2.2). Overall, the core idea of CAR-
TILAGE is to provide users full flexibility to store their datasets,
while still using the Hadoop/HDFS framework as the underlying
data storage/processing system. CARTILAGE does not require any
change to the Hadoop framework. To do so, CARTILAGE wraps
around existing HDFS and provides APIs with full storage control
to users. This is a challenging task since HDFS has several storage
constraints. For example, by default, HDFS maps every input data
file to one HDFS file and internally partitions the file into several
data blocks, based on only the size1. In the following, let us see
how CARTILAGE frees the user from such storage constraints.

2.1 Data Upload
We illustrate the data upload architecture of the CARTILAGE

framework in Figure 1(a). We see that CARTILAGE layers on
top of any existing HDFS installation. Users upload datasets into
HDFS using CARTILAGE. For this, users run a DataUpload job,
wherein they provide their data storage preferences as configura-
tion parameters. For example, a user can upload a dataset with a
replication factor of 2 and can define the logical and physical par-
titioning for one of the replicas as follows:
// setting the replication factor

conf.setReplicationFactor(2);

/* Configuring the First Replica (i.e., Replica 0) */

// using a range partitioner for the logical partitioning

conf.setLogicalPart(RangePart.class, 0);

// setting the partitioning attribute

conf.setRangePartAttIdx("0", 0);

// setting the range values

conf.setRangePartLowKeys("1,101", 0);

conf.setRangePartHighKeys("100,200", 0);

// using a size-based partitioning for the physical partitioning

conf.setPhysicalPart(FileSizePart.class, 0);

// setting the physical size for the physical partitions

conf.setMaxPhysicalPartSize(maxFilesize, 0);

It is worth noticing that a user can use a different partitioning
function for other data replicas. In this way, a user can replicate its
dataset heterogeneously. Thus, in contrast to existing distributed
file systems, CARTILAGE can partition each data block replica us-
ing a different partitioning function from each other.

Once CARTILAGE receives the DataUpload job, it automat-
ically maps the input data to several HDFS files according to the
provided configuration parameters. This means that for a given in-
put file (or dataset), CARTILAGE might create one or more HDFS
files. Essentially, CARTILAGE translates users’ datasets into HDFS
files, based on the storage preferences provided by users in the

1Incoop [2] proposes a modified HDFS that creates data blocks
based on content, i.e. content based chunking. However, this is the
only flexibility that Incoop offers. It still inherits other storage con-
straints from HDFS. Furthermore, as discussed before, third party
HDFS modifications are not viable in practice.

DataUpload job. As a result of this flexible mapping between
user dataset and HDFS files (physical file independence), CARTI-
LAGE offers users full flexibility to store their datasets. For ex-
ample, CARTILAGE can support users to create arbitrary data lay-
outs (row, column, PAX, etc.), sort orders, indexes (clustered, un-
clustered, covered, partial, etc), partitioning strategies (range, hash,
etc.), compression schemes, data placement strategies, and replica-
tion policies (adjusting replication factor or even performing partial
replication). Furthermore, users can make each of these storage de-
cisions at different storage granularities such as file, data node, or
block. In the extreme case, however, CARTILAGE users can still
fall back to standard HDFS storage characteristics.

The reader might think that by layering CARTILAGE on top of
HDFS, we significantly increase its data upload time. However,
this is not the case. To illustrate this, Figure 2(a) shows the upload
times of CARTILAGE (with the logical and physical partitioning
described above) and HDFS over TPC-H lineitem table2. We
vary the data size per node along the X-axis. From the figure, we
see that the upload time of CARTILAGE is very close to the upload
time of HDFS. The minor gap is due to the additional data parsing
done by CARTILAGE. Thus, CARTILAGE is comparable to Hadoop
when uploading the datasets.

Finally, notice that, CARTILAGE framework is fully extensible,
i.e. users can define their own UDFs for arbitrary data storage char-
acteristics and plug them into the CARTILAGE framework. For in-
stance, a user can use her own MyLogPart logical partitioning
function for the second replica (i.e, Replica 1) as follows:
conf.setLogicalPart(MyLogPart.class, 1);

2.2 Job Execution
We illustrate the MapReduce job execution architecture in Fig-

ure 1(b). Users can access their datasets through CARTILAGE run-
ning standard MapReduce jobs. The jobs are generated by either
users themselves or other query engines, such as Pig or Hive. CAR-
TILAGE exposes the metadata regarding the data storage decisions
being made to users and query engines. Moreover, CARTILAGE
also allows users to push down some of the operators, such as se-
lection and projection. For example, if a user has applied range
partitioning on her data, she can push down the selection predi-
cate by specifying the following configuration parameters in her
MapReduce job:
// set the selected attribute, i.e., attribute 0

QueryConf.setSelAttIdx(job.getConfiguration(), 0);

// set selection low and high keys

QueryConf.setSelLowKey(job.getConfiguration(), 10000);

QueryConf.setSelHighKey(job.getConfiguration(), 20000);

Once CARTILAGE receives the MapReduce job, it automatically
uses the provided selection predicate in order to filter out the HDFS
files that are not in the range of values defined by the user. CAR-
TILAGE also exposes different data access paths, e.g., data path to
access co-partitioned data, in the form of UDFs. These UDFs can
be plugged-in when configuring MapReduce jobs, similar to the
DataUpload job. Again, we do not modify the source code of
Hadoop. Rather, we make use of UDFs so that CARTILAGE can be
easily interfaced with existing Hadoop installations.

Figure 2(b) shows the MapReduce execution times for CARTI-
LAGE and Hadoop when running a MapReduce job for a select-
groupby query. The results show that CARTILAGE outperforms
Hadoop by a factor of 8.5. Notice that, both Hadoop and CARTI-
LAGE perform a full scan over their input data. However, CARTI-
LAGE performs much better than Hadoop since it pushes down the
2We ran these experiments on a single MacBook Pro with OS X
10.8.1, 2.66 GHz processor, and 4GB memory.

2



Dataset (Bytes) Dataset (GB) HDFS Cartilage
759863287 0.71 157.128 196.477
1519726574 1.42 326.658 399.653
3039453148 2.83 643.766 780.602
6078906296 5.66 1281.424 1557.939
12157812592 11.32

0

500

1000

1500

2000

0 1.5 3 4.5 6

Up
lo

ad
 T

im
e 

(s
)

Per-node Dataset Size (GB)

Hadoop
Cartilage

System Mapper Time (s) Total Time (s)
Hadoop 51 78
Cartilage 6 37
Cartilage Hadoop 51 84

SELECT sum(l_extendedprice) 
  FROM lineitem 
  WHERE l_orderkey >= 10000 AND l_orderkey <20000 
  GROUP BY l_partkey

0

15

30

45

60

Hadoop         Cartilage

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

(a) Upload Time

Dataset (Bytes) Dataset (GB) HDFS Cartilage
759863287 0.71 157.128 196.477
1519726574 1.42 326.658 399.653
3039453148 2.83 643.766 780.602
6078906296 5.66 1281.424 1557.939
12157812592 11.32

0

500

1000

1500

2000

0 1.5 3 4.5 6

Up
lo

ad
 T

im
e 

(s
)

Per-node Dataset Size (GB)

Hadoop
Cartilage

System Mapper Time (s) Total Time (s)
Hadoop 51 78
Cartilage 6 37
Cartilage Hadoop 51 84

SELECT sum(l_extendedprice) 
  FROM lineitem 
  WHERE l_orderkey >= 10000 AND l_orderkey <20000 
  GROUP BY l_partkey

0

15

30

45

60

Hadoop         Cartilage

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

(b) Query Time
Figure 2: CARTILAGE Vs Hadoop Performance

selection predicate to the split phase (i.e., to the phase where input
splits are created for a given MapReduce job). As a result, CARTI-
LAGE is able to process only the qualifying HDFS files rather than
the entire dataset.

Once we have the flexibility to decide how to store a given
dataset, we need to come up with one or more storage decisions
and their granularity in an automatic and invisible way to users.
The big challenge then is to automatically come up with all storage
decisions using an optimizer. Alternatively, we can give the flexi-
bility to users to configure some of the storage decisions and let the
optimizer fill in the rest. In the worst case, we could fall back (at
any time) to the default storage settings in standard Hadoop.

3. USE CASES
CARTILAGE allows users the flexibility to store their data sets

in a manner which fits the needs of their applications. As a result,
CARTILAGE covers a number of data storage use cases, in which
users can extract better query performance by exploiting the data
storage flexibility of CARTILAGE. In this section, we discuss four
such use cases to illustrate the major advantages of using CARTI-
LAGE as the data storage framework.

3.1 Heterogenous Data Partitioning
Modern data management systems store data in a way that fits

the query workloads best. However, it is not always possible to
partition the data so that it fits all the queries in the query work-
load. This is especially a problem for big data analytics, which
contains a set of analytical tasks that aggregate data on different
attributes. Likewise, big data analytical tasks might join a data set
on different attributes. For example, SPARQL queries usually per-
forms joins different pairs of subject, predicate, and object in the
same RDF data set. CARTILAGE allows users to partition differ-
ent replicas of their data differently, i.e. users can define different
partitioning functions for each data replica. This means that, users
can have their data partitioned over three different attributes at the
same time by default, since HDFS keeps three data replicas by de-
fault. Such heterogenous data partitioning allows users to improve
performance of more queries and fit their workloads better.

3.2 Flexible Data Replication
Distributed file systems, typically, replicate their data in order

to achieve fault-tolerance over node failures and data corruption.
However, since the goal of replication is only fault-tolerance, most
distributed file systems replicate data at the file level, i.e. they make
copies of the entire file. For instance, HDFS partitions the input
data into blocks and replicates each data block the same number of
times. However, this static system wide redundancy is not helpful
in many cases, e.g. some parts of the data are queries more often
than others. CARTILAGE relaxes this static file-level replication
assumption and allows users to replicate their data sets at different
levels, e.g. block level, column level, or even at a row level (partial
replication) in order to improve the query performance. This means

that a user can now choose, for instance, to replicate more those
data blocks that are queried more often and de-replicate those data
blocks that are queried infrequently. As a result of this flexible
replication, users can achieve much better query performance.

3.3 Flexible Data Placement
By default, HDFS distributes data blocks evenly across data

nodes in order to balance the data load. While this works well
for simple scan-oriented tasks, it might not work for several com-
plex analytical tasks. For example, users may want to co-locate two
data sets on a given join key, in order to speed up the query perfor-
mance of join tasks. Users might also want to store data blocks in
a given range of values (in case of range partitioning) on different
data nodes, in order to increase parallelisation. Similarly, a user
might want to store input data sets for CPU-intensive tasks on data
nodes that have better CPUs. CARTILAGE offers such data place-
ment flexibilities to the user. Essentially, with CARTILAGE, users
can trade load balancing for improved query performance. Further-
more, CARTILAGE allows users to automate such data placement
decisions for better query performance, just as default HDFS auto-
matically changes block locations for better load balancing.

3.4 Heterogenous Data Layouts
Several research efforts, in the past two years, have tried to over-

come the performances limitation of row-oriented data processing,
the default data processing in Hadoop MapReduce. As a result,
several data layouts has been proposed by many researchers [12, 3,
8, 7]. However, it is well known that no single layout can fit all
query workloads perfectly. Therefore, users cannot stick to a sin-
gle layout all the time. Recently, [9] proposed to store each data
replica with a different data layout. But, this approach requires
deep change in HDFS. CARTILAGE allows users to store each data
block replica in a different layout without any change in the under-
lying HDFS framework. Furthermore, CARTILAGE allows users to
change the data layout of any data block replica at any time. In fact,
with CARTILAGE, users can even define their custom data layouts
to suit their applications.

4. DEMONSTRATION
Our aim in this demo is to show how CARTILAGE can be lever-

aged by users to improve the performance of MapReduce jobs in
different scenarios. We present four demonstration scenarios, along
the same lines as the four use cases discussed in Section 3.
Demo Setup. We compare the performance of MapReduce jobs
using both CARTILAGE and standard HDFS, in order to better il-
lustrate the advantages of CARTILAGE. We plan to use our local
10-node cluster at QCRI. For each demo scenario, we run one
MapReduce job using CARTILAGE and one MapReduce job us-
ing standard HDFS. For this, we spit our cluster into two 5-node
clusters. We demonstrate our CARTILAGE storage framework over
three datasets and benchmark: (i) RDF dataset in LUBM bench-
mark [13]; (ii) decision support dataset in TPC-H benchmark [16];
(iii) scientific dataset in SDSS benchmark [15]. We provide a
friendly GUI (see Figure 3), wherein the audience can play with
the storage flexibility features of CARTILAGE and validate the fol-
lowing four demonstration scenarios.

4.1 Arbitrary Selections over Linked Data
We consider an RDF data processing scenario using the

LUBM [13] benchmark. We consider this scenario to demonstrate
the efficiency of CARTILAGE with data heterogenous partitioning.
Our main goal is to show how SPARQL queries can significantly
decrease their execution times when storing RDF datasets with
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Figure 3: Graphical User Interface to Upload and Query Data from CARTILAGE.

CARTILAGE. For this, the audience is invited to use the CARTI-
LAGE GUI (See Figure 3) in order to upload an RDF dataset using
three different data partitioning functions. The CARTILAGE GUI
also allows the audience to run a set of queries over the uploaded
RDF dataset to see the benefits in terms of execution time.

4.2 Storage Space Optimization
In this scenario, we consider the previously uploaded RDF

dataset. We run a series of SPARQL queries having a selection
predicate on the same attribute and within the same range of values.
After this, we invite the audience to use CARTILAGE to increase the
replication factor for the data blocks containing only RDF triples
in the relevant range of values, i.e. the range which qualifies in the
RDF queries. Then, we invite the audience to run again the same
series of SPARQL queries. This allows the audience to observe the
benefits of replicating a dataset for query performance purposes.
Still, even with improved query performance, CARTILAGE requires
almost the same storage space as before, which is not the case for
HDFS. We also invite the audience to decrease the data replication
factor for the infrequently requested data blocks. With this, the au-
dience can observe that CARTILAGE can free storage space without
negatively impacting the overall query performance.

4.3 Performance Efficient Data Placement
In this scenario, we show how CARTILAGE can boost data an-

alytics by having full control on the data block placement. To
show this, we consider two demo cases. First, we consider a case
where users applied flexible data replication to de-replicate some
data blocks. The audience is then invited to upload the lineitem
dataset. Here, we show that CARTILAGE stores the new dataset on
data nodes where the local average replication factor of data blocks
is below the global average. Second, we consider a case where
a query workload frequently requests a given range of values in
attribute orderkey of the lineitem dataset. In this case, we
show how CARTILAGE can speed up the query workload by evenly
distributing the qualifying data ranges across all data nodes.

4.4 Hybrid Query Plans
We show how CARTILAGE can upload a dataset with a differ-

ent data layout per replica (e.g. PAX, ROW, and RCFile-like). For
this, we consider the PhotoObj dataset as defined in [15]. In
this scenario, we invite the audience to upload the PhotoObj
dataset using three different data layouts. Then, we invite the
audience to run three different analytical MapReduce jobs over
CARTILAGE and standard HDFS. Especially, we show how CAR-
TILAGE enables new possibilities for query processing. We run

a MapReduce job that implements the following simplified SQL
query from SDSS [15]: SELECT * FROM PhotoObj WHERE
g BETWEEN 0 AND 20. To perform this job over CARTILAGE,
we use an hybrid query plan. We read attribute g from the dataset
replica in PAX-layout and performs the selection predicate on it.
Then, for the qualifying values, we read the corresponding tuples
from the dataset replica in ROW-layout to return the results. CAR-
TILAGE makes such hybrid query plans possible in Hadoop.

In all above scenarios, the audience is able to interact with CAR-
TILAGE using the GUI shown in Figure 3. The audience can com-
pare the performance of MapReduce jobs over CARTILAGE with
the performance of MapReduce jobs over HDFS. Notice that, for
the live demo, we consider small datasets in order to make the de-
mos more interactive when uploading datasets. However, we also
consider larger datasets loaded in advance.
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